
April, 2010 Page 1 of 11

BATCHING DATA WITH THE PROBINDINGSOURCE

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
March 2010

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 2 of 11

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies a video presentation that is part of the series on Using Visual Designer and GUI for
.NET, and builds on the sessions that showed how to add a ProBindingSource to a form and then display
and sort data in the user interface. In this session I extend those examples to show how to retrieve data
for display in batches using a property and an event that are part of the ProBindingSource.

I start with the form I created in the sessions on data sorting, CustomerUltraGrid.cls, and a model class
to manage customer data, CustomerModel.cls, that implements an interface called IModel.cls.

First take a look at the properties of the form’s ProBindingSource. There’s a Batching property that tells
the binding source whether you want it to coordinate data batching or not. It’s False by default, but for
this example it needs to be set to True.

Basically all that happens when I set Batching to True is that the binding source will now fire its OffEnd
event when it detects that the user has scrolled or otherwise gotten to the end of the data that’s managed
through the binding source.

Next we need to look at the binding source events. If I double-click on the OffEnd event, I get a skeleton
event handler method. Before writing any code, we can look and see what event args class gets passed in
to this event handler. Not surprisingly, it’s called OffEndEventArgs.

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 3 of 11

Looking at that in the Class Browser, you can see that the only meaningful property is called RowsAdded.
This needs to be set to tell the binding source how many rows have been added to the result set it
manages each time the OffEnd event fires.

Adding support for batching requires adding a few parameters to the method definition in the interface for
FetchData.

The first new requirement is that the View needs to tell the Model whether batching has been enabled,
since the ProBindingSource with the Batching property is part of the View. This may not always be the
right design for a completed application, because deciding whether data should be retrieved in batches is
really part of data management, not user interface. So maybe the Model should be telling the View whether
to enable batching in the binding source. But for this simplified example, the caller in the View will just pass
in the Batching property value from the binding source down to the Model.

And as we just saw, the Model needs to pass back the number of rows that were added to the result set, so
that the OffEnd event handler can set that value in the event args.

And finally, the Model needs to pass back another flag when the last batch of data has been retrieved so
that the View can turn off Batching and the OffEnd event will stop firing. These changes are illustrated in
this diagram:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 4 of 11

And these changes to the FetchData method definition in IModel.cls need to be implemented by any
model class that implements IModel:

INTERFACE IModel:
 METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER,
 INPUT plBatching AS LOGICAL,
 OUTPUT piRowsAdded AS INTEGER,
 OUTPUT plLastBatch AS LOGICAL).
 METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).
 METHOD PUBLIC HANDLE GetQuery().

END INTERFACE.

In the sample model class CustomerModel.cls I first add those parameters to FetchData:

METHOD PUBLIC VOID FetchData(INPUT pcFilter AS CHARACTER,
 INPUT plBatching AS LOGICAL,
 OUTPUT piRowsAdded AS INTEGER,
 OUTPUT plLastBatch AS LOGICAL):

Remember that there’s no separation between client-side Model and business objects running on an
AppServer here; all that support is in my one simplified Model class. So after FetchData has prepared the
database query based on whatever filtering criteria were passed in, it FILLs the ProDataSet and opens the
query on its one temp-table, which the binding source in the View is connected to. Here’s the first section
of code in FetchData that needs to be extended to support batching.

 cPrepare = "FOR EACH AutoEdge.Customer".
 IF pcFilter NE "" THEN
 cPrepare = cPrepare + " WHERE " + pcFilter.
 QUERY qCustomer:QUERY-PREPARE (cPrepare).

 DATASET dsCustomer:FILL().
 mhttCustQuery:QUERY-OPEN ().

I need to duplicate those last two statements and add the additional support that batching requires. If the
new input parameter signals that batching is enabled, then I need to set the FILL-MODE property of the
DataSet’s temp-table buffer. If the FILL going to be loading one set of rows after another into the DataSet,
then it needs to append each new batch onto the end of what’s already there. That’s what the APPEND value
tells it to do:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 5 of 11

 IF plBatching THEN
 DO:
 BUFFER ttCustomer:FILL-MODE = "APPEND".

Next the code needs to signal to the DataSet that it’s going to be retrieving data in batches, by setting the
temp-table buffer’s BATCH-SIZE property.

 DEFINE VARIABLE iBatchSize AS INTEGER NO-UNDO INIT 20.
. . .
 BUFFER ttCustomer:BATCH-SIZE = iBatchSize.

It’s reasonable that the Model should determine what the right batch size is, so for simplicity’s sake it’s just
defined in FetchData as a local variable iBatchSize with an initial value. This diagram illustrates the
changes so far:

Finally, the DataSet needs to keep track of where it left off after the end of the previous batch when the
caller asks it to retrieve the next one. It isn’t possible to go into into all the details here, but you can learn
more in the chapter on batching data in the book OpenEdge Development: ProDataSets, available on
PSDN as part of the OpenEdge product documentation:

Basically, with each batch, the DataSet returns the ROWID of what will be the first row to retrieve in the
next batch of data, and the new code in FetchData keeps track of this in the ROWID variable
mrNextRowid. This is a data member of the class, that is, a variable defined in the main block of the class
outside of any method, so that the value persists between calls. FetchData uses that to set the RESTART-
ROWID property of the Customer DATA-SOURCE each time through:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 6 of 11

 DEFINE VARIABLE mrNextRowid AS ROWID NO-UNDO.
. . .
 DATA-SOURCE srcCustomer:RESTART-ROWID = mrNextRowid.

Then FetchData goes ahead with the FILL. The RESTART-ROWID tells the DataSet where in the query to
start filling rows. Initially mrNextRowid is the unknown value, so the FILL starts at the beginning of the
database data.

The BATCH-SIZE set earlier in the code tells the DataSet how many rows to fill before stopping.If the FILL
gets all the way to the end of the requested data, then the DataSet sets the LAST-BATCH property on the
buffer, so the code checks for that, and set the new plLastBatch output parameter accordingly. The
DataSet also sets a property in the DATA-SOURCE called NEXT-ROWID that indicates where the next batch will
start, if there is one, so FetchData sets mrNextRowid data member to that value so that the next time
around I can use it to set RESTART-ROWID:

 DATASET dsCustomer:FILL().

 plLastBatch = BUFFER ttCustomer:LAST-BATCH.
 mrNextRowid = DATA-SOURCE srcCustomer:NEXT-ROWID.

Then the code re-opens the temp-table query on all the data that’s been retrieved so far.

 mhttCustQuery:QUERY-OPEN ().

The final value that needs to be calculated is the number of rows that were just added to the result set,
which is the other new output parameter piRowsAdded. Here’s the statement that calculates that value:

 ASSIGN iNumResults = mhttCustQuery:NUM-RESULTS
 piRowsAdded = iNumResults - miPrevNumResults
 miPrevNumResults = iNumResults.

The local variable iNumResults holds the total number of rows that are now in the query. The ASSIGN
statement then subtracts from that the number of rows that were previously in the query, held in another
data member variable miPrevNumResults that keeps track of that number between calls, and finally
saves off the total rows now in the query for the next time through. So piRowsAdded now holds the
number of newly added rows to pass back from FetchData.

Here at the top of the class are the data member variables used in FetchData:

DEFINE VARIABLE mhttCustQuery AS HANDLE NO-UNDO.
DEFINE VARIABLE mrNextRowid AS ROWID NO-UNDO.
DEFINE VARIABLE miPrevNumResults AS INTEGER NO-UNDO.

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 7 of 11

All of these data members of the class, including the temp-table query handle, as variables defined in the
main block, hold values that persist as long as the instance of the class is running. Data member variables
are PRIVATE by default, but since they could be defined as PROTECTED or PUBLIC, it could be good practice
to make the PRIVATE access mode explicit.

To summarize the work done so far, here’s what FetchData looks like after these changes, marked in bold
text:

METHOD PUBLIC VOID FetchData(INPUT pcFilter AS CHARACTER,
 INPUT plBatching AS LOGICAL,
 OUTPUT piRowsAdded AS INTEGER,
 OUTPUT plLastBatch AS LOGICAL):

 DEFINE VARIABLE iBatchSize AS INTEGER NO-UNDO INIT 20.
 DEFINE VARIABLE iNumResults AS INTEGER NO-UNDO.
 DEFINE VARIABLE cPrepare AS CHARACTER NO-UNDO.

 cPrepare = "FOR EACH AutoEdge.Customer".
 IF pcFilter NE "" THEN
 cPrepare = cPrepare + " WHERE " + pcFilter.
 QUERY qCustomer:QUERY-PREPARE (cPrepare).

 IF plBatching THEN
 DO:
 BUFFER ttCustomer:FILL-MODE = "APPEND".
 BUFFER ttCustomer:BATCH-SIZE = iBatchSize.
 DATA-SOURCE srcCustomer:RESTART-ROWID = mrNextRowid.

 DATASET dsCustomer:FILL().

 plLastBatch = BUFFER ttCustomer:LAST-BATCH.
 mrNextRowid = DATA-SOURCE srcCustomer:NEXT-ROWID.

 mhttCustQuery:QUERY-OPEN ().

 ASSIGN iNumResults = mhttCustQuery:NUM-RESULTS
 piRowsAdded = iNumResults - miPrevNumResults
 miPrevNumResults = iNumResults.
 END.
 ELSE DO: /* not batching */
 DATASET dsCustomer:FILL().
 mhttCustQuery:QUERY-OPEN ().
 END.

END METHOD.

Now I go back to the event handler I created in the form for the OffEnd event. Basically it runs FetchData
in the Model each time the user interface gets to the end of the current data in the query managed by the
ProBindingSource. When FetchData returns, the event handler sets the OffEndEventArgs’ RowsAdded
property, and if the lLastBatch flag comes back True the code turns Batching off in the
ProBindingSource, so that the OffEnd event will stop firing, since there’s no more data to retrieve:

METHOD PRIVATE VOID moBSCustomer_OffEnd(INPUT sender AS System.Object,
INPUT args AS Progress.Data.OffEndEventArgs):

 DEFINE VARIABLE iRowsAdded AS INTEGER NO-UNDO.
 DEFINE VARIABLE lLastBatch AS LOGICAL NO-UNDO.

 moCustomerModel:FetchData("", TRUE, /* batching */
 OUTPUT iRowsAdded, OUTPUT lLastBatch).
 args:RowsAdded = iRowsAdded.
 IF lLastBatch THEN
 moBSCustomer:Batching = FALSE.

 RETURN.
END METHOD.

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 8 of 11

The original FetchData reference in the class’s constructor needs to be changed as well. It needs to pass
in the ProBindingSource Batching property value, and get back the two new output parameters. The code
is not really prepared to do anything with the RowsAdded value from here in the class constructor,
because it’s not in the OffEnd event handler and so the OffEndEventArgs object is not available, but it
can at least check to see whether the initial batch is the only one, the code checks the lLastBatch value
and is prepared to turn off Batching if that parameter is True.

DEFINE VARIABLE iRowsAdded AS INTEGER.
 DEFINE VARIABLE lLastBatch AS LOGICAL.

 moCustomerModel:FetchData("", moBSCustomer:Batching,
 OUTPUT iRowsAdded, OUTPUT lLastBatch).
 IF lLastBatch THEN moBSCustomer:Batching = FALSE.

That should be all that’s needed to enable data batching between the form and the model class. If I save
and compile these changes and re-run the CustomerUltraGrid form, then when the form first comes up, it
has retrieved the first batch of 20 rows. The only indication of this is that the thumb of the grid’s scrollbar
indicates that the majority of the available data is being displayed in the grid.

If I scroll down through the data, I can see reflected in the decreasing size of the scrollbar thumb that the
OffEnd event is firing and new batches are being added to the data in the grid. When I’ve gotten to the
end of the data I can sort the retrieved data just as I’ve done before:

Incidentally, there is a MaxDataGuess property on the ProBindingSource that you might want to try to set
to reduce the jumping around of the scrollbar thumb as additional batches of data are retrieved and the
size of the result set managed by the ProBindingSource therefore changes, but at the present time it is not
possible to set MaxDataGuess when Batching is True.

In any case, the first row displayed when I sort by CustomerLastName is the right one – Patrick Alexander
in this case – because I’ve retrieved all the data into the query that the ProBindingSource and the grid are
attached to.

Let me compare this with what happens if I try to sort before I’ve retrieved all the batches of data. I just
run the form again from the beginning. When the form first comes up, it has asked the Model to retrieve
the first batch of data, as shown here:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 9 of 11

If I immediately sort by CustomerLastName, the form is sorting only the data already retrieved, so the
Customer displayed at the top of the list is the first Customer in the first batch, not the first of all
Customers:

Since I’ve changed the sort order in the middle of retrieving data, I’ve really invalidated what the grid is
showing.

Let me make some additional changes to coordinate sorting and batching so that this doesn’t happen. Back
in the Model class, I need to add a few lines of code to handle the batching case. The new lines marked in
bold add the following logic:

If the BATCH-SIZE property is set, then batching is enabled. In that case, unless the Model has already
retrieved the LAST-BATCH, then SortData need to call FetchData to start retrieving data over again in the
new sort order. Otherwise the batching will conflict with the change in sort order. So SortData passes in
the sort criteria as the filter parameter, the first argument to FetchData:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 10 of 11

 /* If we're in the middle of batching, then ask FetchData to reopen
 the database query so that we retrieve batches in the right
 sequence. */
 IF (BUFFER ttCustomer:BATCH-SIZE NE 0) AND
 (NOT BUFFER ttCustomer:LAST-BATCH) THEN
 FetchData(cSortString, TRUE /* Still batching */,
 OUTPUT iRowsAdded, OUTPUT lLastBatch).
 ELSE DO:
 mhttCustQuery:QUERY-PREPARE ("PRESELECT EACH ttCustomer " + cSortString).
 mhttCustQuery:QUERY-OPEN ().
 END.

Next, FetchData must be prepared to be called from SortData. The new condition to test for is this:

If the Model is not batching (plBatching); or it hasn’t retrieved any batches yet, which
miPrevNumResults tells us; or there’s any filtering criteria (pcFilter) -- which now includes a BY clause
being passed in from SortData -- then FetchData executes the code to (re-)prepare the database query.

Beyond that, because FetchData may now be run several times with different sort criteria, the method
must empty any data from the DataSet, and reset the variables associated with batching.

IF (NOT plBatching) OR (miPrevNumResults = 0) OR
 (pcFilter NE "") THEN
 DO:
 cPrepare = "FOR EACH AutoEdge.Customer".
 IF pcFilter NE "" THEN
 cPrepare = cPrepare + " WHERE " + pcFilter.
 QUERY qCustomer:QUERY-PREPARE (cPrepare).

 DATASET dsCustomer:EMPTY-DATASET ().

 ASSIGN mrNextRowid = ?
 plLastBatch = FALSE
 miPrevNumResults = 0.
 END.

Running the form again with the sort changes, I can re-sort the data by CustomerLastName after retrieving
just the first batch, and the correct first Customer now appears at the head of the list because the database
query has been restarted to re-retrieve the first batch in the new sort order:

Batching Data with the ProBindingSource John Sadd

April, 2010 Page 11 of 11

If I scroll down, I continue to retrieve new batches in the correct sort order.

In conclusion, in this session I showed you the Batching property of the ProBindingSource, which causes
the binding source OffEnd event to fire when the end of data is detected. You can use this property and
event to coordinate with a ProDataSet in your data management procedures or classes to retrieve data in
batches and make the additional data available successively to your user interface.

There are more issues and techniques concerning batching than it was possible to cover in this one
presentation, and for more detailed information and examples you can check out Haavard Danielsen's
Developers Corner presentation on Batching, Sorting, and Filtering available on PSDN:

