
Adding a grid control to a form John Sadd

 Page 1 of 9

ADDING A GRID CONTROL TO A FORM

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
November 2009

John Sadd

Using Visual Designer
and GUI for .NET

Adding a Grid Control
to a Form

Adding a grid control to a form John Sadd

 Page 2 of 9

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This is the second in a series of documents that accompany a series of video sessions to introduce you to
the Visual Designer in OpenEdge Architect and the support for GUI for .NET in OpenEdge 10. It’s the
second of two parts on Creating a Form and a ProBindingSource. In this session I add a grid control to
a form and connect it up with fields in a table that was defined for a ProBindingSource control previously.
In the session on Defining an ABL Form and Binding Source, I created a form class called
CustomerForm and added a ProBindingSource control to it, which you can see here as BSCustomer, to
manage data from the Customer table in the AutoEdge sample database.

Adding a grid control to a form John Sadd

 Page 3 of 9

Now I’m going to add a visual control to the form. There are two main collections of these. The first is
controls created by Microsoft as part of .NET that are included with OpenEdge. The second is controls from
Infragistics identified as OpenEdge Ultra Controls, which are a separately purchasable and installable
item. The Ultra Controls have many great features, but I’ll focus first on the Microsoft controls that are “in
the box”. I select the DataGridView, roughly the .NET equivalent of the ABL Browse widget, to display
customer fields. I drag the control onto the form, and immediately its SmartTag property sheet pops up to
let me pick a data source for the grid, and I’ll choose the Customer ProBindingSource. This is why it
made sense to define the binding source first, so that the visual controls then have something to point to to
get their data from.

Adding a grid control to a form John Sadd

 Page 4 of 9

The grid picks up the field datatypes and column labels from the binding source, which in turn got them
from the database schema. But I can make changes to those values by selecting Edit Columns. For
instance, I can pick a column such as the first name and scroll through its properties, and adjust the
HeaderText property, which is the column label. and do the same for the Last Name column.

And likewise I can go through the grid’s properties in the Properties View, and rename the control to
CustomerGrid.

Adding a grid control to a form John Sadd

 Page 5 of 9

Now that I’ve added the grid, I can take a look at the code that got generated.

Once again, the definitions of object variables that Visual Designer generates go here in the main block of
the class, and you need to be careful not to disturb them when you add your own code to the class. The
other thing you’ll notice is that there’s a variable to hold the reference to the grid itself, and also one for
each of the columns. So each column in the grid is its own object. Most of them are of the type
TextBoxColumn, though Gender, which is defined in the database schema as a LOGICAL field, is
represented as a CheckBoxColumn.

CLASS CustomerForm INHERITS Form :

 DEFINE PRIVATE VARIABLE BSCustomer AS Progress.Data.BindingSource NO-UNDO.
 DEFINE PRIVATE VARIABLE components AS System.ComponentModel.IContainer NO-UNDO.
 DEFINE PRIVATE VARIABLE customerLastNameDataGridViewTextBoxColumn AS

System.Windows.Forms.DataGridViewTextBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE customerIDDataGridViewTextBoxColumn AS

System.Windows.Forms.DataGridViewTextBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE customerGenderDataGridViewCheckBoxColumn AS

System.Windows.Forms.DataGridViewCheckBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE customerFirstNameDataGridViewTextBoxColumn AS

System.Windows.Forms.DataGridViewTextBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE customerBirthdateDataGridViewTextBoxColumn AS

System.Windows.Forms.DataGridViewTextBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE customerBirthCountryDataGridViewTextBoxColumn AS

System.Windows.Forms.DataGridViewTextBoxColumn NO-UNDO.
 DEFINE PRIVATE VARIABLE CustomerGrid AS System.Windows.Forms.DataGridView

NO-UNDO.

In InitializeComponent you can see the NEW statements that create instances of the grid and its
columns.

 METHOD PRIVATE VOID InitializeComponent():

 THIS-OBJECT:CustomerGrid = NEW System.Windows.Forms.DataGridView().
 THIS-OBJECT:customerIDDataGridViewTextBoxColumn = NEW

 System.Windows.Forms.DataGridViewTextBoxColumn().
 THIS-OBJECT:customerFirstNameDataGridViewTextBoxColumn = NEW

 System.Windows.Forms.DataGridViewTextBoxColumn().
 THIS-OBJECT:customerLastNameDataGridViewTextBoxColumn = NEW

 System.Windows.Forms.DataGridViewTextBoxColumn().
 THIS-OBJECT:customerBirthCountryDataGridViewTextBoxColumn = NEW

 System.Windows.Forms.DataGridViewTextBoxColumn().
 THIS-OBJECT:customerBirthdateDataGridViewTextBoxColumn = NEW

 System.Windows.Forms.DataGridViewTextBoxColumn().
 THIS-OBJECT:customerGenderDataGridViewCheckBoxColumn = NEW

 System.Windows.Forms.DataGridViewCheckBoxColumn().
 CAST(THIS-OBJECT:BSCustomer,

 System.ComponentModel.ISupportInitialize):BeginInit().
 CAST(THIS-OBJECT:CustomerGrid,

 System.ComponentModel.ISupportInitialize):BeginInit().

In the next section of InitializeComponent, you can see the grid has a property called
AutoGenerateColumns that’s explicitly set to false. This is another example of a property that, on the
one hand, isn’t displayed in the Properties View, but is assigned an explicit initial value. You could set this
property to true programmatically if you wanted a grid that would generate columns dynamically at runtime
based on the columns in its data source.

 /* */
 /* CustomerGrid */
 /* */
 THIS-OBJECT:CustomerGrid:AutoGenerateColumns = FALSE.

Adding a grid control to a form John Sadd

 Page 6 of 9

You can also see that the grid column objects are placed into an array and then the AddRange method is
used to add them as a collection to the Columns property of the grid. So this is how they’re all tied
together.

 DEFINE VARIABLE arrayvar2 AS System.Windows.Forms.DataGridViewColumn
 EXTENT 6 NO-UNDO.

 arrayvar2[1] = THIS-OBJECT:customerIDDataGridViewTextBoxColumn.
 arrayvar2[2] = THIS-OBJECT:customerFirstNameDataGridViewTextBoxColumn.
 arrayvar2[3] = THIS-OBJECT:customerLastNameDataGridViewTextBoxColumn.
 arrayvar2[4] = THIS-OBJECT:customerBirthCountryDataGridViewTextBoxColumn.
 arrayvar2[5] = THIS-OBJECT:customerBirthdateDataGridViewTextBoxColumn.
 arrayvar2[6] = THIS-OBJECT:customerGenderDataGridViewCheckBoxColumn.
 THIS-OBJECT:CustomerGrid:Columns:AddRange(arrayvar2).

The grid’s Location is set using a Point object that defines the coordinates of a point, and the Size
property is set using a Size object that defines its two dimensions. And most important, the grid’s
DataSource property is set to the binding source instance. DataSource is a common property of all data
bound .NET controls , and the OpenEdge-specific ProBindingSource control was created to satisfy the
expectations for a data source in a way that supports ABL data management.

 THIS-OBJECT:CustomerGrid:DataSource = THIS-OBJECT:BSCustomer.
 THIS-OBJECT:CustomerGrid:Location = NEW System.Drawing.Point(13, 28).
 THIS-OBJECT:CustomerGrid:Name = "CustomerGrid".
 THIS-OBJECT:CustomerGrid:Size = NEW System.Drawing.Size(450, 226).
 THIS-OBJECT:CustomerGrid:TabIndex = 0.

Then the code assigns basic properties to each of the column objects, including the HeaderText that
represents the column labels.

 /* */
 /* customerIDDataGridViewTextBoxColumn */
 /* */
 THIS-OBJECT:customerIDDataGridViewTextBoxColumn:DataPropertyName =
"CustomerID".
 THIS-OBJECT:customerIDDataGridViewTextBoxColumn:HeaderText = "Customer ID".
 THIS-OBJECT:customerIDDataGridViewTextBoxColumn:Name =
"customerIDDataGridViewTextBoxColumn".
 …
 /* */
 /* CustomerForm */
 /* */
 THIS-OBJECT:ClientSize = NEW System.Drawing.Size(475, 266).
 THIS-OBJECT:Controls:Add(THIS-OBJECT:CustomerGrid).
 THIS-OBJECT:Name = "CustomerForm".
 THIS-OBJECT:Text = "Customers".
 CAST(THIS-OBJECT:BSCustomer,

 System.ComponentModel.ISupportInitialize):EndInit().
 CAST(THIS-OBJECT:CustomerGrid,

 System.ComponentModel.ISupportInitialize):EndInit().
 THIS-OBJECT:ResumeLayout(FALSE).
 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.
 END METHOD.

…

END CLASS.

Adding a grid control to a form John Sadd

 Page 7 of 9

Now I have the grid control attached to the binding source control as its DataSource, as shown in step one
of this illustration. I defined the binding source in terms of the Customer database table, but now I need to
actually bind it to a query on the customer table, as shown as step 2, in order that the grid control can
actually display that data, as shown in step 3.

I add a HANDLE definition to the class’s main block. Note that because this definition is in the main block of
the class, it is a data member that can have an access qualifier of PUBLIC, PROTECTED, or PRIVATE, and
the default is PUBLIC, which would make the variable accessible from other classes. Because it will be
accessed only within this class, I define it as PRIVATE. In general, if you want a value to be read and/or set
from other classes, you should define it as a property instead of a variable, so that you can define GETter
and SETter access code to control its use, and keep your data member variables PRIVATE or PROTECTED.

In the constructor, following the statement that invokes InitializeComponent, I create an ABL query, set
it to to use the Customer buffer for the database table, prepare the query to retrieve all the AutoEdge
Customers, and open the query. Now I need to make that query handle the Handle property of the binding
source. A ProBindingSource can manage data from a database query, a buffer holding a single row, a temp-
table, or even an entire ProDataSet, depending on what you set its Handle property to.

DEFINE PRIVATE VARIABLE hCustQuery AS HANDLE NO-UNDO.

 CONSTRUCTOR PUBLIC CustomerForm ():
 SUPER().
 InitializeComponent().
 CREATE QUERY hCustQuery.
 hCustQuery:SET-BUFFERS(BUFFER Customer:HANDLE).
 hCustQuery:QUERY-PREPARE("FOR EACH Customer").
 hCustQuery:QUERY-OPEN ().
 BSCustomer:HANDLE = hCustQuery.
 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.
 END CONSTRUCTOR.

Adding a grid control to a form John Sadd

 Page 8 of 9

The next screen capture shows the DataViewGrid with all of the AutoEdge customers in it:

Just by defining a ProBindingSource to hold schema for data from my database, then dropping a grid
control onto the form, then making the binding source the data source for the grid, and creating a standard
ABL query to supply data to the binding source, I have a simple but fully functional .NET form to display my
customer data. In this simple test, there’s no specific Run Configuration for Architect to use to run my
form. But you can’t NEW a class directly as the top-level r-code file to run in an OpenEdge session. There
has to be a procedural wrapper around it. So what happens when I just ask Architect to run my form? We
can find the answer while the form is running, because there’s a temporary procedure file that’s been
generated for me that will be deleted when the run completes.

The temporary ABL procedure is placed into this folder relative to the project:

.metadata\.plugins\.com.openedge.pdt.project\temp.dir.

Adding a grid control to a form John Sadd

 Page 9 of 9

Looking in that folder, you can see a procedure whose name begins RunClass with my form name in its
name. Here is the ABL procedure that’s acting as a wrapper around my class file.

USING System.Windows.Forms.Application FROM ASSEMBLY.
DEFINE VARIABLE rTemp AS CLASS CustomerForm NO-UNDO.
DO ON ERROR UNDO, LEAVE
 ON ENDKEY UNDO, LEAVE
 ON STOP UNDO, LEAVE
 ON QUIT UNDO, LEAVE:
 rTemp = NEW CustomerForm () .
 WAIT-FOR System.Windows.Forms.Application:Run (rTemp).
 CATCH e1 AS Progress.Lang.AppError:
 MESSAGE e1:ReturnValue VIEW-AS ALERT-BOX BUTTONS OK TITLE "Error".
 END CATCH.
 CATCH e2 AS Progress.Lang.Error:
 DEFINE VARIABLE i AS INTEGER NO-UNDO.
 DO i = 1 TO e2:NumMessages:
 MESSAGE e2:GetMessage(i) VIEW-AS ALERT-BOX BUTTONS OK TITLE "Error".
 END.
 END CATCH.
END.
FINALLY.
IF VALID-OBJECT(rTemp) THEN DELETE OBJECT rTemp NO-ERROR.
END FINALLY.

Significantly, it defines a variable to hold an instance of my form class, creates a NEW instance of that
class, which runs the r-code for the class, and then uses the same WAIT-FOR statement that has always
been part of the ABL GUI to wait for, in this case, the completion of the Run event for the form. Then it
does error checking and cleans up. It’s important to be aware of the fact that this procedure is here for
you, because your finished application will have to have a similar startup procedure that creates instances
of your classes and does a WAIT-FOR similar to this one.

So that’s all for this session. When I close the customer form, that satisfies the WAIT-FOR in the wrapper
procedure, and Architect cleans up by deleting that from the temp directory.

