
April, 2010 Page 1 of 17

UPDATING DATA WITH .NET CONTROLS AND A PROBINDINGSOURCE

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
March 2010

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 2 of 17

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This paper accompanies a two-part presentation that extends other materials on data binding and using the
ProBindingSource control, by showing you simple ways to handle update operations. Here I introduce more
of the remaining ProBindingSource properties, methods and events that support updates, and a few of
the basic UI control events that you can interact with as well. As you can see here in the Resources View,
I’ve created a new subdirectory in my project called Updatable where I’ll put my new code samples:

That directory corresponds to the notion of a package, in object-oriented terms, for organizing the code in
my project. To show you how to specify the package when you create new source files, I start by creating a
new ABL Interface. Because I had selected the Updatable folder in the Resources View, that package
name is already filled in for me as the default. As I’ve done before, I can just enter the name of the
interface. This is a variation on the IModel interface that I’ve used before, so I can use the same name,
because it will be stored in a new folder with all the rest of my sample code for trying out update
operations:

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 3 of 17

I start with the Interface code skeleton that Architect generates, paste in the three method definitions used
in the read-only operations created in other sessions on the ProBindingSource, and then add a new
method to support saving data, which takes a buffer name as a parameter, and returns a LOGICAL value to
tell me whether the save succeeded or not.

USING Progress.Lang.*.

INTERFACE Updatable.IModel:
 METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER).
 METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).
 METHOD PUBLIC HANDLE GetQuery().
 METHOD PUBLIC LOGICAL SaveData(INPUT pcBufferName AS CHARACTER).

END INTERFACE.

Next I create a new class based on the CustomerModel class, and place it into my Updatable package.
The first change I need to make is to qualify the name of the interface it implements so that the compiler
finds the right one.

CLASS Updatable.CustomerModel IMPLEMENTS Updatable.IModel:

Then I need to make a change to the FetchData method that tells the model class to populate its
ProDataSet. A ProDataSet can keep track of changes you make after it’s been filled with data from its data
source. But before I fill it I have to make sure that the TRACKING-CHANGES property on the ttCustomer
temp-table is set off. Then after the FILL is done, I can set the property to True so that any changes made
from that point on will be tracked in the ttCustomer temp-table’s before-table:

METHOD PUBLIC VOID FetchData(INPUT pcFilter AS CHARACTER):

 DEFINE VARIABLE cPrepare AS CHARACTER NO-UNDO.
 TEMP-TABLE ttCustomer:TRACKING-CHANGES = FALSE.
 cPrepare = "FOR EACH AutoEdge.Customer".
 IF pcFilter NE "" THEN
 cPrepare = cPrepare + " WHERE " + pcFilter.
 QUERY qCustomer:QUERY-PREPARE (cPrepare).
 DATASET dsCustomer:FILL().
 httCustQuery:QUERY-OPEN ().
 TEMP-TABLE ttCustomer:TRACKING-CHANGES = TRUE.
 END METHOD.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 4 of 17

Now I’m ready to accept updates from the user interface. Remember that the Source menu in Architect
helps you make all sorts of edits to a source file, including new methods, constructors, and event and
property definitions for a class. I need to add a new method, but because it's a method defined in my
interface IModel, I can select the Override / Implement Members option to implement the SaveData
method that I defined in the Updatable version of the Interface. I have Architect add it to the source file in
alphabetical order, and tell Architect to generate an empty comments block at the top of the method.

To the default code I start out with, as generated by Architect, I first add a couple of variable definitions to
point to the temp-table’s buffer, and its before-buffer, where changes are kept track of:

METHOD PUBLIC LOGICAL SaveData(INPUT pcBufferName AS CHARACTER):

 DEFINE VARIABLE hCustBuffer AS HANDLE NO-UNDO.
 DEFINE VARIABLE hBeforeBuffer AS HANDLE NO-UNDO.

Also, I put in a sanity check to make sure that the buffer name passed in is the right one. In this case
there’s only one temp-table in the DataSet, but in other cases there could be more than one, which is why
the buffer name parameter is here:

 IF pcBufferName NE "ttCustomer" THEN
 DO:
 /* Sanity check -- this is the only buffer in the DataSet */
 MESSAGE "Ïnvalid buffer name " pcBufferName VIEW-AS ALERT-BOX.
 RETURN FALSE.
 END.

And then I initialize the two buffer handle variables:

 hCustBuffer = BUFFER ttCustomer:HANDLE.
 hBeforeBuffer = hCustBuffer:BEFORE-BUFFER.

I want to have some simple logic in the Model to give me a way to show what happens if the user enters
invalid data. My table has CustomerBirthCountry values of only the USA and Germany, so my check says
that if any other value is entered, I reject the change to the temp-table, and return false to signal the error
to the View:

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 5 of 17

 IF ttCustomer.CustomerBirthCountry NE "USA" AND
 ttCustomer.CustomerBirthCountry NE "Germany" THEN
 DO:
 MESSAGE "Invalid Birth Country value, must be USA or Germany."
 VIEW-AS ALERT-BOX.
 hBeforeBuffer:REJECT-ROW-CHANGES ().
 RETURN FALSE.
 END.

Note that the Model class expects the changes the user has made to have been saved to the DataSet’s
temp-table already. This is important because you don’t want even simple logic like this in the View, which
just handles the user interface. And you don’t want the Model, which is in charge of the data, to know how
to look up into the UI and see the values in the user interface controls. So the UI has to get the values
assigned to the temp-table before it runs SaveData, and to do this, it uses the ProBindingSource as an
intermediary. If there's no error the Model uses the ProDataSet’s SAVE-ROW-CHANGES method to save data
back to the DataSource, the database table it came from. SAVE-ROW-CHANGES itself could fail, because it
does conflict checks if more than one user is changing the same row at the same time, and there might be
underlying database triggers that could fail as well. So if SAVE-ROW-CHANGES succeeds, the ACCEPT-ROW-
CHANGES method keeps the changes in the temp-table and marks the change as complete, and I tell the UI
that the save succeeded:

/* If we get here all client-side validation succeeded. */
 IF hBeforeBuffer:SAVE-ROW-CHANGES () THEN
 DO:
 hBeforeBuffer:ACCEPT-ROW-CHANGES ().
 RETURN TRUE.
 END.

But if SAVE-ROW-CHANGES returns an error, then REJECT-ROW-CHANGES scrubs the change from the temp-
table, and the method returns an error flag.

 ELSE DO:
 hBeforeBuffer:REJECT-ROW-CHANGES ().
 RETURN FALSE.
 END.

END METHOD.

That’s a start to the changes to the Model class to handle the data management side of the update. Now
let’s look at the Form where we’ll also make changes, which once again is based on a form used in the
earlier data binding examples. If I select its ProBindingSource control, I can show you a few more of its
properties. The AllowEdit property, for instance, determines whether updates through the binding source
are enabled or not. You can also enable individual controls in the user interface, but this property lets you
control updates programmatically from the binding source. It’s true by default, so updates are enabled. but
here I set it to false to see how it affects the user interface.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 6 of 17

I save the form with that property setting, and run the form to see what happens to my grid. If I select a
cell and try to type into it, nothing happens. So the ProBindingSource has effectively disabled any
controls that are bound to it, which can be a more effective way to manage updates than enabling and
disabling individual controls. But it’s clear that I want to keep AllowEdit set to True, so I reset the
property to its default.

Another property of the binding source that looks interesting is AutoUpdate. This does what the name
implies: it will automatically do the binding source Assign for you, which in my case would write changes
back to the temp-table. But it does not do any error checking or validation or any of the work to get
changes back to the actual data source, so it’s not recommended except for quick prototyping. That’s why
it’s False by default, and I leave it that way.

Next let me look at the events on the grid to see what I want to intercept to handle updates. The
UltraWinGrid supports a whole host of events that you can subscribe to. Most of the names are pretty
self-explanatory, and you can learn more about them from the Infragistics documentation. The one I want
is BeforeRowUpdate, whose meaning should be pretty clear.

Double-clicking on that event, I get a handler for it. And in the code I see it takes an event args subclass
called CancelableRowEventArgs.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 7 of 17

@VisualDesigner.
METHOD PRIVATE VOID moUltraGridCustomer_BeforeRowUpdate
 (INPUT sender AS System.Object,
 INPUT e AS Infragistics.Win.UltraWinGrid.CancelableRowEventArgs):

Let me find out what I can about that. In the Class Browser, I enter the name of the event args class,
and look at its properties. There’s a Cancel property, first of all, which is of type Logical, so I know that if
I set it to True, then the update will be cancelled.

There’s also a Row property, and if I drill down into that, and look through its properties, I see that it holds
a reference to the Band in the grid where the selected row is.

And again, looking through the properties, I see a Key property.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 8 of 17

This is often used to hold the name of the data item that’s displayed. For instance, the Key property of a
GridColumn holds the name of the field displayed there, which can be useful. Here it’s the name of the
buffer whose fields are displayed in this band. That will be useful to me in my event handler.

So I’ve learned a little about how to manipulate the event args parameter to BeforeRowUpdate: I need
that buffer name, because I want to be able to tell SaveData what buffer was updated, in case there’s
more than one. And I learned from the Class Browser how to drill down into the event args to get the
Row, then the Band for the Row, and the Key value for the Band. That’s the buffer name;

 METHOD PRIVATE VOID moUltraGridCustomer_BeforeRowUpdate
 (INPUT sender AS System.Object,
 INPUT e AS Infragistics.Win.UltraWinGrid.CancelableRowEventArgs):

 DEFINE VARIABLE cBuffer AS CHARACTER NO-UNDO.
 DEFINE VARIABLE cCustName AS CHARACTER NO-UNDO.

 cBuffer = e:Row:Band:Key.

There might be circumstances where an event fires when no actual changes were made to a row, so I
check the binding source RowModified property:

 IF moBSCustomer:RowModified THEN
 DO:

This property will be true if anything in the row was changed, and it will stay true as long as the grid is
positioned to that row. Next comes the key step in the update through the binding source. When I invoke
its Assign method, the changes in the grid – which you can think of as being like the screen buffer in older
ABL terms – are transferred to the underlying record buffer, in this case, the temp-table row that the data
came from. If there are any errors in that Assign, for instance if the UI let the user type in a value of the
wrong data type into a cell, then the Assign will fail, so I check for an error return from Assign, set the
Cancel property in the event args that I learned about in the Class Browser, and leave the update block:

 IF NOT moBSCustomer:Assign() THEN
 DO:
 /* Invalid data was entered in the grid row */
 e:Cancel = TRUE.
 LEAVE.
 END.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 9 of 17

But if the Assign succeeds, my changes have been moved to the temp-table, so that the code in the Model
can validate them.

This part of the sequence is important. If there were update format masks you wanted to define in the UI
itself to help determine what the user enters, to make sure that an integer is entered into an integer field,
for instance, or to define a dropdown list of possible values, that’s one thing, but you wouldn’t want
anything else in the way of business logic to execute in the View. In the case of my simple validation of
CustomerBirthCountry being USA or Germany, I could have defined a grid cell dropdown that I then
populated with those selection values. But ABL code that does calculations or validations that constitute
real business logic doesn’t belong there. My validation check in the CustomerModel class is really a
placeholder for business logic that would normally execute on the server-side in a distributed application.

The key thing is that the Assign has transferred the updated values to the Model’s temp-table, without the
UI itself knowing anything about the underlying data storage, and the Model can then execute its validation
without knowing anything about the UI. In any case, if SaveData returns an error, then I set Cancel just
as before.

 IF NOT moCustomerModel:SaveData(cBuffer) THEN
 DO:
 e:Cancel = TRUE.
 LEAVE.
 END.

I can now save this and run it, select a cell, make a change to it, and select another row. Anything I do to
leave a row causes BeforeRowUpdate to fire, so my update has been executed. There’s no visible
confirmation of that, though, which I will address later.

Next I change another name, and then tab to the CustomerBirthCountry cell, and enter an invalid value.
When I leave the row, I see the error that came back from SaveData, which is checking the values that
were assigned to the temp-table.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 10 of 17

By default the Cancel just erases my changes altogether, which is not very friendly, so that’s something
else I’ll improve on before I’m done. I have at least confirmed that a basic update goes through, and that
SaveData has written it back to the data source, the database table.

[The following part of the document corresponds to the second part of the video presentation.]

Since there are a few things that I don’t like about how my sample grid behaves so far, I’m going to make
some changes to show a few of the user interface options that can help improve the form’s usability, as
well as more of the ProBindingSource properties and methods.

One issue is that if I enter invalid data in a row, such as France for the CustomerBirthCountry name, I get
an error message, but then lose my changes when the code sets the Cancel property. I could write some
ABL code to make it behave differently, but if I select the grid in Visual Designer and look through its
properties, I see that there is one called RowUpdateCancelAction, which looks like a perfect description
of my situation. It’s defined in terms of an enumeration, and if I drop down its list of values, I see that the
default is CancelUpdate, which is what I saw happen, but the other choice is RetainDataAndActivation.
That’s exactly what I want to have happen: to leave the changes in place and leave me on the row with the
error – that’s what Activation means, that the row is still active – so that I can see and either correct the
error or press Escape to cancel the changes myself.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 11 of 17

This is a perfect example of both the value of these .NET controls, especially the UltraControls, and also the
challenge of using them: On the one hand, there are many properties, methods, and events to sort through
to find what you need to solve a problem. On the other hand, there’s almost always built-in support for
what you need the control to do, so it’s worth your while getting to know the controls through the
documentation and just reviewing the names of everything the controls support, which are usually clear in
telling you what they do. Naming conventions are consistent enough that with a little experience you will
get a sense for what to expect and what to look for in a control that's new to you.

If I run the form again with RowUpdateCancelAction changed to RetainDataAndActivation, I can
make a change to a Customer, and then change the CustomerBirthCountry to an invalid value. Now I see
the error message as I did before, but my changes haven’t been canceled:

The row in error is still the current row, as indicated by the row edit icon over on the left, so I can click in
the cell where the error is, and correct it, and then move out of the row and save all my changes. That’s
much more user friendly. I try another row, and once again enter an invalid CustomerBirthCountry, and
once again see the error message. It’s a characteristic of the UltraGrid that I can press Escape to cancel an
update, so I have that option to go through with the Cancel myself.

I present this as an example of how you can expect that the .NET controls will provide countless variants of
behavior that you can capture and take advantage of. You just need to be thorough enough to find and use
them.

The next issue I had with my updatable grid was that there was no visible feedback when an update
succeeded. As one example of how I can deal with that, I’ll add a status bar to the form to display an
update status. Here among the Ultra controls is a StatusBar that I can drop onto the bottom of the form.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 12 of 17

I rename it to be consistent with the other control names I’ve used. Without going into all the rest of its
properties, I initialize its Text property to “Status: ”, to make that the value initially displayed.

Now I need to add a couple of lines of code to assign a value to display after an update. At the beginning of
the BeforeRowUpdate event handler. I reset the Text property back to its initial value, so that it’s reset
each time an update happens:

DEFINE VARIABLE cBuffer AS CHARACTER NO-UNDO.
DEFINE VARIABLE cCustName AS CHARACTER NO-UNDO.
 cBuffer = e:ROW:Band:Key.
 moUltraStatusBar:TEXT = "Status: ".

Then at the end of the method I construct a string that displays the first and last name fields:

 cCustName = e:ROW:Cells:Item[0]:Text + " " +
 e:ROW:Cells:Item[1]:Text.

This is worth taking a look at for a moment. Remember that the method’s CancelableRowEventArgs
parameter has a Row property. The Row contains a Cells property, which is a .NET collection of all the

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 13 of 17

cells in the row. The standard way to access an element of a collection is with the Item property, which
takes a zero-based index to the cell you want. The Text property of each cell is the value it contains. So
Item[0] and Item[1] are the first two columns in the grid, the CustomerFirstName and
CustomerLastName fields.

To see how my status bar looks, I can rerun the form, click on a row, change the name, and change the
CustomerBirthCountry to a valid value. When I select another row, the BeforeRowUpdate handler fires,
and I see the status message.

So this is just a simple example of integrating another Ultra control into a form. While I’m running the form
and changing values, I can show you another aspect of the update that you could consider an issue. If I
click on the CustomerLastName column header, the SortData method that I coded in the presentation
series on sorting data with the ProBindingSource re-opens the temp-table query, sorted by
CustomerLastName. Now if I select a customer, and change the CustomerLastName to a value that should
sort somewhere else, the change is saved, but the data isn’t resorted, because I didn’t ask to reopen the
query.

Showing you how to make the resort happen will illustrate another part of the interaction between the user
interface, the binding source, and the underlying data. Back in the CustomerModel class, I want to make
a change to the SaveData method. If the save operation succeeds, I want to re-open the current query,

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 14 of 17

with whatever sort order is defined for it. That way, the data will be resorted properly if I make a change
that affects a row’s sort sequence in the grid.

 /* If we get here all client-side validation succeeded. */
 IF hBeforeBuffer:SAVE-ROW-CHANGES () THEN
 DO:
 hBeforeBuffer:ACCEPT-ROW-CHANGES ().
 httCustQuery:QUERY-OPEN ().
 RETURN TRUE.
 END.

Looking at the ProBindingSource properties again makes it clear what’s making the resynchronization of
data between ProBindingSource and the UI work. The property that plays a key role here is AutoSync.

It’s True by default, which is what supports the behavior I’ve been showing you. If AutoSync is True,
then any time you re-open a query bound to a ProBindingSource, or use one of the ABL REPOSITION
statements to change the selected row in the query, the binding source Position property is reset
automatically, and any user interface controls bound to the binding source are also refreshed to stay in
sync with the data. This is probably the behavior you want almost all the time, but if you ever want to
control when data gets refreshed yourself, you can set AutoSync to False and use the binding source
Refresh method.

To take a look at the result of the query re-open, I save and re-run the form, re-sort the data by
CustomerLastName, select a row, and make a change that changes its sort position.

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 15 of 17

Leaving the updated row, the query is re-opened and all the data re-synchronized with the grid.

Lastly, I’ll show you a simple example of using the ProBindingSource Refresh method. To do that, I need a
new method in the model, so I first add it to the interface. The new method, FormatColumn, takes a
column name and its value as parameters, and re-formats the value under certain rules. If the method
returns true, then the value has been re-formatted and needs to be re-displayed. That’s where Refresh
comes in.

INTERFACE Updatable.IModel:
 METHOD PUBLIC VOID FetchData (INPUT pcFilter AS CHARACTER).
 METHOD PUBLIC VOID SortData (INPUT pcSort AS CHARACTER).
 METHOD PUBLIC HANDLE GetQuery().
 METHOD PUBLIC LOGICAL SaveData(INPUT pcBufferName AS CHARACTER).
 METHOD PUBLIC LOGICAL FormatColumn (INPUT pcColumnName AS CHARACTER,
 INPUT pcColumnValue AS CHARACTER).

END INTERFACE.

From the Source menu, I add the skeleton code for the new method:

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 16 of 17

This is the code for the method:

METHOD PUBLIC LOGICAL FormatColumn(INPUT pcColumnName AS CHARACTER,
 INPUT pcColumnValue AS CHARACTER):

 CASE pcColumnName:
 WHEN "CustomerBirthCountry" THEN
 DO:
 IF pcColumnValue = "usa" THEN /* in whatever capitalization */
 DO:
 ttCustomer.CustomerBirthCountry = "USA".
 RETURN TRUE. /* Force refresh */
 END.
 END.
 END CASE.
 RETURN FALSE. /* No refresh needed. */

END METHOD.

If the CustomerBirthCountry column has a value of “usa” with any type of capitalization, the code for that
case forces it to be all upper case, and returns TRUE to signal that the data value has been changed.
Remember that because this is code in the Model, it’s the temp-table value I’m changing, which has no
direct effect on the UI.

So back in the form I need to invoke FormatColumn and check its return value. Looking again through the
UltraGrid events, I find one named AfterCellUpdate that fires after a cell has been updated. A little
experience will teach you where to look in these very full-featured controls for support for the behavior you
need. The event handler for AfterCellUpdate takes an event args class of CellEventArgs, and if I were to
look that up in the Class Browser, I’d see that, not surprisingly, it has a Cell property. The Column
property of the Cell points to the column the cell is in. I have used the Key property once before to get at
the buffer name for a band in the grid. Here the Key property holds the column name, so that becomes the
first parameter to FormatColumn. The cell also has a Text property, which holds the column value, so
that becomes the second parameter. And if FormatColumn returns True, it has modified the field’s value
in the temp-table:

METHOD PRIVATE VOID moUltraGridCustomer_AfterCellUpdate(
 INPUT sender AS System.Object,
 INPUT e AS Infragistics.Win.UltraWinGrid.CellEventArgs):
 IF moCustomerModel:FormatColumn(INPUT e:Cell:Column:Key,
 INPUT e:Cell:Text) THEN
 moBSCustomer:Refresh().
 RETURN.

END METHOD.

This is where I invoke the ProBindingSource Refresh method to redisplay the row. Because the code hasn’t
re-opened the query or re-positioned it, I have to do the Refresh myself.

To test this latest change, I save and re-run the form, select a customer, change the CustomerLastName,
and then change the CustomerBirthCountry to “usa”, without using all capitals:

Updating Data with .NET Controls and a
ProBindingSource

John Sadd

April, 2010 Page 17 of 17

When I leave the cell, the AfterCellUpdate event fires to run the FormatColumn method and refresh the
displayed value. That’s the last of the changes I’ll make to this demonstration of the basics of updating
data using the ProBindingSource.

Let’s quickly review a few of the things I've shown you in this two-part session:

 Use the TRACKING-CHANGES property of a ProDataSet to allow you to FILL the DataSet and then
keep track of changes to its contents.

 The SAVE-ROW-CHANGES method saves changes back to the source database table. ACCEPT-ROW-
CHANGES marks those changes as being accepted in the dataset itself, and REJECT-ROW-CHANGES
removes them.

 In the ProBindingSource, the AllowEdit property lets you manage whether UI controls that are
bound to it are enabled for input or not.

 The AutoUpdate property is there just to help you do quick testing of updating data, but should
be left False for serious development.

 Use the ProBindingSource RowModified property to check whether a row in the UI has actually
been changed, and the Assign method to write changes back to the buffer in the Model that is the
binding source's data source.

 Remember that the binding source AutoSync property allows an automatic refresh of data when
the underlying query is re-opened or repositioned.

 When you need to synchronize a change that doesn't reposition the query, use the
ProBindingSource Refresh method to push the change out to the UI.

 Use control events like BeforeRowUpdate and AfterCellUpdate to capture changes that you
need to write back to the Model.

 Learn about useful control properties like RowUpdateCancelAction to take advantage of built-in
behavior that you want in your user interface.

That concludes this two-part session on managing data updates with the ProBindingSource.

