DELETING DATA WITH THE PROBINDINGSOURCE AND .NET CONTROLS

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0

March 2010

Using Visual Designer and
GUI for .NET

Deleting data using the
ProBindingSource and
.NET controls

PROGRESS

John Sadd

,__\

Progress
Openkdge [\

SOFTWARE

PROGRESS

SOFTWARE
April, 2010 Page 1 of 7

Deleting Data with the ProBindingSource and John Sadd
.NET Controls

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies another in a series of presentations on updating data using the
ProBindingSource and .NET controls. It introduces the binding source and UltraGrid properties and events
you use to manage row deletes. First let’s take another look at the ProBindingSource properties. As with
AllowEdit and AllowNew, there’s a property called AllowRemove that tells the binding source whether
to allow row deletes through the query or DataSet it’s bound to.

g menbdgr bditer sl Updat abibe/C st omer B ch - Opendge Architet - C GuibotBel. =10 =]
Fle Edt Desgn Nragale Seanch Proget Openfidge Bun Wiedos Help

4% | B-0-%-

= O || [£] comomesrtalck | [£] soetcke 11 | & c " ——] =0
L= [SamolesLipd: ble Thodel s Toalbox L
- 1 Sormgles] [Customertitratieidtipd | [T
=) 5 Melerermed Asseribes p—
Usebalabde Cushomns Girnd Micsassht Conteols

a1 L Procedure Lbraries
pent dge Contiols

Tead =1 DipenE due: Uit Contruls

Test

* Tedt |f.l

Tost

Tot Tost

[[[F=— [Fl—— -

IEST <o v boor dosigion tho Utradeid

4! moliSCushome:

s ——

Getra viho pcotng whs b o b9
o fiof the undahig =
; -) Consale | srobleme I 2 Tadke ¥~ -0

And like the others, it's True by default, so it can be left that way to allow row deletes through the binding
source. Remember that you can set it to False for any form where data deletes should not be allowed, and
it will manage the Ul controls’ behavior for you. Once again, I'll start with the interface for my Model
classes, to add a method definition to manage deletes in the temp-table and pass them on to the database
table itself. The new method is called DeleteModelRow, and like the others defined in earlier sessions in
this series, it takes the buffer name as a parameter in case the Model holds a ProDataSet with more than
one table.

INTERFACE Updatable.IModel:

METHOD PUBLIC LOGICAL CreateModelRow (INPUT pcBufferName AS CHARACTER).
METHOD PUBLIC LOGICAL CancelCreateModelRow (INPUT pcBufferName AS CHARACTER).
METHOD PUBLIC LOGICAL DeleteModelRow (INPUT pcBufferName AS CHARACTER).

END INTERFACE.

April, 2010 Page 2 of 7

Deleting Data with the ProBindingSource and John Sadd
.NET Controls

| add the method to the CustomerModel example class, using the support that Architect provides for
Override /7 Implement Methods under the Source menu to generate the right code skeleton for me. It's
possible to code support for deleting multiple rows at a time. The user can select more than one row and
then press Delete. In this case the code in the View would have to pass key information from the View
down to the Model to tell it how to identify the rows in the table that correspond to the rows in the grid that
the user selected for deletion. There is an example of that kind of code in the chapter on data binding in
the OpenEdge Development: GUI for .NET Programming book, as shown here:

‘documentation.progress.com/output/OpenEdge102b/pdfs/dvngp/dvngp.pdf - Microsolt Internet Explorer o =] |
Fle Edt GoTo Favorites Help ‘ &
Qe - £ - [x] [@0 ‘) seanh 5 Faveries f}‘ AFERE - oy 3
Address [] hitp:J/documentation. progress. comfoutput/OpenEdge102bjpdfsidvigpidvngn.pdf = EBeo
Google vln" Search v ! 2 o~ | @ share~ B v | Sidewid v | " Check v & Translate - S| utoRil v oy v A 4 (signin v
D AN G - X % |~ @ = 5 154 l—v
BHEO | C *eE e oo o @
5 Bookmarks .
® Binding ABL Data to .MET Controls
D Preface To refresh the grid properly, the handler turns off the ProBindingSource’s AutoeSync property at

) the start. If only a single row is deleted, the handler removes that row directly from the current
EJ overview query's result list. Otherwise, the handler reopens the query. The handler then reactivates the
[E] accessing and AutoSync property before leaving.

Managing .NET

Classes from ABL UpdatableDataBindingGrid.p (Part 7 of 11) (1af2)

D Creating and Using PROCEDURE gridBeforeRowsDeleted
DEFINE INFUT PARAMETER rSender AS System. Object NO-UNDO -
IRaRis &) @il DEFINE INFUT PARANETER rArgs AS BaforefowsDeletadEvantdrgs NO-UNDD.
= Binding ABL Data to

DEFINE VAFIASLE rCurrentRow AS UltraGridRow NO-UNDO .
NET Cantrols DEFINE VAFLASLE cBufferName AS CHARACTER NO-UNDO.
DEFINE VAFIASLE hQuery A5 HANDLE NO-UNDO
] #BL and NET data DEFINE VARIASLE rRows 45 System.Array NO-UNDO..
binding models DEFINE VAFIASLE iNumRows AS INTEGER NO-UNDO.
DEFINE VARIABLE idx A5 INTEGER NO-UNDO .
] apL data binding DEFINE VAFIABLE iStatus A5 INTEGER NO-UNDO.
rodel for NET DEFINE VARIABLE cPromprTaxt AS CHARACTER NO-UNDO.

[E] Understanding the iNumRows = rArgs:Rows:Length.

o rRous = rArgs:Rons.

ProBindingSource rBinds:AuteSync = FALSE. /* query-open should not force a refresh 3/

/* Suppress Infragistics default prompt. We need to do this because the
prompt appears after this procedure has completed - when the records
have already been deleted. Our own prompt is substituted below. =/

rArgs:DisplayPromptisg = FALSE.

updatable grid N .
7+ Prompt for confimation */
[E] Using .HET Farms with IF ;NU""W;S > 1 TiEN) N
cPromptText = "Are you sure you want to delete the
ABL Windows ud + STRINGCiNumRows) -
&] Done | |3 Unknawn zane Y

But my goal here is just to show you how the basic properties work, so | limit the support to deleting one
selected row at a time. This simplifies things, because if there’s just one selected row it will be positioned to
in the temp-table query automatically.

METHOD PUBLIC LOGICAL DeleteModelRow(INPUT pcBufferName AS CHARACTER) :

DELETE ttCustomer.
httCustQuery:DELETE-RESULT-LIST-ENTRY ().
IF SaveData ("ttCustomer") THEN

RETURN TRUE.
ELSE RETURN FALSE.

END METHOD.

The method in the Model just needs to delete the current row, and use the ABL DELETE-RESULT-LIST-
ENTRY method to remove it from the query without reopening the query. Here the ProBindingSource
AutoSync property that was introduced in the presentation on row creates causes the grid to reflect the
row deletion automatically. After the execution of these two lines of ABL, the row is gone from the grid,
from the temp-table, and from the query, but the method has to invoke the existing SaveData method to
apply the delete to the data source — the database table — itself. Looking at the code already in SaveData
allows us to see if there’s a change that has to be made to what it does.

In a ProDataSet, when | delete a row, it’s removed from the temp-table itself, which is what hCustBuffer
points to in the code shown below, but the record of the delete is kept in the ProDataSet’s Before Table,
which is what hBeforeBuffer points to, so that SAVE-ROW-CHANGES knows what row to delete from the
database table. Since the Before Table and the SAVE-ROW-CHANGES method apply to all forms of data
management, including deletes as well as updates and creates, these handles and the table they point to
apply to the row delete case as well as others.

April, 2010 Page 3 of 7

Deleting Data with the ProBindingSource and John Sadd
.NET Controls

METHOD PUBLIC LOGICAL SaveData(INPUT pcBufferName AS CHARACTER) :

DEFINE VARIABLE hCustBuffer AS HANDLE NO-UNDO.
DEFINE VARIABLE hBeforeBuffer AS HANDLE NO-UNDO.

hCustBuffer = BUFFER ttCustomer:HANDLE.
hBeforeBuffer = hCustBuffer:BEFORE-BUFFER.

However, the sample validation code that follows doesn’t apply if I'm deleting the whole row, and in fact it
will fail, because the row is no longer in ttcustomer. So | have to add a check to skip any validation if the
change being made is a delete. That's recorded in the DataSet’s Before Table as a ROW-STATE of ROW-
DELETED. So the code has to be changed to skip the validation in the case of a delete.

IF hBeforeBuffer:ROW-STATE NE ROW-DELETED THEN
DO:
IF ttCustomer.CustomerBirthCountry NE "USA" AND
ttCustomer.CustomerBirthCountry NE "Germany" THEN
DO:
MESSAGE "Invalid Birth Country value, must be USA or Germany."
VIEW-AS ALERT-BOX.
hBeforeBuffer:REJECT-ROW-CHANGES () .
RETURN FALSE.
END.
END.

For a single row delete that’s all that's needed in the Model. Going back to the form and the grid, there’s
another useful UltraGrid event called BeforeRowsDeleted, which is what | need to subscribe to in order
to add support for deletes to the user interface.

[Do Exilor SanplesUgsdot sbe CustomerlMraGradUpd.chs - OpenEdge Architeet - G Guid DotNet =lol=]

Fis Edt Desgn Newabe Search Project Openfige Fun Window Help

JE3- £10% |45 -0 < Q|| 5= o o tE
71 |85 dommgs Edter

Tra

&' vmearies 1 = 0| € cmomemts | £ modik | & rep— & | =0
T Toolbax ?
e : o
B o Bisbararcad Artanblas j o o - —
L Precedure Lbeaiee Upeatabls Cuustorrant fusd ! Miesosolt Conlrols
e 2 Dpenkdge Contisls
> Treeview »| Tea Teat Tewt sl 3 - = DipenE dge Uiea Continls
©r updazabls Tet Teut i "

€] Cumtismmbentel
2] Qustismr By o o ek
<] Hodel s =]

5¢ outtrs | #7005, |l i3/ = O

prapertes | Events |

EstzieH ouagonp |
EgloreHowiemty

+| I 1 N I

alzasPesdpdi ..m...n.'.r...d &
DetonesecChangs

BetoeiotChange | St
sl ummanyisky
Erviegfonimdlharg " | ¥

In the generated skeleton code for the event handler, you can see that the EventArgs parameter passed
in is a subclass called BeforeRowsDeletedEventArgs. Looking at that in the Class Browser, you can see
first of all that, as in the EventArgs class for row creates, there’s a Cancel property that needs to be set
to tell the handler whether the delete completed successfully or needs to be backed out.

April, 2010 Page 4 of 7

Deleting Data with the ProBindingSource and John Sadd
.NET Controls

[et doe Fdaer - Samples Updatable Customertragridiplch - OpenEdge Architeet - CGubbotiet

=la=
Fle Edt Sosce Mevgate Seach Project OperEdge Run Window Help
ri= | £ [%-0-- |+~ - R R
££1 | &' operkdge Edtor
[Chos browmsae. 15 b |¥ o=""0 -0
Samch Beforsimeibuistad varthngs 3 %] [corotruntens =l
o @ (et agstis. Wi, s WindGre, Lk aGeigond |, logeal)
@ Metrass
G properties
©
@ Ceplrranottg
G hsstblng
@ Pty
G ot
= &0 Dot Merrbers
B brety
|
PUDLIC PROPERTY Camcal A5 logisal
GET
BET
Member of System.ComponentBodel.Cancelfventirgs J
Summmary ;
ﬂJ
2l 1 = =7=0]
- ":

And specific to deletions, there’s a DisplayPromptMsg property, a Logical value that determines whether
you get a default message asking you to confirm the delete. The grid will display one for you if you set this
property to True, but it turns out that the message doesn’t appear at the right time to allow you to cancel
the row delete from the temp-table, so you should normally set the property to False. The method
implementation below shows a simple example of where to put your own message. In addition, there’s a
Rows property that holds a collection of, in this case, all the rows being deleted. The event is called

BeforeRowsDeleted, so it is in fact prepared to allow more than one delete at a time, though that’s not
shown in this example.

Here is the code for the BeforeRowsDeleted event handler that uses these EventArgs properties:

METHOD PRIVATE VOID moUltraGridCustomer_BeforeRowsDeleted (
INPUT sender AS System.Object,

INPUT e AS Infragistics.Win.UltraWinGrid.BeforeRowsDeletedEventArgs) :

DEFINE VARIABLE oRow AS UltraGridRow NO-UNDO.
DEFINE VARIABLE cBufferName AS CHARACTER NO-UNDO.

e:DisplayPromptMsg = FALSE.
IF e:Rows:Length > 1 THEN
DO:

/* Don't use grid's default are-you-sure msg */

MESSAGE "Deleting multiple rows at once is not supported." VIEW-AS ALERT-BOX.
e:Cancel = TRUE.

END.
ELSE DO:

MESSAGE "Are you sure you want to delete the selected row?"

VIEW-AS ALERT-BOX QUESTION BUTTONS YES-NO UPDATE lConfirmDelete
AS LOGICAL.

IF NOT 1lConfirmDelete THEN
e:Cancel = TRUE.
ELSE DO:
oRow = CAST (e:Rows:GetValue(0), UltraGridRow) .
cBufferName = oRow:Band:Key.
IF moCustomerModel :DeleteModelRow
e:Cancel = FALSE.
ELSE e:Cancel = TRUE.

/* One row deleted. */

(cBufferName) THEN

END.
END.
RETURN.

END METHOD.

First the code turns off the default “Are you sure?” message by setting DisplayPromptMsg to False, so
that the method can control what the message says and when it appears. Then it examines the Rows
property, which is a .NET collection. One of the standard properties of a collection is Length, the number of

April, 2010 Page 5 of 7

Deleting Data with the ProBindingSource and
.NET Controls

John Sadd

elements in the collection, so the code checks the Length to make sure that only one row is marked for

deletion.

supplies a custom delete confirmation message, and sets the Cancel flag accordingly.

If not, it sets the Cancel property to True to signal that the delete didn’t succeed. Then it

One of the standard collection methods is GetValue, which takes a zero-based index into the collection.

Here the statement...

oRow = CAST(e:Rows:GetValue(0), UltraGridRow) .

...returns the first (and in this case, only) row in the Rows collection. The ABL casT function tells the
compiler to treate the object reference returned by GetValue as an instance of an UltraGridRow, which is
what the Rows collection contains. If the method were supporting the deletion of multiple rows at a time, it
would have to loop through the rows in the collection (since the collection contains the rows the user has
selected for deletion), extract key values from each row, and pass those to a delete method in the Model so
that it could identify which rows had been selected. The present example only accesses the one selected
row to extract the key value from the Band it's in, which holds the buffer name for the data displayed in

that band:

cBufferName = oRow:Band:Key.

The buffer name would be important if the binding source and the grid supported a DataSet with more than

one table. Finally, the method invokes the delete method in the Model class:

IF moCustomerModel :DeleteModelRow
:Cancel = FALSE.
:Cancel = TRUE.

(cBufferName) THEN

ELSE

After saving and re-running the form class, | can select, for instance, the test row that | added for my
support of row creates in another presentation. The grid recognizes the keyboard Delete key as a delete

request. Here’s the DeleteModelRow method’s confirmation message:

= Lot sl

2] Cuntermertoddel o L

] Opend dge Edtor - Samples, Updatable, CustomerUitrat ol =
] £ |B-0-%- |+~
[| &5 opeeidge Edter
& nesources 1 S O ||) Custenmrbiose Mot [SREN (<] CustommerBrateidpd s (=]
%< Toolbex 2
< [Samgles || 5 customertbracridupd £ o
% o Refrerced Assercles TN ol x| =
JL Procedure Lite anes 1 Microsoft Controls
i ode Updatatie Custores Grid =] Dpen dge: Corrals
L o Trewiien CuttomerFasitiame | Customelssilame | CusiomeBiskCounty | CusiomesBithdaie) Openk dge Ukra Controls

%) CustomerUibraGridlipd. - uifianars L
<) sl s Wagrat Gemany e 3
52 outioe | 57 005.., | O prop. Washington ush A [=
S 4 | Lesaston [[ELINTED =
L T
e - Juuestion (Press HELP to view stack trace} _*II'*“‘"‘”- 4
el GadCusiceer ; Infagitics Wil A T
Properties | fwents | ‘-?/ [ECHES [n =
:""' H2/23N % 7
mer
[c— v |Cw] me P*_|+ .
Flbeibime = =|
Forihargnd | =
FoseColaCharged
FirveF mecunck: PR —
HislpRncusted e’ oy . A’.LI
ImebbiieChanged
Iriisioeiecuntyfiow »
Inkinkoel ayout - ¥ oS Cuttormat
Lmiinkaad amn i
InitializeL agout -
Ocous when the byou it riisioed. 12 Cansobe |[2 Proise ©7 | < Taks =8
1] writable

After clicking Yes, and just to make sure the row is gone, | can sort by CustomerFirstName, and scroll
down and look for a customer named NewCustFirst, and confirm that it's not there:

April, 2010

Page 6 of 7

Deleting Data with the ProBindingSource and
.NET Controls

[Opentdge Edtar - Samples, Updatable CustomeritraGridUpe.chs - Openfage Architect - £\ GubDothet JRT=TE]|
Fle Edt Design Navigsts Search Propt Openldge Run Window Heb
| i | £ |2 O -Q~ || O
| & CrenEdge Edtor
& hesources 13| T =n
Toolbox 2
I_ | Custemlontraly
=10 [et Comiote
_ Ugdatable Customer Gid _ | 4 Openk dge Contiols
Tisshirrmbecthme Cuttormel setlme | Customminthlouty | Cistomediethdate | Customsfinnds | | — | 2] OpenEdge Ulva Comtrols
May Burs u 02156 r —
Mekiia Burs Gemany 0725150 r
Mekiia Gelar Gemany TR r
Mie Can Gemany G ~
w8 | " Smpion Ush CRlE] 3
,—’ Hancy Mier () W@ENET r
ol el ustomer © Inhageies 'Win Ll Pk e &] B
ropertes | events | Parick Lewtion sk 03137570 [E
E""" Paick Stowart Gemany 0772 [
A i s o TR =
Faediow | | | | F__ 4
ForiChanged [4] |
FereColorChanged
[s
Heftequeined - T £ v
e ocdeChianged
InitunkrmlitingflyFloe
5 oS Custorer
k)
TP PR T T P =P PP
Imitiakizol o
Dcows when the keyout i indtiskoed. B console | [Frobiems £ | o Tasks ¥~ =0
I ® nte |

John Sadd

To summarize, in this session | showed you the ProBindingSource AllowRemove property, which needs to
be True for the binding source to allow deletes through the query it's connected to. If you allow just a
single row delete at a time, you just delete that row in the underlying table -- because the binding source
positions to it when it’s selected in the grid -- and then delete the corresponding result list entry from the
table’s query. If you want to support deleting multiple rows, walk through the Rows collection and pass
key information that identifies each row to the code in the Model that can use that to delete them from its
temp-table and the underlying data source.

April, 2010

Page 7 of 7

