
December, 2009 Page 1 of 13

DEFINING EVENT SUBSCRIPTIONS AND EVENT HANDLERS

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
November 2009

John Sadd

Using Visual Designer
and GUI for .NET

Defining event subscriptions
and event handlers

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 2 of 13

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a series of presentations on using Visual Designer in OpenEdge Architect, and
support for GUI for .NET in OpenEdge 10.2. The material covered by this document is derived from a two-
part video session that adds event handlers to the Navigation Panel User Control built in the session
titled Building a Navigation Panel as an ABL User Control. The event handlers extend the navigation
panel to cause it to respond to the click event on the navigation buttons. Code added to the event handlers
repositions the binding source that drives the grid in a Customer form.

The NavPanel class is an ABL User Control containing a panel of buttons. This document shows how to
create code that will respond to the user clicking on each of the four buttons. Each control type can
generate many different kinds of events that your application may want to respond to in different
situations. But every control has a default event that is the one you are expected to use most often. In the
case of a simple control like a button, identifying the default event is usually obvious; for a button it’s the
Click event. All you have to do in Visual Designer is double-click the control in the Design view to have the
basic code generated for that default event. For example, I can double-click on the First button in the
NavPanel, as shown here:

When I do that I’m automatically brought into the editor to see the code Visual Designer has generated.

There are two pieces to the generated code. What you see first in the code box that follows is the skeleton
for the event handler itself, the method that gets run when the event occurs.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 3 of 13

@VisualDesigner.
METHOD PRIVATE VOID buttonFirst_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):

RETURN.
END METHOD.

You can see that the default name for the method is the control name plus the event name. You can also
see that event handlers always take two parameters. The first, usually named sender, is the object
reference to the control that generated the event. The second, typically just named e, is an object
containing whatever information the control provides to identify the specifics of the event. Sometimes you
will care about these parameters, and sometimes you don’t really need them, because you just need to
know that the event occured. Later I’ll fill this method in with code to respond to a click on the First
button.

Next let’s take a look at the other piece of code that was generated. As part of the code in
InitializeComponent that sets properties for the First button, there’s a new statement that subscribes to
the Click event for the First button. The argument to the Subscribe method specifies the ABL method we
just looked at as the one to run when the event occurs. This statement makes the connection between the
control event and the event handler method that supplies the logic to handle the event.

 THIS-OBJECT:buttonFirst:Click:Subscribe(THIS-OBJECT:buttonFirst_Click).

Double-clicking on a control gives you a default event handler for the default event. You can also get an
event handler for any event the control supports by selecting the control and then selecting the Events tab
in the Properties View. If I select the Next button, for example, I can generate an event handler for any
event the control supports by double-clicking on the event name. I can get a Click event handler in this
way, too, as an alternative to double-clicking the control itself. The following screen capture shows the
generated event handler name assigned when I double-click the event name in the Events tab:

Visual Designer then takes you back to the code view so that you can edit code into the event handler.

There’s a third variation for generating event handlers. If I simply click the fill-in next to the event name
for any event in the Properties View, as shown below, I can type the name of the method and tab out of
the field. This can be useful I don’t want the default method name.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 4 of 13

The examples so far have shown different ways to get an event handler and subscription for the default
event for a control. You can get an event handler for any event by double-clicking on its name in the
Properties View (to get an event handler with the default method name), or by selecting it and typing in the
event handler name you want. Just by selecting a control in your form and then selecting the Events tab,
you can see what a variety of events even a simple control like a button supports if they should be of use
to you. To show how to generate an event handler for an event other than the default event, I can just pick
one such as BackColorChanged and double-click on it.

Here’s the skeleton for an event handler that would be executed if the background color of the button were
changed.

@VisualDesigner.
METHOD PRIVATE VOID buttonPrev_BackColorChanged(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):

RETURN.
END METHOD.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 5 of 13

Having created this event handler that I don’t really want, I can then show you how to get rid of one. To
get rid of an event handler and its subscription, just erase the name and tab out of the event name field in
the Properties View. If I do this for the BackColorChanged event its event handler and subscription are now
gone.

You can imagine that you might not always want that to have event handlers deleted automatically. If you
have put a lot of code into an event handler you wouldn’t want to risk losing it just because you removed
the subscription or you inadvertently erased the handler name. Understanding how to control this aspect of
Visual Designer’s behavior provides a good opportunity to look at the Preferences dialog for Visual
Designer. It’s under OpenEdge Architect -> Visual Designer in the Window -> Preferences menu.

The first option of interest here is the checkbox labelled Generate Event Handler on double-click. This
is the default behavior the examples in this document have been showing you. If for some reason you
didn’t want the event handler to be generated automatically when you double-click on a control, you could
check this option off.

The next check box is labelled Remove event handlers when no longer needed. If you don’t want
Visual Designer to delete an event handler method just because you erase or change its name, you can
check this off. Then the event handler code is still there for you to reuse or re-activate later. For instance, if
you rename an event handler in the Events tab, by default the old event handler method is deleted as the
one under the new name is created. That’s one reason why you might want to check off this option to
remove the handler automatically. That said, it’s advisable to design your application so that the logic for
dealing with events is in a separate class from the actual UI control event handler methods, which would
eliminate any chance of valuable event handler logic in the UI class being deleted inadvertently, but at least
now you know where you can maintain the options that you have.

Finally, just to reinforce the default behavior one more time, if I double-click on the Last button in the
Design view, I get an event handler and subscription for it:

@VisualDesigner.
METHOD PRIVATE VOID buttonLast_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):

RETURN.
END METHOD.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 6 of 13

Since I was just showing you how to prevent Visual Designer from deleting event handler methods that it
thinks are not needed, there’s a way to do that for an individual method as well. The annotation line above
each method definition that says @VisualDesigner identifies the method as being managed by Visual
Designer. If you want to protect a particular method from deletion, you can delete the annotation line
above the method definition. Be cautioned that this is the only case where deleting Visual Designer
annotations is recommended. Otherwise you should never touch this or other code generated by Visual
Designer.

Next I add the code to the event handlers to reposition the binding source that drives the grid in a
Customer Form.

Now that I’ve generated the basic event handlers and subscriptions, let’s think about the code that has to
go into them. My NavPanel User Control class has to communicate with the binding source in the
containing form, in my example the CustomerForm class. With CustomerForm.cls open, let’s take a look
at what the event handlers are going to have to do. Remember that the panel of buttons is in a separate
class file from the grid and its binding source. Navigating is a matter of setting the Position property of the
binding source. When I change that, the position in the grid and the row values displayed in the fields
reflect the change in the binding source position. So I need to make the binding source object in the form
into a public property so the navigation panel button event handlers can change its Position property, as
shown here:

Following the variable definitions in the CustomerForm class I need to define a property to hold a
reference to the form’s binding source so that the NavPanel class can access it. It’s a PUBLIC property to
make it accessible from another class, and it’s of type Progress.Data.BindingSource. It needs a default
GETter so it can be read. But I make the SETter private so that no other class can change its value.

DEFINE PUBLIC PROPERTY FormBindingSource AS PROGRESS.Data.BindingSource
 GET.
 PRIVATE SET.

Down in the constructor that’s run when the class is instantiated, I add a line of code assigning the value of
the binding source object reference to the new property, and save and compile this change to the form.

 FormBindingSource = THIS-OBJECT:BSCustomer.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 7 of 13

Now I go back into the navigation panel and fill in the code for the button Click event handlers.

The first thing I need to do is tell the compiler to search for any unqualified control references in the
namespace System.Windows.Forms, by adding this third USING statement to the two generated for me:

USING Progress.Lang.*.
USING Progress.Windows.UserControl.
USING System.Windows.Forms.*.

Doing this saves me from having to fully qualify every reference to my Button controls, for instance. This is
a bit like extending the ProPath for ABL classes and procedures.

Now I can enter the code for the First button event handler. Remember that the first argument to an event
handler is the object that generated the event, called sender. That’s my Button, and I’m going to
reference that object as a Button object, so I define a variable to hold the reference.

 DEFINE VARIABLE EventButton AS Button.

Next I want a variable to hold a reference to the parent form where the binding source is. In a more
serious application I would certainly create a super class for my forms where the FormBindingSource
property would be defined, and an Interface to assure consistent access for a Customer form, an Order
form, and other forms that should all work the same way. In this simplified case the property is just
defined directly in the CustomerForm class, so I make my reference of that type.

 DEFINE VARIABLE ParentForm AS CustomerForm.

These last two statements illustrate how the class-based extensions to ABL let you write exactly the same
kinds of language statements to reference .NET objects (System.Windows.Forms.Button in this case) as
well as instances of ABL classes you define (such as CustomerForm).

The CAST function in the next statement tells the compiler to view the sender parameter as a Button. This
is necessary because I am going to reference its Parent property. System.Object – which is how sender
is defined in the default event handler signature -- is such a minimal high-level class that it doesn’t even
define the Parent property, so I have to make the reference more specific to tell the compiler to allow my
reference to the Parent property in the object reference passed into the handler.

 EventButton = CAST(sender,Button).

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 8 of 13

To understand how the code is going to walk up the chain of parents to get to the CustomerForm, let’s
take another look at the chain of objects. Every control has a Parent property. In this case, the immediate
parent of each button is the GroupBox. The Parent of the GroupBox is the NavPanel User Control. The
Parent of the NavPanel is the containing CustomerForm. So the code has to go up three levels of
parents to get to the form, in order to reference the form’s binding source property.

So here’s the statement that locates the CustomerForm and puts it in the ParentForm variable:

 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).

In effect, the statement says: Start with the EventButton object which I’ve associated with the sender
input parameter to the event handler method. Retrieve the object held by its Parent property. (This is the
GroupBox object.) Then retrieve its Parent (the NavPanel class instance.) Then in turn retrieve its
Parent object (the CustomerForm that holds the NavPanel). Treat this object reference as an instance
of the class CustomerForm. Assign that object reference to the local ParentForm variable.

As it happens, there's a method called FindForm in the .NET Control namespace that locates the parent
form more flexibly, returning the first Parent object it finds in the chain that is a form, so you could also
express the statement that locates the ParentForm like this:

 ParentForm = CAST(FindForm(),CustomerForm).

Now the code for the First button event handler can set the value of the binding source Position property
to zero, the first row. When I press Ctrl-Shift-C to do a syntax check, the compiler is examining both of
these classes -- the NavPanel class I’m coding and the CustomerForm class that it referenced -- to
make sure that all the references make sense, for instance that the CustomerForm class that I’m CASTing
to contains a FormBindingSource property, and that that property holds a reference to an object that has
a Position property.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 9 of 13

Here’s the complete code for the First button event handler:

@VisualDesigner.
METHOD PRIVATE VOID buttonFirst_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 DEFINE VARIABLE EventButton AS Button.
 DEFINE VARIABLE ParentForm AS CustomerForm.
 EventButton = CAST(sender,Button).
 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).
 /* or: ParentForm = CAST(FindForm(),CustomerForm). */
 ParentForm:FormBindingSource:Position = 0.

 RETURN.
END METHOD.

Next is the similar code for the Last button event handler. The Count property of the binding source is the
number of rows the binding source is managing. It’s a one-based count, and the Position is a zero-based
property, so the Position of the last row is one less than the row count.

@VisualDesigner.
METHOD PRIVATE VOID buttonLast_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 DEFINE VARIABLE EventButton AS Button.
 DEFINE VARIABLE ParentForm AS CustomerForm.
 EventButton = CAST(sender,Button).
 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Count - 1.

 RETURN.
END METHOD.

The Next button event handler increments Position, checking that it’s not already at the end:

@VisualDesigner.
METHOD PRIVATE VOID buttonNext_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 DEFINE VARIABLE EventButton AS Button.
 DEFINE VARIABLE ParentForm AS CustomerForm.
 EventButton = CAST(sender,Button).
 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).
 IF ParentForm:FormBindingSource:Position <
 ParentForm:FormBindingSource:Count - 1 THEN
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Position + 1.

 RETURN.
END METHOD.

Finally, the Prev button event handler decrements the value of Position:

@VisualDesigner.
METHOD PRIVATE VOID buttonPrev_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 DEFINE VARIABLE EventButton AS Button.
 DEFINE VARIABLE ParentForm AS CustomerForm.
 EventButton = CAST(sender,Button).
 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).
 IF ParentForm:FormBindingSource:Position > 0 THEN
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Position - 1.
 RETURN.
END METHOD.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 10 of 13

Now I can save all of this new ABL, go back to the CustomerForm and run it to see if the new code all
works. If I click the Next button, both the grid and the field-level controls reposition in response to the
change to the binding source Position value:

I can try out the First button. and the Last button, and it all seems to be working.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 11 of 13

Now that everything works, I’ll do what programmers always do and change the code.

You will have noticed that there was a lot of duplicated code in the four button Click event handlers. In
fact, it’s perfectly OK to use the same event handler method for multiple events. These are the steps I
must go through to unify the code into a single method:

First I can generalize the name of the event handler to just Button_Click. Here’s a case where you would
want to think about the default Visual Designer behavior of deleting an event handler when it’s no longer
used. If I change the name of the event handler for the Click event on the First button in the Properties
View, the ButtonFirst_Click event handler is gone, and I’ve got an empty new one in its place. So be
sure you don’t lose code when you make a change such as this. After consolidating the logic from all four
individual click event handlers, here’s the code for a single event handler for all four events:

@VisualDesigner.
METHOD PRIVATE VOID button_Click(INPUT sender AS System.Object,
 INPUT e AS System.EventArgs):
 DEFINE VARIABLE ParentForm AS CustomerForm.
 DEFINE VARIABLE EventButton AS Button.
 EventButton = CAST(sender,Button).
 ParentForm = CAST(EventButton:Parent:Parent:Parent,CustomerForm).
 CASE EventButton:Name:
 WHEN "buttonFirst" THEN
 ParentForm:FormBindingSource:Position = 0.
 WHEN "ButtonPrev" THEN
 IF ParentForm:FormBindingSource:Position > 0 THEN
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Position - 1.
 WHEN "ButtonNext" THEN
 IF ParentForm:FormBindingSource:Position <
 ParentForm:FormBindingSource:Count - 1 THEN
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Position + 1.
 WHEN "ButtonLast" THEN
 ParentForm:FormBindingSource:Position =
 ParentForm:FormBindingSource:Count - 1.
 END CASE.

 RETURN.

END METHOD.

As you can see in the CASE statement, the method first identifies which button generated the event –
remember that this got passed in as the sender parameter -- by looking at the EventButton’s Name
property. Then I can put all four logic variations into the same event handler.

To finish up, I change the Click event for the other three buttons in the Events tab of the Properties
View to run the same unified event handler. When I do this, the Subscribe statements are adjusted and
the old event handlers cleaned up automatically. For each of the other three buttons, I select its Click
event handler name, and change the name to my unified event handler. Each time I'm placed back into the
code view, but of course there are no further code changes to be made.

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 12 of 13

If I scroll down through the code when I'm done, I see that the old event handler methods have all been
removed, and the button_Click method has taken their place:

CONSTRUCTOR PUBLIC NavPanel ():

 SUPER().
 InitializeComponent().
 CATCH e AS Progress.Lang.Error:
 UNDO, THROW e.
 END CATCH.

END CONSTRUCTOR.

/*--
 Purpose:
 Notes:
--*/
 @VisualDesigner.
 METHOD PRIVATE VOID button_Click(INPUT sender AS System.Object, INPUT e AS
System.EventArgs):

Defining event subscriptions and event handlers John Sadd

December, 2009 Page 13 of 13

Scrolling down to where the button properties are set, I see that the Subscribe methods have been
adjusted to run the new unified event handler for all the Click events.

/* */
/* buttonLast */
/* */
THIS-OBJECT:buttonLast:Font = NEW System.Drawing.Font
 ("Microsoft Sans Serif", 12, System.Drawing.FontStyle:Bold,
 System.Drawing.GraphicsUnit:Point, System.Convert:ToByte(0)).
THIS-OBJECT:buttonLast:Location = NEW System.Drawing.Point(247, 19).
 . . .
THIS-OBJECT:buttonLast:Click:Subscribe(THIS-OBJECT:button_Click).
/* */
/* buttonNext */
/* */
 . . .
THIS-OBJECT:buttonNext:Click:Subscribe(THIS-OBJECT:button_Click).

 . . .
THIS-OBJECT:buttonPrev:Click:Subscribe(THIS-OBJECT:button_Click).
 . . .
THIS-OBJECT:buttonFirst:Click:Subscribe(THIS-OBJECT:button_Click).

If I save and compile these changes to the class, I'm able to test out my changes to make sure the event
handler now is run for all four events.

That’s all for this description of the two-part video session on defining event subscriptions and event
handlers, which introduced you to event subscriptions and event handlers and how Visual Designer
supports you in generating and using them.

