
December, 2009 Page 1 of 31

SORTING DATA WITH A PROBINDINGSOURCE AND .NET CONTROLS

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
December 2009

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 2 of 31

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a series of presentations on sorting data in your .NET user interface using the
ProBindingSource control together with Visual Designer and .NET controls. First I put together the
supporting code to show some of the capabilities and also some of the issues around sorting data in the
user interface as opposed to sorting in the data source. I create a new ABL Interface .cls file for a set of
related classes, create a class that uses the Interface, and create a form with an Infragistics grid and a
ProBindingSource to manage and display some data.

[This part of the document corresponds to the video presentation that is Part 1 of the Data Sorting series:]

Starting with the usual sequence of File -> New, I select ABL Interface. An interface is a special type of
.cls file that defines a contract that other classes agree to adhere to by implementing the interface. In this
case this is a very simple start on a Model to allow me to manage and provide access to different data
sources in a consistent way. Typically interface names start with I, so this is IModel. I can enter a
Description for what its role is, and when I click finish Architect generates the skeleton of a source file
named IModel.cls.

You can see the generated ABL identifies this as an INTERFACE rather than a CLASS:

/*--
 File : IModel
 Description : Interface for Model classes
 --*/

USING Progress.Lang.*.

INTERFACE IModel:

END INTERFACE.

And what I enter in ABL is in effect prototypes of methods that any class that implements this interface
must provide. The method definition just identifies the name and signature.

USING Progress.Lang.*.

INTERFACE IModel:
 METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER).
 METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).
 METHOD PUBLIC HANDLE GetQuery().

END INTERFACE.

The first one is FetchData, which tells the Model instance to populate itself with some set of data of the
type the Model class manages. I just allow for an optional filtering string as an argument.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 3 of 31

Because this session is about sorting data, I define a separate method SortData to communicate sort
criteria to the model. This illustration shows how the FetchData and SortData methods in a Model class are
expected to be referenced from a user interface View class:

And the class needs to be able to provide access to the data that’s been retrieved, in this case the handle
to a query on the data, so the method GetQuery has a return type of HANDLE:

An interface can have definitions for methods, properties, and events. The only restriction is that they all
need to be PUBLIC. The Interface represents the public contract that a class adheres to so that other
classes can reference it consistently and reliably. I save and compile the interface, and then create a new
ABL Class to use the interface. This is going to be the first class that adheres to the contract defined by
the interface, in this case to provide access to Customer data. If I want to specify one or more interfaces
that the class implements, I select the Add button next to the interface section:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 4 of 31

My new Interface IModel is in the list along with all the others that are part of the support for Microsoft
.NET controls and Infragistics controls and so forth. In addition I check the boxes in the Create a user-
defined class wizard that generate a default skeleton for a constructor to execute when the class is run,
and a destructor where I could put code to clean up when the class instance is deleted. When I click Finish
I can take a look at the code that’s been generated for me.

/*--
 File : CustomerModel
 Purpose : Retrieves Customer database data into a ProDataSet
 --*/

USING Progress.Lang.*.

CLASS CustomerModel IMPLEMENTS IModel:

You can see that the CLASS statement tells the compiler that this class IMPLEMENTS the interface IModel.

The first element I add to the file is a reference to a ProDataSet that the Model uses to hold data. Now of
course data could be retrieved and managed in a number of ways, which is one reason to keep the Model
class that knows the details separate from the UI, but this is one specific example of how the interaction
can be handled, using a temp-table and dataset definition such as this.

 {dsCustomer.i}

The Model as the top of the data management stack on the client is responsible for interacting with
wherever and whatever the actual data source is, and in this case getting the data into the DataSet that
the definition in dsCustomer.i represents:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 5 of 31

/*--
 File : dsCustomer.i
 Description : Temp-Table and DataSet definition for the AutoEdge
 Customer table.
 --*/

DEFINE TEMP-TABLE ttCustomer
 FIELD CustomerFirstName AS CHARACTER
 FIELD CustomerLastName AS CHARACTER
 FIELD CustomerBirthCountry AS CHARACTER
 FIELD CustomerBirthdate AS DATE
 FIELD CustomerGender AS LOGICAL
 FIELD CustomerLicenseDate AS DATE
 FIELD CustomerLicenseExpiryDate AS DATE
 FIELD CustomerID AS CHARACTER.

DEFINE DATASET dsCustomer FOR ttCustomer.

In a complete application there would be a separation between a Model class on the client that holds data
locally for the user interface to use, and classes or procedures on the server where the database is
connected, as illustrated here:

In this case I leave the basic code that does all the data management work right here in this one simplified
class, as shown here:

I need a query definition for the actual data source, an ABL DATA-SOURCE definition for the DataSet to use,
and a variable to hold the handle of a query on the temp-table that the data gets loaded into, to supply
back to the user interface.

 DEFINE VARIABLE httCustQuery AS HANDLE NO-UNDO.
 DEFINE QUERY qCustomer FOR AutoEdge.Customer.
 DEFINE DATA-SOURCE srcCustomer FOR QUERY qCustomer.

Next I need a few statements in the constructor to get the object set up when it’s instantiated. So I need to
attach the DATA-SOURCE to its temp-table, and then set up a dynamic query on that temp-table which is the
connecting point to the binding source in the user interface.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 6 of 31

CONSTRUCTOR PUBLIC CustomerModel ():
SUPER ().

 BUFFER ttCustomer:ATTACH-DATA-SOURCE (DATA-SOURCE srcCustomer:HANDLE).
 CREATE QUERY httCustQuery.
 httCustQuery:SET-BUFFERS(BUFFER ttCustomer:HANDLE).
 httCustQuery:QUERY-PREPARE ("FOR EACH ttCustomer").

END CONSTRUCTOR.

This sketch shows the distinction between the query on the database table associated with the DataSource,
used to populate the DataSet, and the query on the DataSet's temp-table of data after it's been retrieved.

Next you can see the effects of the default code generation I get from Architect by saying that this class
implements IModel. Because I have to code an implementation of each of the methods defined in the
interface, I’m provided with a starting point to remind me to fill each method in.

 METHOD PUBLIC VOID FetchData(INPUT pcFilter AS CHARACTER):
 UNDO, THROW NEW Progress.Lang.AppError("METHOD NOT IMPLEMENTED").
 END METHOD.

 METHOD PUBLIC HANDLE GetQuery():
 UNDO, THROW NEW Progress.Lang.AppError("METHOD NOT IMPLEMENTED").
 END METHOD.

 METHOD PUBLIC VOID SortData(INPUT pcSort AS CHARACTER):
 UNDO, THROW NEW Progress.Lang.AppError("METHOD NOT IMPLEMENTED").
 END METHOD.

Without some skeleton implementation at least, I’d get a compiler error if I tried to save and compile
CustomerModel.cls, because the compiler is cross-referencing this with the interface definition.

Here’s the code that I write for FetchData:

METHOD PUBLIC VOID FetchData(INPUT pcFilter AS CHARACTER):

 DEFINE VARIABLE cPrepare AS CHARACTER NO-UNDO.
 cPrepare = "FOR EACH AutoEdge.Customer".
 IF pcFilter NE "" THEN
 cPrepare = cPrepare + " WHERE " + pcFilter.
 QUERY qCustomer:QUERY-PREPARE (cPrepare).
 DATASET dsCustomer:FILL().
 httCustQuery:QUERY-OPEN ().
END METHOD.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 7 of 31

It prepares a query for the DataSet to use to FILL the temp-table, and for simplicity’s sake, just expects
any Filtering information passed in to be a WHERE clause for the database query. In real life this would
require translation from the user interface understanding of a filter and what the database would require,
but this will do for now.

And likewise I have a code for the GetQuery method, which just returns the temp-table query handle from
the DataSet.

METHOD PUBLIC HANDLE GetQuery():

 /* This returns the handle of the ttCustomer query for the DataSet. */
 RETURN httCustQuery.
END METHOD.

I haven’t filled in code for SortData yet – that happens later – but because there’s at least a skeleton
implementation my syntax check is OK, and I can save the class and compile it.

Next I create a form to display the data in. This uses the Infragistics WinGrid control, which we call the
UltraGrid. This advanced grid control has properties you can set to allow it to sort the data it displays on
its own, so it gives me an opportunity to compare letting the user interface handle data sorting for display
and having the data source handle it.

There are several alternatives for creating a binding source. In this case I select the ProBindingSource
directly under the OpenEdge Controls in Visual Designer’s Toolbox:

In the ProBindingSource Designer, I select Import schema from file:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 8 of 31

This is prepared to use an XSD file, or an ABL source file containing a definition. I select the DataSet
definition dsCustomer.i to use as a basis for the binding source.

Back in the Design View I want to give the binding source a meaningful name. Since this a definition that
will appear in the main block of the class, above any method definitions, it represents what we call a “data
member” of the class, so name it moBSCustomer, using the naming convention “m” for member and “o”
for object, since the variable will hold a reference to a binding source object.

Next I open up the list of Ultra Controls, and drop an UltraGrid onto the form. In the Quick Start wizard,
I set the grid’s data source to be the binding source I just created, and that’s all I need to set to get
started.

As with the binding source, I want to give the variable that holds the object reference for the grid a
meaningful name in my source code. That’s the object’s Name property, which I set to
moUltraGridCustomer.

The Text property is the title displayed at the top of the grid, and I set that to Customer Grid.

Here in the generated code are the variable definitions for the variables to hold my two object references:

/*--
 File : CustomerUltraGrid
 Purpose : UltraGrid to display and sort Customer data
 --*/

USING Progress.Lang.*.
USING Progress.Windows.Form.
USING Infragistics.Win.UltraWinGrid.*.

CLASS CustomerUltraGrid INHERITS Form:

 DEFINE PRIVATE VARIABLE components AS System.ComponentModel.IContainer NO-UNDO.
 DEFINE PRIVATE VARIABLE moUltraGridCustomer AS
 Infragistics.Win.UltraWinGrid.UltraGrid NO-UNDO.
 DEFINE PRIVATE VARIABLE moBSCustomer AS Progress.Data.BindingSource NO-UNDO.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 9 of 31

I need another variable to hold a reference to the CustomerModel instance that I’ll use to provide data to
my “View”, the user interface class:

 DEFINE PRIVATE VARIABLE moCustomerModel AS CustomerModel NO-UNDO .

Next in the class’s constructor, I need to create that CustomerModel instance, and then tell it to retrieve
all the Customers – for starters I’m not specifying any filtering criteria. And finally, because the binding
source needs to have its Handle property set to a buffer, a query, or a DataSet, I retrieve the query
handle that I set up in the model class.

CONSTRUCTOR PUBLIC CustomerUltraGrid ():

 SUPER().
 InitializeComponent().
 moCustomerModel = NEW CustomerModel().
 moCustomerModel:FetchData("").
 moBSCustomer:Handle = moCustomerModel:GetQuery().

 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.

END CONSTRUCTOR.

Now I save this much so that we can see what happens when I run it. Here’s the form with my grid, and
you can see it’s successfully attached the binding source to the Customer data held by the model.

Now I know that somehow the UltraGrid is prepared to do data sorting for me, which seems like a nice
feature, so I click on a column header, but nothing happens. So I’ve got to do some investigation to find
out how to make this work for me.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 10 of 31

[This next part of the document corresponds to the video presentation that is Part 2 of the Data Sorting
series:]

Here’s a quick tour of the Infragistics Online Documentation as an example of how it can help you
understand what properties to set and what code to write for the controls in a form such as the one I’m
building, and then use that information in my form to get the grid to show the data in a different sort order
than I used to retrieve it from the database. Note that in addition to the online links shown in these
examples, the Infragistics documentation is installed locally when you install OpenEdge 10.2B along with
the Infragistics controls. You can access it from the Windows Start menu under Programs->Infragistics-
>NetAdvantage for .NET->Windows Forms->Documentation->Documentation (local).

When I first run the form I discover that the sorting capability of the UltraGrid control isn’t enabled by
default, so I need to investigate what properties of the control have to be set to enable it to sort data for
me. And just as I used MSDN in other presentations for information on Microsoft controls, I can go to the
Infragistics website to get documentation on all the .NET controls in the UltraControls package that are
available with OpenEdge 10.2.

Under the Support menu at www.infragistics.com, I can select Online Documentation. The controls that
are available with OpenEdge 10.2B are identified as Volume 2 of Windows Forms 2009, so I select that
version to get information on.

There’s a lot of introductory material available that you can start with, but the two major sources of
comprehensive information on all the controls are the Developers Guide and the API Reference Guide.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 11 of 31

Let me see first what I can find out about the WinGrid control, which we call the UltraGrid, under the
Developers Guide. Selecting the Controls section of the Guide, you see a list of all the available controls.
There’s introductory material on every control, but I go to the Using WinGrid section.

There’s the section on Sorting and Grouping data with the grid, and within that, a Sorting Columns
topic, which is what I want to enable on the control. And in that section I find exactly the question I want
an answer to, how to enable sorting when the user clicks on a column:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 12 of 31

There’s information on setting the HeaderClickAction property to SortSingle or SortMulti to enable
column sorting, along with some code samples in C# that are pretty close to what the equivalent ABL
should look like.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 13 of 31

I also find an example of setting the SortIndicator to Descending if I want to sort the data that way.

That’s the kind of solution information on controls and their properties and events that the Developers
Guide provides.

The API Reference Guide has comprehensive reference documentation on every aspect of every control.
Expanding the WinGrid and its Namespace, there are categories of information on the Classes that
support each control, the Enumeration values that it uses, its Interfaces, and related Delegate classes
that define its event handlers. My HeaderClickAction and SortIndicator are enumerations, so expanding
the Enumerations node, I see a description of HeaderClickAction:

There’s information on the SortSingle value, which lets the user sort on a single column by clicking on it,
and the SortMulti value, which lets the user sort on several columns in succession, as well as the
ExternalSortSingle and ExternalSortMulti values that let you capture the sort request yourself, without
the grid doing the sorting for you. You take advantage of the ExternalSort… properties by subscribing to the

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 14 of 31

AfterSortChange event, so I click on the link for that event get some information on it. There I learn that
the event takes a subclass of the EventArgs class as input, called BandEventArgs.

I can open up layers of information on BandEventArgs and its sorted columns that I want to understand
how to use, and find that SortedColumns is a collection of UltraGridColumn objects associated with one
of the bands of the grid.

In this topic description there is information on the enumeration values and on using the sort events to
capture user actions, and also how the SortIndicator is set to indicate whether the sort is descending or
not.

I then take a look at the details of the SortIndicator enumeration, and see its values. If sorting is enabled
for a column, I check for the value Descending, to see if the user has requested a descending sort.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 15 of 31

I’ve learned a lot about the enumerations and the events that control sorting, so I return to Visual Designer
to try out some of these values. The DisplayLayout property of the grid is really an object with a number
of contained property values. So as the documentation examples showed me, I expand DisplayLayout and
then Override in the Properties View, and here I find the HeaderClickAction property. If I drop down
its list of values – remember that it’s an enumeration with a fixed list of possible values – I can set the
property to SortMulti to let the grid sort the data when the user clicks on one or more columns.

When I run the form with this property setting, and click on the CustomerLastName column, the data is
sorted by CustomerLastName. I can sort by CustomerFirstName within CustomerLastName by doing
a shift-click on the CustomerFirstName column, and see the multiple levels of sorting supported by the
grid when HeaderClickAction is set to SortMulti.

This example shows what seems like a useful feature built into the grid, without my having to do any
coding at all. But now that I’ve seen what the grid can do on its own, I need to consider the fact that letting
the user interface take over sorting of my data – in addition to filtering the data and other jobs that are
really part of data management – is not necessarily a great idea. I’ll next show you how to keep the data

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 16 of 31

management where it belongs and still let users use the grid control to see the data the way they want to
see it.

[This next part of the document corresponds to the video presentation that is Part 3 of the Data Sorting
series:]

Next this document shows how to intercept the event that fires when the user requests a sort, so that you
can code the event handler yourself to apply that sort request to the query that you’re managing rather
than letting the grid do its own sorting.

The previous section of this document showed how to enable grid column sorting by setting the
HeaderClickAction property. To illustrate what I meant by suggesting that letting the grid do the sorting
is not necessarily a good idea, I’ll add a button to the form and code a simple event handler for it. It’s a
Next button, to advance the query on the Customer data to the next row. Double-clicking on the control in
Visual Designer automatically creates a subscription and a skeleton event handler for the control’s default
event, in the case of a Button, the Click event. I want to increment the Position property of the binding
source when the button is clicked.

@VisualDesigner.
METHOD PRIVATE VOID ultraButton1_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 moBSCustomer:Position = moBSCustomer:Position + 1.
 RETURN.

END METHOD.

Let’s see what happens when I run the form containing my button. As before, I can take advantage of the
grid’s ability to sort the data itself by clicking on a column header such as CustomerLastName. But then I
select the first row that’s displayed in the grid after the sorting. Note the row selection marker at the
beginning of the first row in the grid:

Now I click the Next button.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 17 of 31

Well, what happened? The grid’s position marker jumped to a completely different row. If I click Next
again, the same thing happens: the grid jumps to another row that is nowhere near the next row as
displayed in the grid. What the Next button is doing has no relation to the data as the grid is displaying it,
which is certainly very confusing. Let’s take a look at what’s happening here.

In this diagram I illustrate that in the Model, there’s a database query to retrieve requested data into local
storage in a DataSet, and then there’s a query on that data for the Customer temp-table. The
ProBindingSource is connected to that temp-table query handle, and the ProBindingSource in turn becomes
the DataSource for the grid, so everything is connected together.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 18 of 31

But if I let the grid sort its displayed data independently, then the connection with the data as held in the
Model is effectively broken. The Model doesn’t know anything about the sort sequence that the user is
seeing, so when the Next button advances the Position of the binding source, which does a Get-Next on
the temp-table query, this is totally out of sync with what the user interface is displaying to the user.
Allowing this to happen is obviously not a good thing.

So as nice as this sorting in the grid seems, it’s really not a good idea for an application that is in the
serious data management business. It’s better to think of this grid capability more as demo-ware.

Instead, it’s time to write the code to add to the Model to let it control the sorting. Here’s some simple code
to manage sorting directly on the temp-table that holds the data I’ve retrieved.

METHOD PUBLIC VOID SortData(INPUT pcSort AS CHARACTER):

 DEFINE VARIABLE iSortField AS INTEGER NO-UNDO.
 DEFINE VARIABLE cSortString AS CHARACTER NO-UNDO INIT "".

 DO iSortField = 1 TO NUM-ENTRIES (pcSort) BY 2:
 cSortString = cSortString + " BY " + ENTRY (iSortField,pcSort) + " " +
 ENTRY (iSortField + 1, pcSort). /* Optional descending qualifier */
 END.
 httCustQuery:QUERY-CLOSE () NO-ERROR .
 httCustQuery:QUERY-PREPARE ("FOR EACH ttCustomer " + cSortString).
 MESSAGE cSortString VIEW-AS ALERT-BOX.
 httCustQuery:QUERY-OPEN ().
END METHOD.

Basically this bit of code is doing two things. It’s taking a character string passed in as a parameter, which
just alternates sort fields and an optional “DESCENDING” qualifier, and turns that into a BY clause for an
ABL query. And then it re-prepares the temp-table query on the local data held by the model with that BY
clause and re-opens it. This makes the new sort sequence available to the binding source in the form, and
through the binding source to the grid. To help you see what’s happening, I put in a message statement as
well that displays the resulting sort clause in the query.

Now let’s look at the other side of this call, which is an event handler in the form class that captures the
sort request and constructs the list of columns to sort, passing this as a character string to the SortData
method. I select the Events tab in the Properties View to get a list of all the events that the grid

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 19 of 31

supports. Remember that in the Infragistics documentation I learned that there’s an AfterSortChange
event that fires whenever the user requests a sort by clicking on a column header.

If I just double-click that event name in the Events tab, I get the start of an event handler and a
subscription. Here’s the code I write to create the sort string to pass to the Model. The first part checks to
see if the HeaderClickAction is set to either SortSingle or SortMulti.

@VisualDesigner.
METHOD PRIVATE VOID moUltraGridCustomer_AfterSortChange
 (INPUT sender AS System.Object,
 INPUT e AS Infragistics.Win.UltraWinGrid.BandEventArgs):

 DEFINE VARIABLE oSortColumn AS UltraGridColumn NO-UNDO.
 DEFINE VARIABLE iColumn AS INTEGER NO-UNDO .
 DEFINE VARIABLE cSortString AS CHARACTER NO-UNDO INIT "".
 DEFINE VARIABLE oBand AS UltraGridBand NO-UNDO.

 IF Progress.Util.EnumHelper:AreEqual
 (moUltraGridCustomer:DisplayLayout:Override:HeaderClickAction,
 HeaderClickAction:SortMulti)
 OR Progress.Util.EnumHelper:AreEqual
 (moUltraGridCustomer:DisplayLayout:Override:HeaderClickAction,
 HeaderClickAction:SortSingle)
 THEN RETURN.

The control represents the HeaderClickAction value as an enumeration, a set of fixed coded values. ABL
doesn’t support enumerations directly, but it does provide an EnumHelper class with methods like
AreEqual to let you work with enumeration values. Remember too that SortSingle and SortMulti are the
values that tell the grid to do its own sorting, so if that’s what it’s set to, the event handler just returns and
lets the grid do its thing.

But otherwise the method uses some of what we saw in the Infragistics documentation about the Band
object and its SortedColumns property, along with the SortIndicator enumeration, to extract the user’s
request from the event arguments object that is passed in, and turn that into a generic character string
that the Model can deal with:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 20 of 31

 oBand = e:Band.
 DO iColumn = 0 TO oBand:SortedColumns:Count - 1:
 oSortColumn = CAST (oBand:SortedColumns[iColumn],UltraGridColumn).
 cSortString = cSortString + (IF iColumn > 0 THEN "," ELSE "") +
 oSortColumn:KEY + "," +
 (IF Progress.Util.EnumHelper:AreEqual
 (oSortColumn:SortIndicator, SortIndicator:Descending) THEN
 " DESCENDING " ELSE " ").
 END.

 moCustomerModel:SortData(INPUT cSortString).

 RETURN.

 END METHOD.

The essential element of this simple code is to make sure that the Model doesn’t have to understand
anything about the event that initiated the request or the structure of the control elements that provide the
information about what columns were clicked. That’s the form’s job, to deal with the specifics of the
controls in the user interface. At the same time, I don’t want the form to have to understand how to put
together an ABL query to re-sort data; that’s the Model’s job. So I just put together a list of sort columns
and whether they’re descending or not, and then run SortData to tell the Model to deal with it. This
separation of responsibilities is illustrated by the following diagram:

One more thing I have to do up at the top of the form class is to add a USING statement for the
UltraWinGrid so that the compiler will recognize my references to the grid components UltraGridColumn
and UltraGridBand in the AfterSortRequest event handler.

USING Progress.Lang.*.
USING Progress.Windows.Form.
USING Infragistics.Win.UltraWinGrid.*.

Now I save what I’ve done, and go back to the design view, where I need to reset the HeaderClickAction
property to one of the values that tells the grid not to do its own sorting. Once again, under
DisplayLayout and Override in the Properties View, I find the HeaderClickAction property. And as I
learned from the online documentation, the values ExternalSortSingle and ExternalSortMulti tell the
grid just to invoke the AfterSortChange event and pass the selected columns into it without doing any
sorting on its own. So I select ExternalSortMulti for multi-column sorting.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 21 of 31

I save and run the form with this new value. When I click on the CustomerLastName column, the
MESSAGE statement in the Model’s SortData method appears, to confirm that it was invoked to resort the
data, rather than the grid doing the sorting. If I then Shift-Click on the CustomerFirstName, that column
gets added to the sort. And if I click on the direction arrow in the grid column header, that action gets
passed in the SortIndicator property as a Descending qualifier. The MESSAGE statement alert box now
reflects all three of these combined clicks on the UltraGrid column headers:

And you can see that re-opening the temp-table query down in the Model makes the data available to the
grid through the binding source, with the new sort sequence. What we see initially looks the same as when
the grid did its own sorting on its local copy of the data.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 22 of 31

But what’s significant is that the sort you’re seeing is now the same sort order managed by the query in the
Model, because the grid is actually using the result of re-preparing and re-opening the query with the BY
clause generated by SortData. So If I click on the Next button, the position indicator advances in the grid
the way you would expect.

What the user is seeing is in sync with how the Model is actually managing the data, and this is what you
want to do in your application to avoid confusion between the user interface and your data management
logic. In addition, the external sort option is much faster than having the grid do the sorting, because it can
take advantage of OpenEdge database and temp-table indexing, so that’s another reason to keep the
sorting in the Model where it belongs.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 23 of 31

[The next part of the document corresponds to the video presentation that is Part 4 of the Data Sorting
series:]

The previous sections of this document show how the binding source interacts with the Infragistics
UltraGrid control. The Microsoft DataGridView control works quite differently, and uses a binding source
property and an event that the UltraGrid doesn’t. This part of the document shows you the differences.

To illustrate these differences, I create a new form that uses the same Model class for data retrieval that
the UltraGrid form uses. I name the form class CustomerDataGridView.cls. Remember that one way to
create a ProBindingSource is just to drag a source file with a ProDataSet or temp-table definition anywhere
onto a form. I do this here by dragging the same definition file, dsCustomer.i, that I used in the other
example, from the Resources View onto the new form. The ProBindingSource Designer appears to
allow me to edit the definition if I need to:

The new ProBindingSource control gets placed in the non-visual tray below the form itself. I rename the
control as I’ve done elsewhere to moBSCustomer. Next I select the Microsoft DataGridView from the
Microsoft Controls group in the Toolbox and drop it onto the form. The Customer ProBindingSource is
available to be chosen as the DataSource for the grid.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 24 of 31

Now I need to go into the code for the form. I want to reuse the same CustomerModel class that I
created for use with the other form class that displayed data in an UltraGrid. Even though the user
interface controls work very differently, I can use the same data management class as before, because I
separated the data management code cleanly from the form class that knows the details of how the UI
works.

So in the same way as in CustomerUltraGrid.cls, I create an instance of the data management Model class
using the NEW keyword, tell it to fill its DataSet with all the Customers, and retrieve the temp-table handle
to use as the Handle property of the ProBindingSource.

DEFINE PRIVATE VARIABLE moCustomerModel AS IModel NO-UNDO.

CONSTRUCTOR PUBLIC CustomerDataGridView ():

 SUPER().
 InitializeComponent().
 moCustomerModel = NEW CustomerModel().
 moCustomerModel:FetchData("").
 moBSCustomer:HANDLE = moCustomerModel:GetQuery().
 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.

END CONSTRUCTOR.

Running the form shows us how this much of the job that we have to do works at this point. This screen
capture shows that I’ve successfully gotten data into the grid, but there’s no sorting when I click on a
column header:

Like the UltraGrid, the Microsoft grid doesn’t do any data sorting by default. So I need to find out what to
set to enable sorting. If I select the Customer ProBindingSource in the Design view, I see all the properties
that a ProBindingSource defines. The details of what these do are all documented in the book OpenEdge
Development: GUI for .NET Programming in the OpenEdge doc set. Not surprisingly, the AutoSort
property enables the binding source to handle sorting. By default it’s False, so I reset it to True.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 25 of 31

Now when I re-run the form and click on a column header, the data gets sorted on the field displayed in
that column, as I would expect. Note that the Microsoft grid control doesn’t coordinate with the binding
source to do more than single column sorting. But because the binding source is doing the sorting in this
case instead of the grid, the disadvantage seen in the UltraGrid example – where the sort order of the
query and the visible sort order as shown in the grid are out of sync -- isn’t a problem.

To demonstrate that the sort order shown in the Microsoft grid is the same as the sort order of the
underlying query, I again add a Next button to the form to advance the query position by incrementing the
binding source Position property.

I double-click on the button to get a Click event handler, and add code to increment the binding source
Position value, which does a Get-Next on the associated ABL query.

@VisualDesigner.
METHOD PRIVATE VOID button1_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 moBSCustomer:Position = moBSCustomer:Position + 1.
 RETURN.
END METHOD.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 26 of 31

When I re-run the form and click on the CustomerLastName column just as I did before, I see that the data
is now sorted properly. And if I click the Next button, the row marker in the grid shows that the data
sorting you see in the grid is in sync with the sort sequence of the ttCustomer temp-table query.

I can make this doubly clear by adding a statement to the button’s Click event handler to display the
PREPARE-STRING of the temp-table query handle after it has been automatically re-prepared by the
effects of setting the AutoSort property to True:

@VisualDesigner.
METHOD PRIVATE VOID button1_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 moBSCustomer:Position = moBSCustomer:Position + 1.
 MESSAGE "moBSCustomer:Handle:PREPARE-STRING is: " SKIP
 moBSCustomer:Handle:PREPARE-STRING VIEW-AS ALERT-BOX.

 RETURN.

END METHOD.

The MESSAGE statement alert box that appears when I run the form with this version of the event handler,
and then click on the CustomerLastName column header, shows that the binding source has properly re-
prepared the query for me with the appropriate BY clause.

The ProBindingSource, being an OpenEdge-specific .NET control, is able to generate the right BY clause
itself, and then re-prepare and re-open the query that its Handle property points to, in effect doing the
work that I did myself in the UltraGrid example using the SortData method. This example reinforces two
important facts about the OpenEdge GUI for .NET support.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 27 of 31

First, it makes it clear that different controls doing basically the same job, such as the Infragistics UltraGrid
and Microsoft DataGridView, can work very differently, including in how they interact with the
ProBindingSource.

Secondly it shows one of the advantages of having the ProBindingSource as an OpenEdge-specific control,
serving as the intermediary between the .NET UI and ABL data management. Just setting AutoSort on the
ProBindingSource to True enables the ProBindingSource to reopen the query it’s attached to with the
correct BY clause,as this diagram illustrates:

Beyond the automated support for sorting, there may be cases where you want to intercept the sort
request yourself much as I did in the UltraGrid sample to do something that goes beyond what AutoSort
does, for instance to enable multi-column sorting that the Microsoft grid and the AutoSort property of the
binding source don’t provide, or to support sorting of data that’s being retrieved in multiple batches. The
remainder of this document shows how to use that alternative.

If I look at the events that the ProBindingSource supports, I see a SortRequest event:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 28 of 31

Opening the ClassBrowser to see what I can learn about this event, I enter SortRequest as a search
string, and select SortRequestEventArgs, the EventArgs object that is passed into a SortRequest event
handler.

Expanding the list of its properties, I see that there’s a FieldName property, which holds the unqualified
name of the column that the user clicked -- remember that only single-column sorting is supported. There’s
also a FieldIndex property, which holds the position of the field within the list of fields in the binding
source, if you want to use that instead of the field name, perhaps if the unqualified FieldName is not
unique. There’s also a logical property named Ascending that signals whether the sort is ascending or
descending.

Again, you can learn all the details about these properties in the material on data binding in the OpenEdge
Development: GUI for .NET Programming book, which you will find in the Product Documentation
available in the OpenEdge section of PSDN on the Progress Communities website.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 29 of 31

The list of SortRequestEventArgs properties in the Class Browser gives me the basic information I need
to be able to use the SortRequest option in my example form. Since this is an alternative to asking the
binding source to AutoSort the data itself, I set the AutoSort property back to False. Then in the Events
tab for the binding source control, I double-click the SortRequest event to get code generated to
subscribe to the event and to provide an event handler.

The skeleton event handler that’s generated for me shows the SortRequestEventArgs parameter being
passed in, which in this case is named args. Using the properties of the args object, I add code to put
together a generic sort string just as I did in the UltraGrid example. There can only be one field to sort on,
so I get its name from the FieldName property, and append to that the word DESCENDING if the value of
the Ascending property is False. And then I pass the string to SortData:

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 30 of 31

@VisualDesigner.
METHOD PRIVATE VOID moBSCustomer_SortRequest(INPUT sender AS System.Object,
 INPUT args AS Progress.Data.SortRequestEventArgs):
 DEFINE VARIABLE cSortString AS CHARACTER NO-UNDO.
 cSortString = args:FieldName + "," +
 (IF NOT args:ASCENDING THEN " DESCENDING " ELSE " ").
 moCustomerModel:SortData(cSortString).
 RETURN.

END METHOD.

Note that this very different user interface form class, containing controls with different properties and
events, is using exactly the same sort method in the Model as my other example used, because the code
responsibilities are properly separated. When I run the form again and click on the CustomerLastName
column, I see the MESSAGE statement that signals that SortData was invoked, though in this case the
resulting sort is the same as AutoSort would have given me automatically.

I click on the column again, which in this control type signals that I want to reverse the sort order, and I
see the BY clause MESSAGE statement displayed by SortData.

As I noted before, you might want to intercept the SortRequest if you wanted the user interface to allow
the user to specify multi-column sorting, or some other special treatment of the sort request that AutoSort
doesn’t provide, perhaps checking whether there’s an index on the requested sort field. Clicking the Next
button confirms that what I see in the grid and the sort order in the query are in sync with each other,
whichever sorting option I choose to use.

Sorting Data with a ProBindingSource and .NET COntrols John Sadd

December, 2009 Page 31 of 31

To review, in this document and the series of video sessions that it accompanies, I showed you how to
divide responsibilities between what you can think of as the View, your form classes that know about the
user interface definition, and the Model, the part of the application that manages data access, so that the
user interface and the data management don’t get out of sync with each other.

I showed how to create an ABL Interface that allows you to create a number of classes that consistently
implement that interface.

I then created a Model data management class that implements the Interface, and added code to fill a
local ProDataSet with data, and to make the handle of the DataSet’s temp-table query available through a
method call.

I created a new form class with a ProBindingSource -- derived from the same ProDataSet definition used
by the Model class -- and added an UltraGrid to it, setting its DataSource to be the ProBindingSource,
then added a Next button to increment the ProBindingSource Position property.

I then used the Infragistics documentation to learn about the UltraGrid properties and events, and showed
how setting the grid’s HeaderClickAction property to SortSingle or SortMulti enables the grid to sort its
copy of the data locally.

I used the effects of a Next button to illustrate how the redisplayed data in the grid is not in sync with the
sort order of the underlying query that originally populated it. I coded a SortData method in the Model
class to take a generic sort request and turn it into a BY clause for a re-prepared temp-table query, and
coded an AfterSortChange event handler in the View to construct the sort request from the members of
the SortRequestEventArgs parameter.

I reset the grid’s HeaderClickAction property to ExternalSortMulti, and showed how this allows my
event handler to interact with the Model class to re-prepare and re-open the Model’s query with the new BY
clause and use this as the basis for the data displayed in the grid, so that the user interface and the
underlying data management class are in sync.

Finally, I showed you how the Microsoft DataGridView control works very differently from the UltraGrid
in how it interacts with the ProBindingSource. However, the DataGridView has the advantage that if you
ask for automatic sorting support, it’s the binding source that’s in control, so the sort done for the UI is
accomplished by means of the binding source re-preparing and opening the query it’s pointing to in the
Model, the simple data management class.

