DEFINING EVENT SUBSCRIPTIONS AND EVENT HANDLERS

John Sadd

Fellow and OpenEdge Evangelist
Document Version 1.0
November 2009

Using Visual Designer
and GUI for .NET

Defining event subscriptions
and event handlers

John Sadd

T

OpenEdge [\

SOFTWARE

PROGRESS

SOFTWARE
December, 2009 Page 1 of 13

Defining event subscriptions and event handlers John Sadd

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a series of presentations on using Visual Designer in OpenEdge Architect, and
support for GUI for .NET in OpenEdge 10.2. The material covered by this document is derived from a two-
part video session that adds event handlers to the Navigation Panel User Control built in the session
titled Building a Navigation Panel as an ABL User Control. The event handlers extend the navigation
panel to cause it to respond to the click event on the navigation buttons. Code added to the event handlers
repositions the binding source that drives the grid in a Customer form.

The NavPanel class is an ABL User Control containing a panel of buttons. This document shows how to
create code that will respond to the user clicking on each of the four buttons. Each control type can
generate many different kinds of events that your application may want to respond to in different
situations. But every control has a default event that is the one you are expected to use most often. In the
case of a simple control like a button, identifying the default event is usually obvious; for a button it's the
Click event. All you have to do in Visual Designer is double-click the control in the Design view to have the
basic code generated for that default event. For example, | can double-click on the First button in the
NavPanel, as shown here:

OpenEdge Editor - Samples/NavPanel.cls - DpenEdge Architect - C:Gui4DotNek =101 %]
File Edt Design Navigate Search Project OpenEdge Rum Window Help
0 (0 R0) e 0 =2] el e e
[F | &° Openedge Editor
&5 Resources 03 | = || 8] Navpanel cis (Desian) 2 | =g
SR i Toolbox
- |c] DataModel.cls 5| Zxiaaton
] CustomControls
~-[Z] DealerEmp.dgm | (Eirst | Prev | Next | Last |]° =
- [£) DeslerEmpiodsl.cls | |] Microsoft Controls
[i] dsDealerEmp.i " .] DpenEdge Controls
1) ModetWrapper | Double-click the buttonFirst button
pRere _+] DpenEdge Ultra Controls
(€] MavPanel.ds H
e
8= cutine | % 0B 5tr... | =l proper... 52| 0
EHE
| NavPanel : Progress.windows.UseiCortiol =l
| Properties | Everts |
{DataBindings) -
Name] NavPanel
AccessbleDescptior
AccessbleName
AccessbieRiole Defauk
AllowDiop Fake
AuloScaleMods Font
AutoSeroll Fake
AutoScrclMargn 0,0
AutoSeralMinSize 0,0
AutoSize Fake
AutoSizeMode GrowDnly
hai
BackCalor Control ([& consoe £ [[2. Problems| 1 Tasks | wpi| # B -r9-°0
{DataBindings) AL Console
The data bindings for the conlrol E
(5] 3
o= Wrikable |

When | do that I’'m automatically brought into the editor to see the code Visual Designer has generated.

There are two pieces to the generated code. What you see first in the code box that follows is the skeleton
for the event handler itself, the method that gets run when the event occurs.

December, 2009 Page 2 of 13

Defining event subscriptions and event handlers

John Sadd

@VisualDesigner.
METHOD PRIVATE VOID buttonFirst_Click(
INPUT e AS System.EventArgs):
RETURN.
END METHOD.

INPUT sender AS System.Object,

You can see that the default name for the method is the control name plus the event name. You can also
see that event handlers always take two parameters. The first, usually named sender, is the object
reference to the control that generated the event. The second, typically just named e, is an object
containing whatever information the control provides to identify the specifics of the event. Sometimes you
will care about these parameters, and sometimes you don’t really need them, because you just need to
know that the event occured. Later I'll fill this method in with code to respond to a click on the First

button.

Next let’s take a look at the other piece of code that was generated. As part of the code in
InitializeComponent that sets properties for the First button, there’s a new statement that subscribes to
the Click event for the First button. The argument to the Subscribe method specifies the ABL method we
just looked at as the one to run when the event occurs. This statement makes the connection between the
control event and the event handler method that supplies the logic to handle the event.

THIS-OBJECT:buttonFirst:Click:Subscribe (THIS-OBJECT:buttonFirst_Click) .

Double-clicking on a control gives you a default event handler for the default event. You can also get an
event handler for any event the control supports by selecting the control and then selecting the Events tab
in the Properties View. If | select the Next button, for example, | can generate an event handler for any
event the control supports by double-clicking on the event name. | can get a Click event handler in this
way, too, as an alternative to double-clicking the control itself. The following screen capture shows the
generated event handler name assigned when | double-click the event name in the Events tab:

Properties | Events |

{DataBincings) Al
AutoSizeChanged
BackColorChanged
BackgroundimageCh
BackgroundimageLay
BincingContestChang
CausesValdstionChai
S
fentSizeChanged
ContestenuStipChs
Controlédded
ContiolRemaved

[openkdge Editor - Samples/NavPanel.cls - OpenEdge Architect - C:\GuidDotNet =] 55
File Edt Desin Navigste Search Project Openfdge Run Window Help
B | LB %-0-Q- | #- |7 -0 -0C-a-
[| €5 openkdge Edtor
& Resources 22 = 0 || &1 *uavpanel.cls (Design) 2 I “avPane.cls | =08
N=R= Taolbox
= Navigation
DataMadel.cs -l - [P o Contiols
DealerEmp.dam First Prev |o ext Last | -
DealerEmpriodel. ds prrmmme, +| Microsoft Controls
1) dsDealerEmp.i L .+ OpenEdge Contrals
) Mardshirapper.p +J DpenEdge Ultra Controls
HavPanel.ds =
[—
2= outlne | 5 D8 Str... |) proper.., 83— O
E AR
| buttonMlext : System Windows. Foms Button =l

CursorChanged ||| 2 console 53 | [probiems | 2 Tasks | wel| 2 B-r2--0
Click A5L Console
Oceurs when the component s clicked -
K} 3
Joe @ |

Visual Designer then takes you back to the code view so that you can edit code into the event handler.

There’s a third variation for generating event handlers. If | simply click the fill-in next to the event name
for any event in the Properties View, as shown below, | can type the name of the method and tab out of
the field. This can be useful I don’t want the default method name.

December, 2009

Page 3 of 13

Defining event subscriptions and event handlers

John Sadd

[¢] DeslerEmphadel.c

i) dsealerEmp.i

8] Modeluirapper.p =
[¢) NavPanel s

-

5% outline | BF 0B Str... |2 proper.. 2| = O
= 3B Y
| buttorPrew - System Windows.Forms Bution =

Properties | Events |
[DataBindings] -
AutoSizzChanged
BackColarChanged
BackgroundmageCh
Backgroundmagelay
BindingContexChang
CausssalidationCha
ChangellCu
Ciick ~]
CientSizeChanged

ConertenuStinth | Selac the Click eventfill-in
Contoltcked

[openkdge Editor - samples/NavPanel.cls - OpenEdge Architect - C:\Gui4DotNet =100 x|
File Edit Design Mavigate Search Project Openfdge Run Window Help
Iri-E o | LS [H-0-%- |- -tl- oo -
[| &° OpenEdge Editor
& Resourees 5 = B8] #niavranelcls (Desian) £ | [2) *Nevpanelcs | =g
@B s T Toolbox 4
Navigation
<] DataModel.cls =l QRO e P e C ontrols
%) DealerEmp.dam First |D Pre: B Next | Last | =
A 1) Micrasoft Controls

+| DpenEdge Controls
+| OpenEdge Ultra Controls

L
CusoiChanged vi & console 52 | 2. Problems | 2 Tasks |

Click ABL Console
Dceuts when the component is clicked
L]

[®

“Writable

The examples so far have shown different ways to get an event handler and subscription for the default
event for a control. You can get an event handler for any event by double-clicking on its name in the
Properties View (to get an event handler with the default method name), or by selecting it and typing in the
event handler name you want. Just by selecting a control in your form and then selecting the Events tab,
you can see what a variety of events even a simple control like a button supports if they should be of use
to you. To show how to generate an event handler for an event other than the default event, | can just pick

one such as BackColorChanged and double-click on it.

n P
AutoSizeChanged
BackColoChanged |

| S

Backgrou
BindnaCq Double{click the BackColorChanged row
CausesV:

ChangeUlm

Click buttanPrev_Click

ClientSizeChanged
ContestMenStipChe
Controltdded

[openEdge Editor - 5amples,/NavPanel.cls - DpenEdge Architect - £:\GuidDokNet: _olx|
File Edt Design Mavigate Search FProject OpenEdge Run Window Help
IO-Ho L% [F-0-Q- [#5500
[| 8% Opentdge Editor
& Resowrces 1 = O || &, *navranel.cls (Design) &2 I *HavPanel.dls | =0
S == Taolbox
= Navigation
- [£] Datamodel.cs A ! P———— T ey
/%] DealerEmp.dgm First |o Prey [Next | Last |
[DeserEmptocsl e +| Microsoft Controls
[7) dsDealerEmp.i 4| OpenEdge Controls
: |
¥ Modshirapper p 1] OpenEdge Ultra Controls
NavPanel.dls =
L
52 outline | 5% pe str... | = proper.., 22| = O
EHET
| buttonPres : Systemwindows. Foims. Button =l
Froperties | Events |

ControlR emoved

|| cusorChanged

Bl Console 53 | 2. Problems | v2/ Tasks |

ABL Consale:

[click
Docurs when the component s clicked.

1]

Jo* ®

“Writable

Here’s the skeleton for an event handler that would be executed if the background color of the button were

changed.

@VisualDesigner.
METHOD PRIVATE VOID buttonPrev_BackColorChanged (
INPUT e AS System.EventArgs):
RETURN.
END METHOD.

INPUT sender AS System.Object,

December, 2009

Page 4 of 13

Defining event subscriptions and event handlers John Sadd

Having created this event handler that | don’t really want, | can then show you how to get rid of one. To
get rid of an event handler and its subscription, just erase the name and tab out of the event name field in

the Properties View. If |1 do this for the BackColorChanged event its event handler and subscription are now
gone.

You can imagine that you might not always want that to have event handlers deleted automatically. If you
have put a lot of code into an event handler you wouldn’t want to risk losing it just because you removed
the subscription or you inadvertently erased the handler name. Understanding how to control this aspect of
Visual Designer’s behavior provides a good opportunity to look at the Preferences dialog for Visual
Designer. It’'s under OpenEdge Architect -> Visual Designer in the Window -> Preferences menu.

[openEdge Editor - Samples/MavPanel.cls - OpenEdge

=10l x|
e (7 =r=rcrc=- =lolx|
B-rBolLu%] ! .
= bype fileer text Visual Designer = E
[| &5° openEdge Editor
General - Tanlbox =
& Resources i3 Help B
Instal{Update Global Toolbox Iocation: | C:\Gui4Dothet). sharedavmitoolbax. xml Taolbox 7
Javaseript o ———
DatatMadel.cls IET Transformations —IU' (=S| | G S +| CustomControls
DealerEmp.dgm
p.dg [OpenEdge Architect Toolbax dacking position || Microsoft Controls
DealerEmpMadel cls Advanced © Rt Left Top £ Both
[1] dsDealerEmp.i Databass Connections = ° & ortom <] OpenEdge Controls
¥F| Modelwrapper.p Debug Design Canva: -] OpenEdge Ultia Contrals
HavPanel.cls Editor [¥ Show SmartTags
I = ST S S— Meta Catal
0 = = sta Catalog v Generate event handler on double-click
5= Outline | ¥ DB Str. .. Server
i Shared AWM v Remove svent handlers when no longer needed
— Staitup) ~Designer layout
| buttonPrey Sypstem Windows. Forms B Taols for Business Logic (% Snap Ines
Views
Pronerties | Events | arid
[DataBindings) Progress = Grid debafl
iutaSizeChanged Progress DB Mavigator (e
BackColarChanged Run{Dstug iz :
BackaroundimageCh. Server Widths 5
B:acl.igmund\mage\.a_\ Service Policies ¥ Show arid
BindingContextChang Team
CausesValidationChai valdation I= | Srap b grid
ChangellICues ‘b
L Unda hist : 0
Click buttonPrey . Wab Services e istary siee
ClientSizeChanged wML ™ Add untranslatabls attribute ko all Visual Designer gensrated strings
ContexttenuStripChe Restore Defaults Apply
Controldded
ControlFtemaved _
CursorChanged @ ok | conel |
BackColorChanged
Event raised when the valus of the BackColor
property is changed on Contral,
K|
[N |

The first option of interest here is the checkbox labelled Generate Event Handler on double-click. This
is the default behavior the examples in this document have been showing you. If for some reason you

didn’t want the event handler to be generated automatically when you double-click on a control, you could
check this option off.

The next check box is labelled Remove event handlers when no longer needed. If you don’t want
Visual Designer to delete an event handler method just because you erase or change its name, you can
check this off. Then the event handler code is still there for you to reuse or re-activate later. For instance, if
you rename an event handler in the Events tab, by default the old event handler method is deleted as the
one under the new name is created. That's one reason why you might want to check off this option to
remove the handler automatically. That said, it's advisable to design your application so that the logic for
dealing with events is in a separate class from the actual Ul control event handler methods, which would
eliminate any chance of valuable event handler logic in the Ul class being deleted inadvertently, but at least
now you know where you can maintain the options that you have.

Finally, just to reinforce the default behavior one more time, if | double-click on the Last button in the
Design view, | get an event handler and subscription for it:

@VisualDesigner.
METHOD PRIVATE VOID buttonLast_Click(
INPUT e AS System.EventArgs):
RETURN.
END METHOD.

INPUT sender AS System.Object,

December, 2009 Page 5 of 13

Defining event subscriptions and event handlers John Sadd

Since | was just showing you how to prevent Visual Designer from deleting event handler methods that it
thinks are not needed, there’s a way to do that for an individual method as well. The annotation line above
each method definition that says @visualDesigner identifies the method as being managed by Visual
Designer. If you want to protect a particular method from deletion, you can delete the annotation line
above the method definition. Be cautioned that this is the only case where deleting Visual Designer

annotations is recommended. Otherwise you should never touch this or other code generated by Visual
Designer.

Next | add the code to the event handlers to reposition the binding source that drives the grid in a
Customer Form.

Now that I've generated the basic event handlers and subscriptions, let’s think about the code that has to
go into them. My NavPanel User Control class has to communicate with the binding source in the
containing form, in my example the CustomerForm class. With CustomerForm.cls open, let’s take a look
at what the event handlers are going to have to do. Remember that the panel of buttons is in a separate
class file from the grid and its binding source. Navigating is a matter of setting the Position property of the
binding source. When | change that, the position in the grid and the row values displayed in the fields
reflect the change in the binding source position. So | need to make the binding source object in the form

into a public property so the navigation panel button event handlers can change its Position property, as
shown here:

[Openkdge Editor - Samples/CustomerForm.cls - DpenEdge Architect - C:Gui4DotNet =] B4
Flle Edit Design Navigate Search Project OpenEdge Run Window Help
I 0 e O G o |2 o G
5 |85 openEde Editor
&5 Resources &% I = O | &) *NavPanel.ds (Design) ‘ [¢] *MavPanel.cis [3:\ CustomerForm.cls (Design) &3 } =0
s B E T =/ Toolbox 1
=0 X
5] customerForm.cls N || I |5 customers =1l +| CustomControls
[] Datatodel.cls -
DederEmn dam +J Microsoft Controls
DEEIE’EMDMD el cls i Customer D | First Marne Last Name Bitth Cauntry £ rred
- [dsDedlerEmp.i +] DpenEdge Ultra Controls
oF| MadslWraoner.o =
4] IR
5= outine | #F pB Str.. | proper... 2| T O
B fy BT
| CustomeiFom : Progress Windows. Form |
Properties | Events |
First N -
AutoSizeChanged - ot Nane: | Conirtry =]
AutodidateChanged Last Name:
BackCalorChanged
E:zk;u:’n dl:”ﬂi:m Date o ity | Ootober 14,2008 =
BackgroundmageLay
BindingContextChang Navigation L
Causes¥alidationChar
< < > >
ChangeUllCues ’7 A | | | |‘ =
Click 7 7 |JJ
ClieniSizeChanged 7 1
ContertMenuStipCha
E | BSCustomer:Position || DEFINE PUBLIC PROPERTY...
ControlRemaved - > ==
e ~||[| & consale 52 B_\Prnhlems|£Tasks| GGl B-r5--0
BackColoiChanged ABL Console
Evert raised when the value of the BackColor -
properly is changed on Canol, =
K| »
| 5% ritable |

Following the variable definitions in the CustomerForm class | need to define a property to hold a
reference to the form’s binding source so that the NavPanel class can access it. It's a PUBLIC property to
make it accessible from another class, and it's of type Progress.Data.BindingSource. It needs a default
GETter so it can be read. But | make the sETter private so that no other class can change its value.

DEFINE PUBLIC PROPERTY FormBindingSource AS PROGRESS.Data.BindingSource
GET.

PRIVATE SET.

Down in the constructor that’s run when the class is instantiated, | add a line of code assigning the value of
the binding source object reference to the new property, and save and compile this change to the form.

FormBindingSource = THIS-OBJECT:BSCustomer.

December, 2009 Page 6 of 13

Defining event subscriptions and event handlers John Sadd

Now | go back into the navigation panel and fill in the code for the button Click event handlers.

The first thing | need to do is tell the compiler to search for any unqualified control references in the
namespace System.Windows.Forms, by adding this third USING statement to the two generated for me:

USING Progress.Lang.*.
USING Progress.Windows.UserControl.
USING System.Windows.Forms.*.

Doing this saves me from having to fully qualify every reference to my Button controls, for instance. This is
a bit like extending the ProPath for ABL classes and procedures.

Now | can enter the code for the First button event handler. Remember that the first argument to an event
handler is the object that generated the event, called sender. That's my Button, and I'm going to
reference that object as a Button object, so | define a variable to hold the reference.

DEFINE VARIABLE EventButton AS Button.

Next | want a variable to hold a reference to the parent form where the binding source is. In a more
serious application | would certainly create a super class for my forms where the FormBindingSource
property would be defined, and an Interface to assure consistent access for a Customer form, an Order
form, and other forms that should all work the same way. In this simplified case the property is just
defined directly in the CustomerForm class, so | make my reference of that type.

DEFINE VARIABLE ParentForm AS CustomerForm.

These last two statements illustrate how the class-based extensions to ABL let you write exactly the same
kinds of language statements to reference .NET objects (System.Windows.Forms.Button in this case) as
well as instances of ABL classes you define (such as CustomerForm).

The casT function in the next statement tells the compiler to view the sender parameter as a Button. This
is necessary because | am going to reference its Parent property. System.Object — which is how sender
is defined in the default event handler signature -- is such a minimal high-level class that it doesn’t even
define the Parent property, so | have to make the reference more specific to tell the compiler to allow my
reference to the Parent property in the object reference passed into the handler.

EventButton = CAST (sender,Button).

December, 2009 Page 7 of 13

Defining event subscriptions and event handlers

John Sadd

To understand how the code is going to walk up the chain of parents to get to the CustomerForm, let’'s
take another look at the chain of objects. Every control has a Parent property. In this case, the immediate
parent of each button is the GroupBox. The Parent of the GroupBox is the NavPanel User Control. The
Parent of the NavPanel is the containing CustomerForm. So the code has to go up three levels of
parents to get to the form, in order to reference the form’s binding source property.

E% outline | 5 DB Str... | £ Proper... 52
L A
- |

| CustomerForm : Progress windows. Form

Pronerties | Events |

StsSactanaed = Fist Name: | Country
AutcValidateChanged Last Mame:

BackColorChanged Date of Bitth: | October 14,2008 ~|

BackgroundimageChe o =

BackgroundimageLa, e s 0 o
BindingCantexChang i i
Causes¥alidationChar ﬁ; First J Prey | Next | Last ”:'
ChangellCues it o i

Click,

Client3izeChanged
ContextenuStipCha
Controldded

FormBindingSource:Position |

[openEdge Editor - Samples/CustomerForm.cls - DpenEdge Architect - C:\GuidDotNet (=]]
File Edt Design Mavigate Search Project OpenEdge Run Window Help
£ - | A1 | HB-0- % | 5| (il -E- -
OpenEdge Editor
| & dge Ed
&5 Resources z@] = O || & *navpansl.cls (Design) *awParel,cls [3§| CustormerForm.ds (Design) z@] =08
=5 2!} Toolbox
QU ES S | 8 customers =8l +| CustomControls
[€] DataMadel.cls -
DislerEmp. dam - = — — —] Microsoft Controls
[£] DealerEmphadel cls - Leems (LD 2eiName e -+ DpenE dge Controls
[[] deealerEmp. +] DpenEdge Ultra Controls
+#| MadelWraooer.o | _Iﬂ
»

ControlRemoved
T —

&l console 52

[2: Prablems | ¥ Tasks‘

BackColorChanged ABL Console

Event raised when the value of the BackColar
property is changed on Cantrol

H

| o° @

Wrikable

So here’s the statement that locates the CustomerForm and puts it in the ParentForm variable:

ParentForm

CAST (EventButton:Parent:Parent:Parent, CustomerForm) .

In effect, the statement says: Start with the EventButton object which I've associated with the sender
input parameter to the event handler method. Retrieve the object held by its Parent property. (This is the
GroupBox object.) Then retrieve its Parent (the NavPanel class instance.) Then in turn retrieve its
Parent object (the CustomerForm that holds the NavPanel). Treat this object reference as an instance
of the class CustomerForm. Assign that object reference to the local ParentForm variable.

As it happens, there's a method called FindForm in the .NET Control namespace that locates the parent
form more flexibly, returning the first Parent object it finds in the chain that is a form, so you could also

express the statement that locates the ParentForm like this:

ParentForm CAST (FindForm() ,CustomerForm) .

Now the code for the First button event handler can set the value of the binding source Position property
to zero, the first row. When | press Ctrl-Shift-C to do a syntax check, the compiler is examining both of
these classes -- the NavPanel class I'm coding and the CustomerForm class that it referenced -- to
make sure that all the references make sense, for instance that the CustomerForm class that I’m CASTing
to contains a FormBindingSource property, and that that property holds a reference to an object that has

a Position property.

December, 2009

Page 8 of 13

Defining event subscriptions and event handlers

Here’s the complete code for the First button event handler:

John Sadd

@VisualDesigner.

INPUT e AS System.EventArgs):
DEFINE VARIABLE EventButton AS Button.
DEFINE VARIABLE ParentForm AS CustomerForm.
EventButton = CAST (sender,Button).

/* or: ParentForm = CAST(FindForm(),CustomerForm). */
ParentForm:FormBindingSource:Position = 0.

RETURN.
END METHOD.

METHOD PRIVATE VOID buttonFirst_Click(INPUT sender AS System.Object,

ParentForm = CAST (EventButton:Parent:Parent:Parent,CustomerForm) .

Next is the similar code for the Last button event handler. The Count property of the binding source is the
number of rows the binding source is managing. It's a one-based count, and the Position is a zero-based

property, so the Position of the last row is one less than the row count.

@VisualDesigner.

INPUT e AS System.EventArgs):
DEFINE VARIABLE EventButton AS Button.
DEFINE VARIABLE ParentForm AS CustomerForm.
EventButton = CAST (sender,Button).

ParentForm:FormBindingSource:Position =
ParentForm:FormBindingSource:Count - 1.

RETURN.
END METHOD.

METHOD PRIVATE VOID buttonLast_Click(INPUT sender AS System.Object,

ParentForm = CAST (EventButton:Parent:Parent:Parent,CustomerForm) .

The Next button event handler increments Position, checking that it's not already at the end:

@VisualDesigner.

INPUT e AS System.EventArgs):
DEFINE VARIABLE EventButton AS Button.
DEFINE VARIABLE ParentForm AS CustomerForm.
EventButton = CAST (sender,Button).

IF ParentForm:FormBindingSource:Position <
ParentForm:FormBindingSource:Count - 1 THEN
ParentForm:FormBindingSource:Position =

RETURN.
END METHOD.

METHOD PRIVATE VOID buttonNext_Click(INPUT sender AS System.Object,

ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm) .

ParentForm:FormBindingSource:Position + 1.

Finally, the Prev button event handler decrements the value of Position:

@VisualDesigner.

INPUT e AS System.EventArgs):
DEFINE VARIABLE EventButton AS Button.
DEFINE VARIABLE ParentForm AS CustomerForm.
EventButton = CAST (sender,Button).

IF ParentForm:FormBindingSource:Position > 0 THEN
ParentForm:FormBindingSource:Position =
ParentForm:FormBindingSource:Position - 1.
RETURN.
END METHOD.

METHOD PRIVATE VOID buttonPrev_Click(INPUT sender AS System.Object,

ParentForm = CAST (EventButton:Parent:Parent:Parent,CustomerForm) .

December, 2009

Page 9 of 13

Defining event subscriptions and event handlers

John Sadd

Now | can save all of this new ABL, go back to the CustomerForm and run it to see if the new code all

works. If | click the Next button, both the grid and the field-level controls reposition in response to the
change to the binding source Position value:
OpenEdge Editor - Sam| ‘CustomerForm.cls - OpenEdge Architect =[o x|

File Edit Design Mavigate Search Project OpenEdge Run ‘Window Help

[wi = | £ % -0-Q- | 5] -l-ma- -

[£7 | &F openEdae Editor

%55 Resources &3 1 =0 3’3—\ MavwPanel.cls (Design) MavPanel. cls CustomerFaorm.cls =0

A= *||: Toolbox 7

DealerEmp.dam
~[E] DealerEmpModel.cls

1)

Microsoft Controls

'+| OpenE dge Contiol:

s

£/ DpenE dge Ultra Ci

ontrols

-[] dsDedlerEmp.i L [Customer ID | First Name: Last Hame Bith County
~#f) Modelwrapper p _ Robert Kennedy Usa
O l
= = Peter Wagner Usa
5= outline | FF DB 5tr... | Proper... 52 £ I
2 & f305c74d-1385a... | Alice ‘Washington Gemany
Ei = f9056740-1385-5. . | Patrick Lewis Gemany
|CuslumelFolm Pragress. windaws. Form \§ {905674413855 | Eric Myers Gemany
Froperties | Events | FANRRTAA 2R |1 ara | - Rarman _l;l
AuloSizeChanged =L D
AutovalidateChangec First Name; lPElE'— Couritry: l_
BackColorChanged
BackgroundimageCh, i Last Mame: | agner
Backgroundimagel.ay Date of Birth: | September 14, 1957 =
BindingContextChang

CauseshalidationChal
ChangeUlCues

Click.
ClientSizeChanged

Mavigation

<<

(

| < | > I >> |‘

ContextenuStipChe

Contralsdded I 41 BSCustomer

Controlfemoved

CursorChanged Bl console 52 IB_\ Prublems‘ 3 Tasks|

ENSI=N=E

BackColorChanged ABL Cansale

Event raized when the value of the BackColor
propety is changed on Contral.

Il

| 0% [

Writable

I can try out the First button. and the Last button, and it all seems to be working.

[openkdge Editor - Sample:

ustomerForm.cls - DpenEdge Architec
Fle Edit Design Navigate Search Froject OperEdge Run Window Help

| wi- | L% [#H-0 -~ | -] /-
5 |85 openedae Editor

=

2 Resources 13 | = B[&] avpanel.cis (Desian) NavPansl.cls =

CustomerFarm, cls

Last Mame: |Miller
Date of Birth: | February 25,1957 A

"Nawgatmr\

BackgioundimageCh.
BackgroundmageLay
BindingContextChang
CausesWalidationChai
ChangeUliCues

Click
ClieniSizeChanged

<<

| < | > | >3 I‘

~,|E‘<3:OV|E =[F: Toabasx
= =P
et =il [E L] T em—
-l
DealerEmp.dgm 4| Mierosoft Controls
DealerErphodel.ds I +] DpenEdge Controls
[7] dsDedlerEmp.i 1 Customer 1D First Hame Last Name Birth Counlry P U Conirals
-] ModelWrapper.p 0 1905c74d1385a... | Jack Marshal Usa
e I
1905c74413985-a... | Mark Shaw S
oo =
= outine | #2 DB Str... | Proper... 52 £
[32 outes [B00sr.. | N \— 1905 P43 | Jassica Mattins =
E 2B (905:741385-a... | Jack Fess Gemany
| CustomeiForm : Progress windows. Form I Hanes . on l—l .
Froperties | Events | >
< | »]
AutoSizeChanged -
AutoValidateChangec First Name: INaW— Country: ’h
BackColorChanged

ContertMenuStripCh

Controlbdded ¥ BSCustomer

CortrolR emaved

CursoiChanged B consale &2

[2: Prablems |] Tasks |

e G2 B 13-

=0

BackColoiChanged ABL Console

Evert raised when the valus of the BackColor
propetty s changed on Control

=l

{fln Writable

December, 2009

Page 10 of 13

Defining event subscriptions and event handlers John Sadd

Now that everything works, I'll do what programmers always do and change the code. ©

You will have noticed that there was a lot of duplicated code in the four button Click event handlers. In
fact, it's perfectly OK to use the same event handler method for multiple events. These are the steps |
must go through to unify the code into a single method:

First | can generalize the name of the event handler to just Button_Click. Here’s a case where you would
want to think about the default Visual Designer behavior of deleting an event handler when it's no longer
used. If | change the name of the event handler for the Click event on the First button in the Properties
View, the ButtonFirst_Click event handler is gone, and I've got an empty new one in its place. So be
sure you don’t lose code when you make a change such as this. After consolidating the logic from all four
individual click event handlers, here’s the code for a single event handler for all four events:

@VisualDesigner.
METHOD PRIVATE VOID button_Click(INPUT sender AS System.Object,
INPUT e AS System.EventArgs):
DEFINE VARIABLE ParentForm AS CustomerForm.
DEFINE VARIABLE EventButton AS Button.
EventButton = CAST (sender,Button).
ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm) .
CASE EventButton:Name:
WHEN "buttonFirst" THEN
ParentForm:FormBindingSource:Position = 0.
WHEN "ButtonPrev" THEN
IF ParentForm:FormBindingSource:Position > 0 THEN
ParentForm:FormBindingSource:Position =
ParentForm:FormBindingSource:Position - 1.
WHEN "ButtonNext" THEN
IF ParentForm:FormBindingSource:Position <
ParentForm:FormBindingSource:Count - 1 THEN
ParentForm:FormBindingSource:Position =
ParentForm:FormBindingSource:Position + 1.
WHEN "ButtonLast" THEN
ParentForm:FormBindingSource:Position =
ParentForm:FormBindingSource:Count - 1.
END CASE.

RETURN.

END METHOD.

As you can see in the cASE statement, the method first identifies which button generated the event —
remember that this got passed in as the sender parameter -- by looking at the EventButton’s Name
property. Then | can put all four logic variations into the same event handler.

To finish up, | change the Click event for the other three buttons in the Events tab of the Properties
View to run the same unified event handler. When | do this, the Subscribe statements are adjusted and
the old event handlers cleaned up automatically. For each of the other three buttons, | select its Click
event handler name, and change the name to my unified event handler. Each time I'm placed back into the
code view, but of course there are no further code changes to be made.

December, 2009 Page 11 of 13

Defining event subscriptions and event handlers

John Sadd

[id openEdge Editor - Samples/NavPanel.cls - DpenEdge Architect =]
File Edit Design Mavigate Search Project ©penEdge Run Window Help
JES- G| £ -0 Q- | -]]G e G
T | &F OperEdge Editor
%:‘ Resources E3 =0 3,7 *NavPanel.cls (Design) &3] *MavyPanel.cls |3;| CustomerForm,cls (Design) CustomerForm.cls =0
2lles = Toolbox 7
2] CustomerForm.cls = +| CustomControls

(2] Datatodel.dls
%) DealerEmp.cigm
-[<] DedlerEmpModel.cls —
(1] dsDealerEmp.i
| Modeliranoer .o

4 I>|_I
5= outline | P2 DB Str.., | =l Proper,., 2= 0

E BT
IbultDnFlev. SystemWindows. Forms.Button j
Properties ‘ Events I
[DataBindings) -
AutoSizeChanged
BackColorChanged

BackagroundlmageCh:
Backaroundlmagela,
BindingContextChang
CauzesV/alidationChar

ChangelICues

Click button_Click
ClientSizeChanged
ContesttdenuStipCha

Mavigation
(s (]

’7 First |D Prey E Next | Last |
L W s M

| Microsoft Controls

| DpenEdge Controls

| DpenEdge Ultra Controls

Controlsdded
CantrolR d -
Pon lomhemovi LI & console 2]&Prohlems|~‘£ﬁask§‘ Ex SE | = B - Eﬁ -=0
Click ABL Console
Dccurs when the component iz clicked. B
K} 2

o E

“witahle

If I scroll down through the code when I'm done, | see that the old event handler
removed, and the button_Click method has taken their place:

methods have all been

SUPER() .

END CATCH.

END CONSTRUCTOR.

Purpose:
Notes:

System.EventArgs) :

CONSTRUCTOR PUBLIC NavPanel

@VisualDesigner.
METHOD PRIVATE VOID button_Click(

(

InitializeComponent () .
CATCH e AS Progress.Lang.Error:
UNDO, THROW e.

INPUT sender AS System.Object,

INPUT e AS

December, 2009

Page 12 of 13

Defining event subscriptions and event handlers John Sadd

Scrolling down to where the button properties are set, | see that the Subscribe methods have been
adjusted to run the new unified event handler for all the Click events.

/* o */
/* buttonLast */
/* 0 */

THIS-OBJECT:buttonLast:Font = NEW System.Drawing.Font
("Microsoft Sans Serif", 12, System.Drawing.FontStyle:Bold,
System.Drawing.GraphicsUnit:Point, System.Convert:ToByte(0)).
THIS-OBJECT:buttonLast:Location = NEW System.Drawing.Point (247, 19).

THIS-OBJECT:buttonLast:Click:Subscribe (THIS-OBJECT:button_Click).

/* 0 */
/* buttonNext */
/* o */

THIS-OBJECT :buttonNext:Click:Subscribe (THIS-OBJECT:button_Click).

THIS-OBJECT:buttonPrev:Click:Subscribe (THIS-OBJECT:button_Click).

THIS-OBJECT:buttonFirst:Click:Subscribe (THIS-OBJECT:button_Click).

If | save and compile these changes to the class, I'm able to test out my changes to make sure the event
handler now is run for all four events.

That’s all for this description of the two-part video session on defining event subscriptions and event
handlers, which introduced you to event subscriptions and event handlers and how Visual Designer
supports you in generating and using them.

December, 2009 Page 13 of 13

