
December, 2009 Page 1 of 19

CREATING A DATABOUND TREEVIEW AS AN INHERITED CONTROL

John Sadd
Fellow and OpenEdge Evangelist

Document Version 1.0
November 2009

John Sadd

Using Visual Designer
and GUI for .NET

Creating a DataBound TreeView
as an Inherited Control

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 2 of 19

DISCLAIMER

Certain portions of this document contain information about Progress Software Corporation’s
plans for future product development and overall business strategies. Such information is
proprietary and confidential to Progress Software Corporation and may be used by you solely in
accordance with the terms and conditions specified in the PSDN Online (http://www.psdn.com)
Terms of Use (http://psdn.progress.com/terms/index.ssp). Progress Software Corporation
reserves the right, in its sole discretion, to modify or abandon without notice any of the plans
described herein pertaining to future development and/or business development strategies.
Any reference to third party software and/or features is intended for illustration purposes only.
Progress Software Corporation does not endorse or sponsor such third parties or software.

This document accompanies a two-part video presentation on Creating a DataBound TreeView as an
Inherited Control, which shows a simple example of creating an Inherited Control in Visual Designer, in
this case a visual control that inherits and is based on the Microsoft TreeView control that’s included in
OpenEdge 10.2, and then adds properties and behavior to it to specialize it for use in ABL applications.

First I’ll look up the Treeview in the Class Browser as a reminder that you can use the Class Browser to
review all the methods, properties, and events that are defined for any class. This can be especially useful
to get an overview of classes that define controls that are available from Microsoft, or if you purchase them
with OpenEdge, from Infragistics, since you don’t have access to the source for those controls. If I open the
Class Browser as a Fast View, I can search for a control or other class that I want to inspect.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 3 of 19

In this case I want to create an extended TreeView control, so I search for that by entering treeview in the
Search fill-in at the top of the Class Browser, and then select the Microsoft control from the
System.Windows.Forms namespace. The methods that define the control’s behavior are displayed first,
and if I collapse that list, I you can see the control’s properties as well as shown below.

Scrolling down through the properties the significant thing I can confirm is that there is no DataSource
property for the control. The control isn’t data-bound, that is, it isn’t set up to create treeview nodes
automatically based on a data source. That’s the part of the control that I want to extend, so that I can
associate an instance of the control with another class that supplies multi-level data, for instance from a
ProDataSet, and have it automatically create treeview nodes to display field values from all the rows in the
ProDataSet.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 4 of 19

If I open the File menu, I can select New -> ABL Inherited Control, a control defined as an ABL class
that inherits from a single other control class.

The control’s package is TreeView, so the class file will be located in a TreeView sub-directory in my
project. I name the class DataBoundTreeView, so I wind up with an ABL class named
DataBoundTreeView.cls. This dialog makes you specify what class you’re inheriting from, so I can search
for the Microsoft control class I locate the TreeView class in System.Windows.Forms and select that.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 5 of 19

I can then enter a Description or other information that I want to have appear in the header for the
class’s source code, and finish up the definition.

Back in the design pane for the new control, there’s no visualization of it to display, because there’s no
form yet to display it in, so I first take a look at the code for the new class.

You can see from the code box below that the CLASS statement names the control class that the new class
inherits. My new class is a Microsoft TreeView control just by virtue of the INHERITS phrase in the class
definition. Above it, there's a USING statement that tells the compiler to search for the control in the
namespace System.Windows.Forms, so that it doesn't need to be fully qualified in the CLASS statement.

USING Progress.Lang.*.
USING System.Windows.Forms.*.

CLASS TreeView.DataBoundTreeView INHERITS TreeView :

I want to extend the control by making it load and display data automatically, so I need to define a couple
of new class properties to do that. The first is a DataSource property. For simplicity, I just make this the
name of a class that can provide data. . I also need a second property that defines which field values for
each level of data the treeview should display in the tree’s nodes, so that will be a delimited character
string. The property definitions don’t have any specific code yet for getting or setting the property value. I
define the code to execute when the property is set later in this session.

DEFINE PUBLIC PROPERTY DataSource AS CHARACTER NO-UNDO
 GET.
 SET.

DEFINE PUBLIC PROPERTY FieldList AS CHARACTER NO-UNDO
 GET.
 SET.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 6 of 19

Before I define any more code for the ABL class, I want to show you how to see the effects of what I’ve
done so far. After going back to the design pane I first need to put my new control where I can select it
just like any other control. Right-clicking anywhere in the controls area of the Toolbox, I select Add
Control Group to create a new group of my own extended controls.

I call the new group CustomControls, and after it’s created for me, I right-click in the group and select
Add Controls. My new control is an ABL control, so I select the ABL Controls tab and select the
DataBoundTreeView control in the TreeView package, and click OK. My new control is now available to
drop onto a form just like any other control.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 7 of 19

Note that if you put a bitmap file into the same directory as the source file for the control, with the same
name, and with the extension .bmp, that icon will appear in the Toolbox in place of the default icon you see
here.

There’s no visualization for the control yet, since it’s intended to be dropped onto a form and given
property values, so it’s good to create a simple test form, which we can call a scratch pad form, to see the
control and to be able to set its properties to test it out.

From the File menu, I create a New -> ABL Form, and just call it something like TreeViewTest to give
myself a scratch pad form to work with. Now that I have a form to drop the new control onto, I can expand
the CustomControls group in the Toolbox, select my new control, drag it onto the form, and see how it
will look:

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 8 of 19

There’s no data in it yet, of course, because I haven’t defined its DataSource, but if I select the control,
then all its properties are displayed in the Properties View. Here you can see the two new properties –
DataSource and FieldList -- in the list with all the others. This reinforces the basic concept that my ABL
class has inherited all the properties and all the capabilities of the control it’s based on, and my extensions
to it are fully integrated with its basic definition. This is really the essence of our support for a .NET GUI in
ABL, that a simple ABL class can seamlessly combine ABL logic and .NET controls.

The control’s SmartTag is here, for instance, and from there I can select Dock in Parent Container to
have it fill the parent form. When I save and run the form Architect creates a simple ABL wrapper
procedure to instantiate the form class. The form as you see it in the next screen capture doesn’t look like
much yet because there’s no data to display, but that’s the next part of the presentation.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 9 of 19

To summarize what I’ve shown you so far:

- Use the Class Browser to examine the methods and properties of classes that you want to inherit
and extend.

- Create a New ABL Inherited Control to inherit and extend a single control. Enter the definition
for the extended class, including the name and namespace of the class it inherits. Then define ABL
code just as you would for any other class to extend the control for your application.

- Create a new Control Group in the Visual designer toolbox for your controls, and add your
controls to it.

- And create a test form to try out how it looks and how its property settings affect its behavior.

Now that I’ve created the basic extended TreeView control with its new properties, the next step is to
understand how to connect it to a data source. The principle I try to illustrate here is that it’s important to
separate out all aspects of data retrieval from the classes that define the controls and user interface. To
accomplish this, there’s a separate class that provides a very simple data model whose role is to retrieve
data and put it into a temp-table to be used by any user interface control that wants to work with nested
levels of parent-child data and field values in simple text form, as shown in this simple diagram:

These are the essentials of the model class, called TextDataModel.cls because (for the purposes of this
simplified example) it is specialized to take data from a ProDataSet and put it into a temp-table that holds
just each data element’s level in the data hierarchy and some text to display at each level:

I define the class itself as ABSTRACT; this means that the class provides some data and behavior definition,
but it’s not complete. It has to be inherited by a subclass that provides a specific data definition to retrieve
data with.

USING Progress.Lang.*.

CLASS TextDataModel ABSTRACT :

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 10 of 19

Following the variable definitions, the ttStringData temp-table holds levels of data within the data
hierarchy, and a field from each table in character form, so the user interface part of the application doesn’t
need to define database buffers or other data management specifics.

DEFINE VARIABLE cFieldList AS CHARACTER NO-UNDO.
DEFINE VARIABLE hTopQuery AS HANDLE NO-UNDO.
DEFINE VARIABLE hChildQuery AS HANDLE NO-UNDO.
DEFINE VARIABLE hTopBufferField AS HANDLE NO-UNDO.
DEFINE VARIABLE hChildBufferField AS HANDLE NO-UNDO.

DEFINE PRIVATE TEMP-TABLE ttStringData
 FIELD DataLevel AS INTEGER
 FIELD DataValue AS CHARACTER.

Following the temp-table definition are two properties, the first to hold the handle to a ProDataSet the data
is retrieved into, and the second a list of fields from each table that should be turned into text in the
treeview nodes or any other user interface controls that can make use of this format.

DEFINE PROTECTED PROPERTY TextDataHandle AS HANDLE
 GET.
 SET.

DEFINE PUBLIC PROPERTY TextFieldList AS CHARACTER
 GET.
 SET.

The method that fetches the data is called FetchTextData, and this in turn invokes the method FillData:

METHOD PUBLIC VOID FetchTextData (OUTPUT TABLE ttStringData):
 FillData(). /* Abstract method overridden in subclass */
 hTopQuery = TextDataHandle:TOP-NAV-QUERY...

If you look at the definition of FillData later in the class, you can see that that method is also defined as
ABSTRACT, meaning that it is defined in this class but not implemented here. The class has to be inherited
by a subclass that defines the specifics of how data gets filled from the data source.

METHOD PROTECTED ABSTRACT VOID FillData().

The following diagrams illustrate how the classes interact. TextDataModel.cls acts as a super class. It
provides concrete definitions for some elements such as the temp-table where it holds data in the format
used by the user interface and the class’s properties. A subclass that provides access to a specific DataSet
then fills in the value of the DataSet handle as the property TextDataHandle for the super class to use.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 11 of 19

The second illustration shows how the implementation of FetchTextData in the super class is able to
operate on the data supplied by a subclass and covert it into the neutral temp-table form, even though the
implementation of FillData is left to a subclass, which has to know how to access some specific
ProDataSet.

For completeness, the following code box shows the entire FetchTextData method. Once the subclass that
supports a specific data source has filled its ProDataSet with data, FetchTextData starts at the top of the
ProDataSet hierarchy, walks down through the (two-level) data, creates a row in the text temp-table for
each row of data in the DataSet, sets its DataLevel to 1 or 2 accordingly, and stores the value of the
selected field for each level in the DataValue field. Again, this simplified code just assumes two levels of
data and one field from each level to display in the user interface; it could easily be generalized to support
any number of levels of data and any number of fields to string together to display. The key element of the

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 12 of 19

code is that it does not assume what exact user interface control type is being populated with its data, and
it leaves the specifics of the data retrieval to its subclass.

METHOD PUBLIC VOID FetchTextData (OUTPUT TABLE ttStringData):
 FillData(). /* Abstract method overridden in subclass */
 hTopQuery = TextDataHandle:TOP-NAV-QUERY.
 hTopBufferField =
 TextDataHandle:GET-BUFFER-HANDLE(1):BUFFER-FIELD(ENTRY(1, cFieldList,",")).
 hChildQuery = TextDataHandle:GET-RELATION (1):QUERY.
 hChildBufferField =
 TextDataHandle:GET-BUFFER-HANDLE(2):BUFFER-FIELD(ENTRY(2, cFieldList,",")).
 hTopQuery:QUERY-OPEN ().
 hTopQuery:GET-FIRST().
 DO WHILE NOT hTopQuery:QUERY-OFF-END:
 CREATE ttStringData.
 ASSIGN ttStringData.DataLevel = 1
 ttStringData.DataValue =
 hTopBufferField:STRING-VALUE.
 hChildQuery:QUERY-OPEN ().
 hChildQuery:GET-FIRST().
 DO WHILE NOT hChildQuery:QUERY-OFF-END:
 CREATE ttStringData.
 ASSIGN ttStringData.DataLevel = 2
 ttStringData.DataValue =
 hChildBufferField:STRING-VALUE.
 hChildQuery:GET-NEXT ().
 END.
 hTopQuery:GET-NEXT ().
 END.
END METHOD.

Next let’s take a look at a specific subclass that implements the ABSTRACT elements of TextDataModel.cls
and fills a specific DataSet from its data sources.

Note that if you want to hold data within your application in temp-tables and ProDataSets, you can use the
Tools for Business Logic perspective in Architect to build diagrams like this one to represent any set of
related data.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 13 of 19

The Tools for Business Logic utility can then generate include file definitions like the following that you can
include in classes or procedures that directly manage data your application uses. The data definition then
provides a basis for building a specific data model class to manage, for instance, Car Dealers and their
Employees, which inherits from the Text Data Model class we just looked at. Here’s the include file for the
DataSet that combines Dealer and Employee data:

/*--
 File : From template DataSet - template for DataSet.
 Author(s) : <author>
 Created : Tue Aug 25 15:53:12 EDT 2009
 Version : 1.0
 Notes :
 --*/
{ttDealer.i}
{ttEmployee.i}
@com.openedge.t4bl.model(modeFile="platform:/resource/Samples/appModel.t4bl",

uuid="_LsL4FZGuEd60RcEKQSxCZA").

 DEFINE DATASET dsDealerEmp FOR ttDealer, ttEmployee
 DATA-RELATION DealerId FOR ttDealer, ttEmployee
 RELATION-FIELDS (DealerID,DealerID) .

Here’s one of the two temp-table include files that dsDealerEmp.i references:

/*--
 File : From template TempTable - template for temp-table.
 Author(s) : <author>
 Created : Tue Aug 25 15:53:12 EDT 2009
 Version :
 Notes :
 --*/
 /* temp-table definition for ttDealer */

 @com.openedge.t4bl.model(modeFile="platform:/resource/Samples/appModel.t4bl",

uuid="_93KMcJGuEd60RcEKQSxCZA").

 DEFINE TEMP-TABLE ttDealer
 NO-UNDO BEFORE-TABLE Before_eDealer
 FIELD DealerName AS CHARACTER LABEL "Dealership" COLUMN-LABEL "Dealership"

FORMAT "X(40)"
 FIELD DealerID AS CHARACTER LABEL "Dealer ID" COLUMN-LABEL "Dealer ID"

FORMAT "X(64)"
 FIELD DealerNotes AS CHARACTER LABEL "Notes" COLUMN-LABEL "Notes"

FORMAT "X(40)" view-as editor size 40 by 2 scrollbar-vertical
 INDEX dealerName
 DealerName ASCENDING
 INDEX uDealer IS PRIMARY UNIQUE
 DealerID ASCENDING
 .

Finally, here is the code for the DealerEmpModel.cls that inherits and completes the ABSTRACT
TextDataModel class. You can see that this class inherits TextDataModel, so it completes the class that
was designated ABSTRACT in its definition.

/*--
 File : DealerEmpModel
 Description : Container for data from the DealerEmp ProDataSet

 --*/

USING Progress.Lang.*.

CLASS DealerEmpModel INHERITS TextDataModel :

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 14 of 19

Here’s the ProDataSet include file reference, and the ProDataSet support code to define the actual database
tables that act as data sources:

{dsDealerEmp.i}

DEFINE DATA-SOURCE srcDealer FOR Dealer.
DEFINE DATA-SOURCE srcEmployee FOR Employee.

The class constructor attaches those data sources to the temp-tables in the ProDataSet, and assigns the
ProDataSet handle to the TextDataHandle property defined in the super class:

CONSTRUCTOR PUBLIC DealerEmpModel ():
 SUPER ().
 BUFFER ttDealer:ATTACH-DATA-SOURCE (DATA-SOURCE srcDealer:HANDLE).
 BUFFER ttEmployee:ATTACH-DATA-SOURCE (DATA-SOURCE
 srcEmployee:HANDLE).
 TextDataHandle = DATASET dsDealerEmp:HANDLE.
END CONSTRUCTOR.

Next is the implementation of the FillData method that fills the DataSet with database data:

/*--
 Purpose: Fills the DataSet with all data for the tables.
 Notes:
--*/

 METHOD PUBLIC OVERRIDE VOID FillData():
 DATASET dsDealerEmp:FILL().
 END METHOD.

Now that I’ve developed some Model classes to provide data to my user interface, I need to understand
what properties and methods of the Microsoft TreeView control on I need to use to get that data into the
extended TreeView.

Because my Inherited Control is based on a Microsoft control, I can check out the documentation on the
msdn.microsoft.com website. If I search on TreeView control, I can select the primary Windows
Forms documentation on the TreeView:

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 15 of 19

As you can see from the list on the left, there’s documentation online on all of the Microsoft controls. If I
look at the Overview section, I get a general description of the control’s use and its key properties,
including the Nodes property, which is a collection of all the nodes at the top level of the TreeView. What I
most care about though is the method for adding nodes to the treeview, because that’s how I’ll populate it
with data from the data source. Thw documentation shown below confirms that each node in the TreeView
also has its own Nodes property to store a collection of child nodes at each level.

It’s helpful to look at sample code, and you’ll generally find that the C# samples are not far off in their
syntax from the look of object-oriented ABL. The example below shows that each node in the TreeView is
its own object, a TreeNode object, and that you can use the standard Add method of collections to add
nodes to any level of the tree.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 16 of 19

I can then follow the link to the doc on the TreeNode object itself. Scrolling down through that, I can
follow another link to a description of the various constructors for the TreeNode object. The one I want is
shown below as TreeNode(String). This constructor description tells me that if I pass a string to the
constructor when I NEW each node, then I get back a new TreeNode with its Text property set to the string
that I passed in. Doing that will let me assign the DataValue field from the text temp-table to each new
node.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 17 of 19

Now I know enough to add the code I need to my extended TreeView control to populate it from the data
source. I reselect the DataBoundTreeView code in the Editor, and define the InitData method that
populates the treeview. It’s just a few lines of code, and each one is instructive in showing some element of
the object-oriented syntax in ABL. The method itself is private to this class, and has no return value, so it’s
defined as VOID:

METHOD PRIVATE VOID InitData():

I need a variable to hold a reference to the current TreeNode object. This shows the key difference
between procedural programming with handles and object-oriented programming with types. Here I specify
exactly what object type the variable will hold, so that the compiler can verify that I’m referencing it
properly:

 DEFINE VARIABLE oTreeNode AS TreeNode.

The next variable holds a reference to the DataSource, the TextDataModel class instance that will
provide data. You can see that I use exactly the same object-oriented ABL to reference both controls that
I’m using from Microsoft or other .NET sources, as well as my own ordinary ABL classes.

 DEFINE VARIABLE oDataSource AS TextDataModel.

Because the DataSource property just holds the name of the class, I use the DYNAMIC-NEW built-in function
to create an instance of the class, which will be type-checked at runtime:

 oDataSource = DYNAMIC-NEW DataSource().

Here’s an example of setting a property that’s defined as PUBLIC in the data model class, just by
referencing it relative to the oDataSource variable:

 oDataSource:TextFieldList = FieldList.

Likewise I can invoke a method in a class just by naming it relative to its object reference.

 oDataSource:FetchTextData(OUTPUT TABLE ttTextData).

Next the method needs to walk through the rows in the temp-table that holds the data in its simplified text
format. DataLevel 1 means that this is a top-level row. If that’s the case the codeuses the Add method to
add a new TreeNode with the DataValue field as its Text. Remember that the class I’m coding here is a
TreeView, because it inherits the Microsoft TreeView, so THIS-OBJECT is a reference to that extended
TreeView control.

 FOR EACH ttTextData:
 IF ttTextdata.DataLevel = 1 THEN
 oTreeNode = THIS-OBJECT:Nodes:Add(ttTextData.dataValue).

Because this very simplified code assumes just two levels of data, the ELSE clause just adds a new
TreeNode object to the current TreeNode, to create children for the current parent node.

 ELSE oTreeNode:Nodes:Add(ttTextData.DataValue).
 END.
 END METHOD.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 18 of 19

I can check whether I got everything right here by pressing Ctrl-Shift-C for Check Syntax. Remember
that when I compile or check syntax, the compiler is cross-referencing every other class that I name to
make sure that I am using the class and its methods and properties correctly. This is the advantage of the
strong typing provided with the object-oriented syntax: you get much more checking at compile time and
fewer unexpected errors at runtime.

Now I can save and compile the DataBoundTreeView class, and test its behavior in the scratch pad form.
In the Properties View I set the DataSource property to the name of the TextDataModel class
(DealerEmpModel), and I set the FieldList property to specify the DealerName field for the top-level
table, and the EmployeeLastName field for the child table. Those are the fields that will be used to supply
the the text for each TreeNode.

When I save and run the scratch pad form, the properties are assigned as part of the work of
InitializeComponent. At the top level I have two Car Dealers. And at the child level I have all the
employees of each Dealer.

Creating a Databound TreeView as an Inherited Control John Sadd

December, 2009 Page 19 of 19

Now I have a TreeView control that populates itself at runtime with data from a separate data source. I can
use it anywhere in the user interface of my application, and attach it to a data source for any data, with the
data retrieval managed independently of the control definition.

Let me quickly review a few of the key points of this part of the document:

- Code your classes so that you keep user interface definitions and control extensions separate from
classes and procedures that retrieve and manage data for you.

- Use Tools for Business Logic to build temp-table and DataSet definitions that let you separate
the data objects that hold data in your application from the database tables that the data comes
from.

- Use the online documentation resource at Microsoft or other control vendors to teach you what
you need to know to use and extend these powerful UI controls.

- Then write your own ABL code that can access .NET controls and your own ABL classes and
procedures using exactly the same language statements. Then assemble everything in Visual
Designer and build a test form to verify your work.

That’s all for this two-part series on building an inherited control in the Visual Designer of OpenEdge
Architect.

