CREATING NEW ROWS WITH THE PROBINDINGSOURCE AND .NET CONTROLS

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0

March 2010

Using Visual Designer
and GUI for .NET
Creating new rows using

the ProBindingS dl IANIING
® T ONET controls PROGRESS

John Sadd

’—-\

OpenEdge

SOFTWARE

PROGRESS

SOFTWARE
April, 2010 Page 1 of 8

Creating New Rows with the ProBindingSource John Sadd
and .NET Controls

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies the video presentation that continues the series on updating data using the
ProBindingSource. This session shows how to use binding source events to add new rows to a table whose
data is displayed in an UltraGrid control in a .NET user interface.

Along with the AllowEdit property that determines whether data entry into Ul controls will be allowed, If
you look at the ProBindingSource properties in the Properties View of Visual Designer, you see that there’s
a property called AllowNew that you can set in the binding source to have it manage whether Ul controls
that are bound to it will allow a request to create a new row. As with AllowEdit, it’s True by default, so it
doesn’t need to be changed for this session’s example, but you’d want to set it to False for a read-only
user interface or one that supports updates but not creates.

The other side of supporting creates in the user interface is a key property in the UltraGrid that needs to
be set to enable the user interface to respond to a request for a new row. This is under DisplayLayout,
and then Override in the Properties View for the UltraGrid. The property is called AllowAddNew. As
the name implies, this determines whether — from the grid control’s perspective — the user can request a
new row through the control, and also how that new row is represented in the grid.

=lol=]

Toolbox ?
| -/ CustomControls
= Mierosolt Contiols
= OpenEdge Comtiols
| =) MipenE don Uitra Contils

EE ouos | BT 005 [T B0 o

[T S —— e T |
Preperties | Everts |
B AeiveonCelipeess =]
B dlowiiponnce
(5 Sk el

I i =t 0 boon dosigrins tho Ulvacd

: 4] o
7 moltSCuniomer
Alowh ddMew
Disteerirns whisher the uine & sbowesd 108, ||| 5 Consate | (2 prodiems 11 |) Tasks = =8

As you can see, there are a number of different options in its enumeration. You can learn about these in
the Infragistics documentation, but one that presents a reasonable Ul affordance for inserting new rows is
FixedAddRowOnBottom. Like other Infragistics names and enumeration values, this one states pretty
clearly what it does. If you save and compile the form with this property setting, and run the form, you can
see below that there’s a permanent overlay at the bottom of the grid that lets you request a new record
just by clicking in this special row. This seems like a reasonable Ul that lets you add a row independent of
where it will wind up sorting in the grid itself.

April, 2010 Page 2 of 8

Creating New Rows with the ProBindingSource
and .NET Controls

=lF-)
- LB B-0-Q-|+-| -0 00"
T | i Bt
o ym— 0| [0 Coememsdalie | [£] Medi e irn---nnm.-uJﬁ CusterarlitraGrialnd.de =0
- Tookax *
= = Customertikr
i preey o | B ctomertibraaidugd | =] Customtanirets
S Referomed Aot [T e T ol e e |
1 L Procedurs Lbraries ’&
5 eade [T — =1 Dpeek e Cortanis
s | Dgsen dyge Ua Contiols.
[wnnar il
Gemany BT E
; [AT [
: sk T =
: . Tirmary AN w
[oemetiaimsins Pepemires [= Towms Gonary CaGED =
\ wnd
e b Regrem o Maashy Gonay TEA R [
aporin |t | e = o T G d
7 ol I Wetsn [E3 e E
s o, '
FoghtTe sl o o Voo Tk A 2 I
FightT Lt menst Fuls |0 I] [FI 4
Shaedean Tas 4]]
ShowdrT stk T
M 5on TR »
SinliipSie ey . - 4,
StarPoskion WindoiDe.
StetuilaTed on nolhialla
T3 5 el Cuslrres
Test Gustomerti
Loninat 2|
Temt
The et aspocisted wit the conticl ||| 2 onsote | £ proens |5 ks -0
TE wrkatle

John Sadd

You could type in values for a new row here and save it, but that won’'t do anything meaningful yet. There
is some measure of default behavior, but as with the AutoUpdate property, it won’'t get your new row
back to the database or execute any other initialization code, so it's necessary to go back to Visual

Designer to add some supporting code to provide the behavior needed.

The object-oriented approach to building an application really requires you to work from the bottom up in
your design, which is a good discipline, so this means going back to the Interface that defines all the

methods a Model class uses in data management. Here | add a method definition named

CreateModelRow for the code that will handle a request for a new row in any class that manages data. It

passes in a buffer name, in case the Model manages data in more than one table.

INTERFACE Updatable.IModel:
METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER).
METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).
METHOD PUBLIC HANDLE GetQuery ().
METHOD PUBLIC LOGICAL SaveData (INPUT pcBufferName AS CHARACTER).
METHOD PUBLIC LOGICAL FormatColumn (INPUT pcColumnName AS CHARACTER,
INPUT pcColumnValue AS CHARACTER) .
METHOD PUBLIC LOGICAL CreateModelRow (INPUT pcBufferName AS CHARACTER).

END INTERFACE.

And now | can implement that method in my one example Model class. As before, from the Source menu,
I can select Override /7 Implement Methods to get the matching skeleton code generated for me. The
binding source is coordinated with its underlying data source to make the method’s implementation very

straightforward.

METHOD PUBLIC LOGICAL CreateModelRow(INPUT pcBufferName AS CHARACTER) :
DEFINE VARIABLE cCustomerID AS CHARACTER NO-UNDO.

DO TRANSACTION ON ERROR UNDO, LEAVE
CREATE ttCustomer.

ASSIGN ttCustomer.
ttCustomer.
ttCustomer.
ttCustomer.
ttCustomer
ttCustomer.
ttCustomer.
ttCustomer.

CustomerFirstName
CustomerLastName
CustomerBirthCountry
CustomerBirthdate

.CustomerGender

CustomerLicenseDate
CustomerLicenseExpiryDate
CustomerID

httCustQuery:CREATE-RESULT-LIST-ENTRY ().

END. /* transaction */
RETURN TRUE.
END METHOD.

/* No checks for errors vet.

*/

"First Name"
"Last Name"
"USA"
1/1/1950
TRUE /*
1/1/1950
1/1/1950
GUID.

"male"

*/

/* Unique char ID */

April, 2010

Page 3 of 8

Creating New Rows with the ProBindingSource John Sadd
and .NET Controls

First the code creates the new row in the temp-table — the same would work for a database table, but I'm
illustrating a separation of the client-side model from the database itself. Then the method assigns
whatever initial values are needed. This could include calculating a line number or any other value for the
user. In fact, you can see that one line uses the GUID built-in ABL function to generate that long character
string that the AutoEdge database uses as a unique key field in every table. Finally, the method just
executes the ABL CREATE-RESULT-LIST-ENTRY function on the query that the binding source is using. This
works very neatly, because when you add a new row through a ProBindingSource, it automatically positions
the query to the new row being added, so CREATE-RESULT-LIST-ENTRY adds it to the end of the query
without having to reopen it. For this reason, you shouldn’t do anything fancier than this — don’t try to
explicitly reposition the query or the binding source; just do what is shown here and it will all work

properly.

Next we have to go back to the ProBindingSource and its events. First let me point out an event you don’t
want to use.

[nbclar Ediar Sarmgides, gt b sttt cs - Opentdge Architedt - G Dotet =)
Fle Edt Oesgn Navigabe Search Propo Operdge Run Window Help
A% | B-0-9-
[| &' openEdge Edeor
[re— = 0| comtommmcos | [F] postek | & c o (Dwigri} 1 |) =D
ook
= 1 Sarrcies o X CorstomertitraticidUgd = CustomControl
2 0® Relerormed Asserbbes

Frocedurs Lbesnes Uigebalalde Cubomer Gind) Micrazolt Cantrale
reode +| Opent dge Controly
reetfe Ll It e /. C 1 =| Dpenk dge: L Contros
Updstable lm Toot Tt |___ = |_'_'_ |_

Customaiiaode, ci
£ Cutomar Braandpd. cht
<] imodel e =l

J |y

CuneentChanged
Evverd raed when the valus of Cunent
chanaas,

The first one in the list here is called AddingNew, which sounds like exactly what you would want to use to
create a new row. But remember that our OpenEdge-specific ProBindingSource is an extension of a
standard .NET binding source object, so it inherits that object’s events and properties. Some of those are
useful, and some don’t really apply to an OpenEdge application. AddingNew is one of those that don’t
apply, because if you look at its EventArgs, you’'ll see that it has a NewObject property which is an
instance of any System.Object, appropriate for dealing with object-oriented data, perhaps, but not the
relational data in your database. We decided not to hide these inherited events and properties from you,
and under certain very limited circumstances they might be useful, but generally you should stick to the
ones that support OpenEdge applications, as they’re described in the OpenEdge documentation and
materials such as this.

The event you do want to use to handle an add request is CreateRow. Let’s take a look at its parameters.
As always, the ClassBrowser will give us a quick overview of the properties that get passed in. And that’s of
type CreateRowEventArgs.

There are several properties you can use in your event handler. The first is BandIndex. If your data is in a
grid that supports multiple display bands that display data from different tables, this integer property gives
you the zero-based index into the list of bands. That’s one way you can identify which table the request is
for.

Alternatively, there’s a BufferHdl property that holds the handle to the buffer for the table, and a
BufferName property that holds its name. You could use either of these as well.

The last property to look at is Created, a logical flag that you set to signal whether the underlying create in
your temp-table or database table succeeded or not. This tells the binding source whether to tell the Ul
controls to cancel the create or not on their end. So all the event handler method has to do is invoke the

April, 2010 Page 4 of 8

Creating New Rows with the ProBindingSource John Sadd
and .NET Controls

Model’s CreateModelRow method. The call passes in the BufferName property value as a placeholder,
though remember that in my case | have only one buffer. and if that method returns True the caller sets
the Created property to True to signal success. Note that this simplified example doesn’t check for specific
errors.

METHOD PRIVATE VOID moBSCustomer_CreateRow(INPUT sender AS System.Object,
INPUT args AS Progress.Data.CreateRowEventArgs):
IF moCustomerModel :CreateModelRow (INPUT args:BufferName) THEN
args:Created = TRUE.
ELSE args:Created = FALSE. /* No real checks for errors yet. */

RETURN.

END METHOD.

Now all the code is in place to try out the support for new rows. If run the form again and click in the row
that’s reserved for new row creates, the first thing | see is that the initial values are automatically
transferred by the binding source up to the grid to display. | can select any of the grid’s cells and override
the default value.

=lol=]
Fie Edt Sorce Navgate Sewo
JE3-lale | L% = .
171 |85 ceeson Edter
& mascurces. 11 | =0|@ o [podde &) =0
=K | VoW RETHOD PRIVATE VOID IndtimliseComponsmti 13 B
i Sampies -
ARl
= q ___________________ .
[Syatem, cbiest,
=
] THEN
L per.
=
=
3
last modfie B
e ;‘L‘f"‘ s BT T ik T A =
[T hl Harloaf ot . ot 1] USA 01.41/1560 I L |
na st [l |
oth FerplesidsCuston
o0 T) .
brtes St y
HETHOD PRIVATE VOID molUlteaGe idCustome:_Afarcel10pante
202 INPUT sendec A2 System.Obiect,
z INPUT fragistics.Vin.UlcraWinGrid.CellEventirgs):
04 ir INPUT =:CellsColume:Kev, =
ol 1 .
| & console | (2. prosens: 55 | = Tasks 3-8
0" | weratie Inset. 1781

If 1 scroll across the cells, you can see in the next screenshot the rest of the initial values, including the
GUID object id field. | can change another value such as one of the dates, and see the calendar control that
is automatically applied to a grid column that’s bound to a field defined as a date.

=)
0 Wevgn Sewch Foc OpeEdge fun Wik el
ir@ LB | %#-0-%- |+ |8 -4l-2c-
[| & Opanidge Cater
[r—— = B[[6) Cuntomertiodele | (2] Bodlets
— 8 T 4z METHOD PRIVATE VOID Init
2 Sarce =l =
5] o Rfarenced Assenbbes
1L Procedan Lenmim
5 & e)) Ut bl Dot ikt
EH- ek [2 CusiomedD)]
S Lidutabie 131573 ¥ |manranc [T 1905741 55
)
15 P T =] T T s [Fp—
) kel el fans r [CEEE T4 Wea
F cun | T2 088, | Dl vep,. 1 [721970 = [T EEEE] [EESET T
- e " [e 20 e | | B
S T r [CEE] e TeTad | 5a o
e o r T T TR T R
derived Fake (AT = 0N [T 05T We
duaie trus T 7
e] LEEE) TR Tad W
lask oty Doty 12, 200 N : \ (O e e
kel Fakn e -
s e [= [LIGE] /01 72000 B SR
name deCustomers |[4] B - D
path agiesidsCuston
e > bytas S Mo Tom Wd Thu Fi_Sa e
Stahux] N A
N M 7T OB 3 10 1M 1213
RETHOE PRIVATE VOIS md 1y 15 15 17 18 19 20 FOe41Updatal
sander A5 Sysi; m ;oM 2 % O
1w k% Infragial 2 2 M M 1 2 3 EliEventhegs)
201 IF meCustemesModel & 5 6 7 0 5 10 elliColimmiker. _,ﬂ
4 [| Today: 12872010 | '
| D Conaoe | 2 probiens 1 | 1 Tasks BT o0
ot (&) iikable frsert 1701

April, 2010 Page 5 of 8

Creating New Rows with the ProBindingSource John Sadd
and .NET Controls

Selecting another row causes the BeforeRowUpdate event to fire just as it does for any other update, and
that saves the changes | made to my new row back to the temp-table and from there to the database
table. You can see the update message here in the StatusBar, and if | re-sort the data by clicking on a
column header, | can scroll down and find my new row in its correct sort position.

=loix
il | £ | $-0-%-|+- | ©
T | i Bt
& wsonness 1| =0 [o] coommeanes | [0 messer |Gl cummemmreapace ey [=
N T T ——— &
T sampiet |
Tl i o
41 JL Pracedurs Lbvaries
i e [Ty p—
iy "'“"":l Custonedfrfiome | CustomerLasthane
2 Letat T +
C
2] Custorrerthodel s d vt i
2] & i Hesara Gee Gemarny
2] i Viekea = Teemany
EE Cuthne [S7005.. | Dpnon... £ | % G Gompy
r - | [wee B [
L= [y IES [e
ety (vew e

a9 <y a7

So the support for adding new rows through the grid requires just a few lines of code.

Next | need to look at the code to allow me to cancel the create of a new row. If | were to start to enter a
new row and then press Escape to cancel it, the binding source isn’t able to do everything automatically
that | might need in order to remove the row | no longer want, so | need to put in explicit code to handle
that event.

First | add another method to the IModel interface to handle a cancel of a new row create, and call it
CancelCreateModelRow. The new method uses the same buffer name parameter used in the
CreateModelRow method:

INTERFACE Updatable.IModel:

METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER).

METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).

METHOD PUBLIC HANDLE GetQuery() .

METHOD PUBLIC LOGICAL SaveData (INPUT pcBufferName AS CHARACTER).

METHOD PUBLIC LOGICAL FormatColumn (INPUT pcColumnName AS CHARACTER,

INPUT pcColumnValue AS CHARACTER) .

METHOD PUBLIC LOGICAL CreateModelRow (INPUT pcBufferName AS CHARACTER).

METHOD PUBLIC LOGICAL CancelCreateModelRow (INPUT pcBufferName AS CHARACTER).
END INTERFACE.

In the CustomerModel class, | then implement that method. The code needed is very simple, and parallel
to the statements in CreateModelRow. It explicitly deletes the temp-table row that corresponds to the
row in the grid, the same row that CreateModelRow just created. And to remove the row from the result
list, it uses the query’s DELETE-RESULT-LIST-ENTRY method, returning True to signal that the delete
succeeded.

METHOD PUBLIC LOGICAL CancelCreateModelRow(INPUT pcBufferName AS CHARACTER) :
DELETE ttCustomer. /* That's the only buffer. */
httCustQuery:DELETE-RESULT-LIST-ENTRY ().

RETURN TRUE.

END METHOD.

April, 2010 Page 6 of 8

Creating New Rows with the ProBindingSource John Sadd
and .NET Controls

Next | need to return to the form and create an event handler for CancelCreateRow. Double-clicking on
the event in the Events tab of the Visual Designer Properties View generates the event handler method
skeleton code. Inspecting the parameters that are passed in, | see the EventArgs class is another subclass
called CancelCreateRowEventArgs. This supports the same Bandlndex, BufferHdl, and BufferName
properties, just as CreateRowEventArgs does, but of course no Created property, because the create of
the row is exactly what I’'m canceling out of.

Without adding any special code for unexpected conditions, the event handler just invokes the new cancel
method in the model, and display a message if for some reason it doesn’t succeed.

METHOD PRIVATE VOID moBSCustomer_CancelCreateRow (
INPUT sender AS System.Object,
INPUT args AS Progress.Data.CancelCreateRowEventArgs) :

IF NOT moCustomerModel:CancelCreateModelRow (args:BufferName) THEN
MESSAGE "Row cancel did not succeed." VIEW-AS ALERT-BOX.

RETURN.

END METHOD.

To try this out, | rerun the form and start the add of a new row. Remember that as soon as | click in this
special row at the bottom of the grid, the row is added to the temp-table. | can enter a few values before |
decide this isn’t what | wanted to do.

=101 =]
=5, G| LD | B-D-%- | ¥l mE
[1 | &° Coariidoe Ddter
& moscances 11 | = O[] Custommemodel.che etk & oot (et (-l =0
ir Bl % merwoe mrivaTe vor 2 AT
" o hleod srbls T
5 L Proceduns Lbeares
4 roode Upsiasble Customer ind
-G Traolow CuttomesFrstiame Customestasthlame i =
@ Lpdatable . NewCusFan HwdCuntl ot [usa 010143001 = .
< Customertiodsl
) o || Piobert Fennedy ke [EREE] =
2\ Mool 5 Feimt oo [rreme— R =
L THE A ‘Washngton Ush [T r
) r R Famek. Levasion =) [ELTEET] ¥
SN [Myt [i [T --
[T T S— - ey il 2 prame) THEN
= Info Lars Tones Cemany COEED r BOE.
deshered fiabin] Mgty [Gy EGE] r
ol | trem Thorrai ek E EELE
st s Bowmatey 12, 2010 1: — t ‘:ﬁn I?:m T E
E"fm . (e [Tt i ot [= | T =] o
name dstiustoner.d [a] 3l
Bath [samplesidtumon
wm T byt ,
ot v
BVisualDesigner.
nE IVATE VOID moliCustomer _CreateRow| INFUT sender AJ JSystem.Object,
args Ad Progress,Data.CreateRow EEATGE i
204 o iCi 1Row (INPUT THER pd
i | [
) Comsole | 2. Probdens 13 | €5 Tasks | ¥~ =0
= Wik It 191 6%

The way the UltraGrid works is that the first time you press Escape any change to the value for the
current cell is undone. And the next time you press Escape, the whole row is undone. This is when the
CancelCreateRow event fires. So after pressing Escape twice, the newly added row is gone, not just from
the new row line in the grid, but from the temp-table as well.

April, 2010 Page 7 of 8

Creating New Rows with the ProBindingSource

and .NET Controls

[inentddge Editor - Sanmgles Updat able Customer Bt raGridipd.cs - Openbdge Architect - C GubaotNet =
Fle Edt Souwdte Nowpaln Search Promt Openfdge Run Window Help
IF- S | £ [$-0-Q- |- | F -l -
£ | &' openage Edtor
& mrens 71 | =01 5] omtommrtuock | () Mootk |) Cmtrermet .o (Do} co
=R 5 T *
5 O Sovcies - METHOD PRIVATE VOID IsttinliseComponent{ i)
3 Referorned dsventies [T =10l x|
HewiCantFusl [3 j ___________________
Febmnt Eoremdy 7
Petes wagns o
BE cutien | Fiows... [Cimwen.., 2| |45 “Waihngion 5]
= I = ["
L= = [[Fliame| THEN
P Ty Tenes Ty T] Box.
derwed fase Tad Wty == s [l
edtalde tnw 3
Thomas Jeni Gemary 1ZanEs
Lot Bl Sarmanry 13, 20001 . " [
s = = e TS =
[=] 1 1 | | |
" to—" AL] o
poth fsamchsidsCustont
e 98T bytes Seah o
BVisualbesigner.
HETHOD PRIVATE VOID moBiCusctomer_CreateRowv(INPUT sender AS Jyscem.Cbject,
203 INFUT args A3 Progress.Data.CreateRoviventhegs)i
G4 i e INPUT argas 1 TR .
1l | v
5 Consale | (£, erotisms 13 | 23 Taske| ®- -0
|o* &) witaths | et |wiw |

John Sadd

If I had completed the add operation and saved the row, then of course | would have needed support for a
row delete operation to undo it at that point. And that is the subject of the next session in this series on

ProBindingSource support for row deletes.

April, 2010

Page 8 of 8

