
December, 2009 Page 1 of 11

ADDING FIELD-LEVEL CONTROLS TO A FORM

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
November 2009

John Sadd

Using Visual Designer
and GUI for .NET

Adding Field-Level Controls
to a Form

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 2 of 11

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This presentation is part of a series on using Visual Designer and GUI for .NET in OpenEdge Architect. In
this session I start with the Customer Form that was built in another session pair titled Creating a Form
and a ProBindingSource, with its data grid and binding source, and add some field-level controls to it to
show how to bind those controls to individual fields in the same binding source.

Opening the CustomerForm class, it contains a ProBindingSource control for the AutoEdge Customer
table, and a Microsoft DataGridView control that displays all the data in the table. I first make room in the
form and in the design view for the field controls that I want to add.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 3 of 11

If I open the Microsoft Controls group you can see all the controls that are included with OpenEdge 10.2.
The MaskedTextBox for instance is good for enforcing specific data entry formats; and here’s a
RichTextBox for displaying large amounts of data in an editor. I just select the standard TextBox, and
drag one onto the form, and make an initial attempt at resizing it the way I want it.

Scrolling up through its properties in the Properties View to the left, I can give it a meaningful name; I’ll
display the Customer’s First Name in this control; the Name property is the name of the variable in the
generated code that will hold this control's object reference.

I then get another TextBox to display the Customer’s Last Name, and once again give a meaningful name
to the variable that will hold that reference. Next I use another control type, this one a calendar format that
displays a date, called the DateTimePicker. I use this to display the Customer’s Birthday. But I don’t
really care about displaying the day of the week, so I want to learn how to reformat the field into the
format I want.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 4 of 11

I can go back to MSDN to learn all about this control just like any other. Under DateTimePicker, I select
format to direct me to a description of the control’s format.

The first link in the list of options I’m shown leads me to the control’s Format description. I see that its
Format property is an object reference to a special DateTimePickerFormat object:

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 5 of 11

Looking further for a code example, I can see where the code sets the Format to the value Custom, and
then the CustomFormat property to a string. This tells me what I need to know to set the Format in my
own control.

Back in Visual Designer, I find the control’s Format property in the Properties View, and set that to the
enumeration value Custom, and then find its CustomFormat property and indicate that I want to see the
month name, day of the month, and four-digit year. Visual Designer redisplays today’s date as a default
value in the format I asked for, so I can resize the field to match.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 6 of 11

Next I need to get a Label control for each of the fields. Unlike working in AppBuilder, you don’t get a label
associated with a field automatically, so I drag a Label control onto the form and set its Name property.
The Text property is the text that’s displayed as the field’s label, so I set that to First Name: in this case.
And the TextAlign property determines exactly how the label is aligned with the field; I pick the
enumeration value of Middle Right, so I can get the label right where I want it. After adding labels for the
others fields, I add a ComboBox control to the form. I display the Customer’s BirthCountry in this drop-
down list control, and give it a label just as I did the other fields in the form. Once this is complete, I can
get to the heart of this session, and associate each of my four fields with one of the fields in the Customer
ProBindingSource, the same binding source that the grid uses, so that they display fields from the
currently-selected row in the Customer table.

At the top of the property list for each control I find the DataBindings property. Under that the Text value
lets me select the Customer binding source, and then the CustomerFirstName field as the one to bind to
this control.

I do the same for the CustomerLastName field, selecting it from the binding source, and the Birthday
field, selecting the CustomerBirthdate as the value to display. I do the same for the Country ComboBox.
When I run the form you’ll be able to see that because the field-level controls are bound to individual fields
in the same binding source as the grid, the field values are refreshed automatically to show the fields in the
current row.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 7 of 11

To populate the values you see when the combo box is expanded, I can give it its own binding source.
AutoEdge has a BaseCode table to hold code values of all kinds. The Country combo’s values should come
from the values in the AutoEdge BaseCode table where the code category is Country. I create that second
binding source, dragging it onto the form. Now in the ProBindingSource Designer I select the option again
to create binding source schema directly from a database table.

I select the BaseCode table as the data source. I don’t need to make any changes to the field list for my
purposes, so I’m all done.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 8 of 11

I give the binding source a name of BSCountry.

Let me just point out that you can select controls in the form from the drop-down list as shown here as well
as selecting them visually.

Here’s the Country ComboBox control, for instance.

I can set the same properties here in the Properties View as I could by opening the control's SmartTag.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 9 of 11

Here’s the DataSource property, which I set to the new BSCountry binding source.

Below it is where I specify the field to display in the ComboBox. From the BaseCode field list I select the
BaseCodeName.

The control has a ValueMember property where I specify what field the combo box should actually use as
its value when I select an entry from the display list. In this case it’s the same BaseCodeName field. In
other cases it might be a key field or other coded value, of course. Having completed this, I switch back to
the Editor to show you an alternative to the dynamic query I used for the Customer table.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 10 of 11

In the following line of code I define a query on the BaseCode table. Remember that every data member
that’s defined in the main block of the class, above its method definitions, can be public, private, or
protected, and is public by default, so I can add the PRIVATE keyword to the definition. Also note that a
query for a binding source needs to be SCROLLING. Dynamic queries are scrolling by default but for the
static query I need to make it explicit.

DEFINE PRIVATE QUERY qBaseCode FOR BaseCode SCROLLING.

Down in the constructor I have statements to open the static BaseCode query and set the Handle property
of the binding source that are equivalent to the dynamic statements I used for the Customer query. I’m
only interested in those BaseCode rows where the category is Country.

CONSTRUCTOR PUBLIC CustomerForm ():

 SUPER().
 InitializeComponent().
 CREATE QUERY hCustQuery.
 hCustQuery:SET-BUFFERS(BUFFER Customer:HANDLE).
 hCustQuery:QUERY-PREPARE("FOR EACH Customer").
 hCustQuery:QUERY-OPEN ().
 BSCustomer:HANDLE = hCustQuery.

 OPEN QUERY qBaseCode FOR EACH BaseCode WHERE
 BaseCode.BaseCodeCategory = "Country".
 BSCountry:HANDLE = QUERY qBaseCode:HANDLE.

 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.

END CONSTRUCTOR.

I can save the form with my changes to see how it works now. If I run the form, scrolling over to see the
fields that I’m interested in, and drop down the combo box, I see that there are just two countries in the
BaseCode table for users to choose from when they enter new customers.

Adding Field-Level Controls to a Form John Sadd

December, 2009 Page 11 of 11

If I take a look at a few of the rows in the grid, you can see that the field-level controls are in sync with the
grid because they’re bound to the same binding source.

The value displayed in the Country combo box comes from the BSCustomer binding source; I made that
association along with the rest of the fields. The values used to populate the combo’s drop-down list come
from a separate BSCountry binding source, on the BaseCode table.

This session has shown you how to add field-level controls to a form, provide them with labels, bind them
to individual fields in a binding source, and populate a ComboBox with values from a data source of its
own.

