
Managing ObjectStore

Release 6.3

Copyright

Managing ObjectStore

ObjectStore Release 6.3 for all platforms, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This
manual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes
no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design),
DataDirect Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center,
eXcelon, Fathom,, IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered
by Progress, Progress, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program,
Progress Fast Track, Progress OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and
design), ProCare, Progress en Partners, Progress in Progress, Progress Profiles, Progress Results, Progress Software
Developers Network, ProtoSpeed, ProVision, SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, and Your Software, Our Technology-Experience the Connection are registered
trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other
countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect XQuery,
DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks
of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Any other trademarks or trade names contained herein are the property of their respective owners.

ObjectStore includes software developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 2000-2003 The Apache Software Foundation. All rights reserved. The names "Ant," "Xerces," and
"Apache Software Foundation" must not be used to endorse or promote products derived from the Products
without prior written permission. Any product derived from the Products may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission. For written permission, please contact
apache@apache.org.

September 2005

Contents

Preface .13

Chapter 1 Overview of Managing ObjectStore 17
What Is ObjectStore? . 18
What Is an ObjectStore Database?. 18

How Do Objects Get into a Database? . 18

What Kinds of Databases Are There? . 19
File Databases . 19

Rawfs Databases . 19

How ObjectStore Controls Storage . 20
What Does the Server Do?. 20

What Does the Client Application Do? . 21

What Does the Cache Manager Do? . 22

Managing Processes . 23
Communication Among ObjectStore Processes 24

Starting ObjectStore Processes. 24

Stopping ObjectStore Processes . 25

Obtaining Process-Status Information . 26

The Server Transaction Log. 27
Log File Size. 28

Managing Computer Resources . 29
Managing Memory . 30

What Is Address Space? . 30

How Are the Pieces of Address Space Shared? 31

Illustration of Address Space . 32

How Do Transactions Use Address Space? . 32

What Happens When Resources Are Exhausted?. 33

How Can You Control These Resources? . 34

How Much Memory Is Needed?. 34

Reserving Versus Mapping an Address. 35

Managing the Rawfs . 35
Utilities for Managing the Rawfs . 36
Release 6.3 3

Contents
4

Reconfiguring the Rawfs .37

What You Need to Know About the API .37
Capacity Planning. .38

Data Organization .38

Indexes and Contention .38

Managing ObjectStore Programmatically .38

Managing Databases .42
Working with Databases and Data Sets. .42

Moving, Renaming, and Dumping Databases .43

Managing Server-remote Databases .44

Databases and Applications on CD-ROM .44

Managing Database Fragmentation .44
Fragmentation in the Logical Structure .44

Fragmentation in the Physical Structure .45

Overview of the Backup/Restore Facility .48
Online Backup and Archive Logging .49

Online Restore and Recovery .49

Backup Strategies. .50
General Backup Practices .50

Archive Logging .51

Special Considerations for Large Databases. .53

Restore and Recovery Options .53

The Dump/Load Subsystem .54
Upgrading a C++ Database .54

Upgrading a Java Database .56

Managing Users .57
Modifying Network Port Settings .58

Communication Methods .58

Defaults for Port Settings .59

Modifying Port Settings .59

Running Two Servers on One Host .60

When Your Application Uses Notification .61

How a Client Locates the Server for a Database61
When Accessing a File Database. .62

When Accessing a Rawfs Database .62

Managing ObjectStore on Multiple Platforms 62
Using Multiple File Systems .62

Translating Path Names .62

Ownership and Locks .64
How Ownership and Locks are Related .64
4 Managing ObjectStore

Contents
Lock Management. 65

Ownership Conflicts . 65

Locks and Nested Transactions. 66

Locks, Ownership, and MVCC . 66

API for Lock Management . 66

ClearCase Virtual File System (MVFS) . 66
Troubleshooting. 67

Debugging the ObjectStore Server . 67

Debugging an ObjectStore Server on Sun Clusters 71

Debugging the Cache Manager . 72

Debugging the Cache Manager Autostart . 72

Alternate Technique to Debug the Cache Manager Autostart 73

Environment Variables for Debugging . 73

Environment Variables for Debugging Client Applications. 74

No Handler for Exception Error . 74

Before Calling Technical Support . 76

Chapter 2 Server Parameters .77
List of Server Parameters . 77

Admin Host List . 78

Admin User . 79

Allow NFS Locks (UNIX Only) 79

Allow Remote Database Access . 80

Allow Shared Communications (UNIX Only) . 80

Authentication Required . 80

Cache Manager Ping Time . 85

Cache Manager Ping Time In Transaction. 85

Cluster Growth Policy . 85

Database File Growth Policy . 86

DB Expiration Time . 87

Deadlock Victim . 87

Direct to Segment Threshold . 88

ESTALE Implies Database Deleted (UNIX Only) 89

Failover Heartbeat File . 89

Failover Heartbeat Time . 90

Failover Script . 90

Host Access List . 90

Identical Pathnames on Failover Server. 90

Log Data Segment Growth Increment . 91

Log Data Segment Initial Size . 92

Log File . 92
Release 6.3 5

Contents
6

Log Record Segment Buffer Size .92

Log Record Segment Growth Increment .92

Log Record Segment Initial Size. .93

Max AIO Threads .93

Max Connect Memory Usage .93

Max Data Propagation Per Propagate .93

Max Data Propagation Threshold .94

Max Memory Usage .94

Max Two Phase Delay .94

Message Buffer Size .95

N Message Buffers .95

Notification Retry Time .95

PartitionN .95

Preferred Network Receive Buffer Size .95

Preferred Network Send Buffer Size .95

Propagation Buffer Size. .96

Propagation Sleep Time .96

RAWFS Partition Growth Policy. .96

Remote Database Grow Reserve .97

Restricted File DB Access (UNIX Only) .97

RPC Timeout .97

Chapter 3 Environment Variables .99
Specifying Values for Environment Variables 101

OS_16K_PAGE . 102

OS_32K_PAGE . 102

OS_64K_PAGE . 102

OS_8K_PAGE. 102

OS_ALWAYS_CHECK_SERVER_AT_COMMIT. 102

OS_AS_SIZE . 103

OS_AS_START . 104

OS_ASMARKERS_USELESS . 104

OS_AUTH . 105

OS_CACHE_DIR (UNIX Only) . 106

OS_CACHE_SIZE . 106

OS_CMGR_OUTPUT_LOG_NAME. 107

OS_CMGR_STARTUP_LOCK (UNIX Only) . 107

OS_COLL_DEBUG_INDEX . 107

OS_COLLECTION_TRACE_INDEX_USAGE . 108

OS_COMMSEG_DIR (UNIX Only) . 108

OS_COMP_SCHEMA_CHANGE_ACTION . 109
6 Managing ObjectStore

Contents
OS_CORE_DIR (UNIX Only) .109

OS_DEBUG_C0000005 (Windows Only). .109

OS_DEBUG_LOCATOR_FILE .109

OS_DEF_BREAK_ACTION (Windows Only) .110

OS_DEF_EXCEPT_ACTION .110

OS_DEF_MESSAGE_ACTION (Windows Only) .110

OS_DEFAULT_AS_PARTITION_SIZE .111

OS_DISABLE_PROPAGATE_ON_COMMIT .112

OS_DISALLOW_OSSINGLE_REMOTE_DATABASES 112

OS_DISPLAY_INSTALL_MISMATCHES .112

OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE113

OS_ENABLE_REALTIME_COUNTERS .113

OS_FORCE_HANDLE_TRANS .113

OS_HANDLE_TRANS (UNIX Only) .113

OS_IGNORE_LOCATOR_FILE .114

OS_INC_SCHEMA_INSTALLATION. .114

OS_INHIBIT_TIX_HANDLE .115

OS_LANG_OVERRIDE (UNIX Only) .115

OS_LIBDIR .116

OS_LOCATOR_ESCAPE_CHARACTER .116

OS_LOCATOR_FILE .116

OS_LOG_TIX_FORMAT .117

OS_META_SCHEMA_DB. .117

OS_NETWORK (Windows Only). .117

OS_NETWORK_SERVICE (UNIX Only) .118

OS_NO_MAPPED (UNIX Only). .119

OS_NOTIFICATION_QUEUE_SIZE .119

OS_OSDUMP_APPSCHEMA_PATH .119

OS_OSLOAD_APPSCHEMA_PATH .119

OS_OSSG_CPP .119

OS_OSVERIFYDB_BUFFER_SIZE. .120

OS_OSVERIFYDB_FAST .120

OS_PASSWORD .120

OS_PATHNAME_ENCODING .120

OS_PORT_FILE. .120

OS_PREALLOCATE_CACHE_FILES (UNIX Only)121

OS_PRINT_CLIENT_COUNTERS .121

OS_RCVBUF_SIZE .121

OS_REMOTE_AUTH_REGISTRY_LOCATION (Windows Only)122

OS_RESERVE_AS (UNIX Only) .122
Release 6.3 7

Contents
8

OS_ROOTDIR. 123

OS_SCHEMA_KEY_HIGH . 123

OS_SCHEMA_KEY_LOW . 123

OS_SCHEMA_PATH. 124

OS_SECURE_RPC_DOMAIN . 125

OS_SERVER_DEBUG_FILE_MAX_LINES. 125

OS_SERVER_OUTPUT_LOG_NAME . 125

OS_SNDBUF_SIZE . 125

OS_STDOUT_FILE (Windows Only) . 125

OS_TIX_BUFFER_SIZE (Windows Only). 126

OS_TIX_WD (UNIX Only) . 126

OS_TMPDIR. 126

OS_TRACE_MISSING_VTBLS . 127

OS_TURN_ON_ENGLISH_MESSAGES . 127

OS_USE_MAP_FIXED . 128

OS_USER_ARCH_SET . 128

OS_USERNAME . 128

OS_VERIFYDB_BUFFER_SIZE . 128

OS_VERIFYDB_FAST. 129

Chapter 4 Utilities .131
osaffiliate. 135
osarchiv. 137
osbackup . 143
oschgrp . 150
oschhost . 151
oschmod . 152
oschown . 154
oscmrf. 155
oscmshtd. 156
oscmstat . 157
oscompact . 160

Restrictions . 163

osconfig. 164
oscopy. 167
osdbcontrol . 169

Examples . 171

osdf . 172
osdump . 173
osexschm . 180
osgc . 181
osglob . 184
8 Managing ObjectStore

Contents
oshostof . 185
osjidump . 186
osjiload . 188
osln . 190
osload . 192
osls . 194
osmkdir . 195
osmv . 196
osprop . 198
osrecovr . 199
osreplic . 205
osrestore . 208

Description .210

osrm . 213
osrmdir . 214
osscheq . 215
osserver . 217
ossetasp . 221
ossetrsp . 223
ossevol. 224
ossg. 229
ossize. 238
ossvrchkpt . 241
ossvrclntkill. 242
ossvrdebug . 244
ossvrping . 245
ossvrshtd . 246
ossvrstat . 248
ostest. 257
osverifydb. 258
osversion . 263

Chapter 5 Using Locator Files to Set Up Server-Remote Databases265
What Is a Server-Remote Database? . 265

What Are the Advantages?. .265

What Are the Disadvantages?. .266

How Do You Allow for a Server-Remote Database?266

Description of the Locator File . 267
Example of a Locator File. .268

Declaring Hosts . 269
Specifying Locator Rules. 269

Specifying FILE_HOST Statements .270

Specifying FILE_PATHNAME Statements .270
Release 6.3 9

Contents
10

Specifying SERVER_HOST Statements . 271

Specifying Translation Commands . 271

Specifying Read or Write Access. 273

Using Character String Patterns in Locator Files 273
Rules for Writing Character String Patterns . 274

Using Metacharacters in Patterns . 275

Overriding the Default Locator File . 277
Calling an ObjectStore Function . 277

Setting a Client Environment Variable. 277

When Multiple Servers Can Concurrently Access a Database 278
Sample Locator Files . 279
NFS Limitations . 282
Troubleshooting . 283

Chapter 6 High Availability of Data .285
Failover . 285

ObjectStore-Managed Failover . 286

Cluster-Managed Failover . 288

Implementing Failover . 288

Removing Failover (ObjectStore-Managed Failover Only) 293

Configuring More Than One Logical Server . 293

The Failover API. 296

Exceptions and Error Messages for Failover . 297

Asynchronous Replication . 297

Chapter 7 Managing ObjectStore on UNIX299
Database and Executable Path Names. 300

File Name Expansion. 300

Executable Path Names. 301

Setting Server Parameters . 301
Creating a Parameter File . 302

Starting the Server . 302
Nonroot Server Startup. 303

Creating a Rawfs . 303
Specifying the Partitions in a Rawfs . 303

Modifying Partition Size. 306

Setting Cache Manager Parameters. 307
Cache Directory Parameter . 309

Commseg Directory Parameter . 309

Hard Allocation Limit Parameter . 309

Mount Table Pathname Parameter . 309
10 Managing ObjectStore

Contents
Preallocate Cache Files Parameter. .310

Soft Allocation Limit Parameter .310

Temporary Files Permission Parameter .311

Cache Manager Parameter File Location. .311

Cache Manager Parameter File Format .311

Example of a Cache Manager Parameter File .311

When to Increase the Size of the Cache 312
ObjectStore Directory Structure. 312
Finding Files Containing ObjectStore Messages 313
Identifying ObjectStore Database Files . 313
Using Tapes with the osbackup Utility . 313
The /tmp and /tmp/ostore Directories . 314
AIX Considerations. 314

Using SCSI Tape Drives. .314

Setting Up Permissions .315

Troubleshooting Permission Denied Error. .315

Uninstalling ObjectStore .316

Chapter 8 Managing ObjectStore on Windows 317
Using ObjectStore Utilities . 317
Specifying File Database Path Names . 318
Setting Server Parameters . 318
Starting the Server . 319
Creating a Rawfs . 320

Using setup.exe to Add Rawfs Partitions .321

Modifying Partition Size .321

Starting the Cache Manager . 321
Finding Files Containing ObjectStore Messages 322
Accessing UNIX Databases from Windows. 323
About Client/Server Communication. 324
Using an ObjectStore Server on Windows to Access Remote Databases324

Allow Remote Database Access .324

Access Control for Remote Databases .324

Changing the Registry Location for ObjectStore (Windows Only) . . 325

Index . 327
Release 6.3 11

Contents
12
12 Managing ObjectStore

Preface

Purpose Managing ObjectStore provides information needed to perform management tasks on
ObjectStore servers and clients. This book supports ObjectStore Release 6.3.

Audience There are two audiences for this book:

• Administrators responsible for keeping ObjectStore running and for doing tasks
such as backing up and restoring data

• Experienced ObjectStore programmers who need to manipulate the databases
they are working with

It is assumed that both audiences are familiar with the ObjectStore host platform and
experienced using the operating system.

Scope Information in this book assumes that ObjectStore is installed and configured.

How This Book Is Organized
The first part of this book provides information that applies to all ObjectStore
platforms. Chapters 7 and 8 contain platform-specific information. For complete
coverage, you should read the general chapters along with the chapter for your
platform.

Notation Conventions
This document uses the following conventions:

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.
Release 6.3 13

Preface
Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one
of the enclosed items. Vertical bars represent OR separators.
For example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.

Convention Meaning
14 Managing ObjectStore

Preface
Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 15

Preface
16 Managing ObjectStore

Chapter 1
Overview of Managing
ObjectStore

This chapter briefly describes the architecture of ObjectStore and provides an
overview of object-oriented database management tasks. For an introduction to
object-oriented database management, including concepts such as persistence, see
the first several chapters of the C++ A P I User Guide.

The following topics are discussed in this chapter:

What Is ObjectStore? 18

What Is an ObjectStore Database? 18

What Kinds of Databases Are There? 19

How ObjectStore Controls Storage 20

Managing Processes 23

The Server Transaction Log 27

Managing Computer Resources 29

Managing Memory 30

Managing the Rawfs 35

What You Need to Know About the API 37

Managing Databases 42

Managing Database Fragmentation 44

Overview of the Backup/Restore Facility 48

Backup Strategies 50

The Dump/Load Subsystem 54

Managing Users 57

Modifying Network Port Settings 58

How a Client Locates the Server for a Database 61

Managing ObjectStore on Multiple Platforms 62

Ownership and Locks 64

ClearCase Virtual File System (MVFS) 66

Troubleshooting 67
Release 6.3 17

What Is ObjectStore?
What Is ObjectStore?
ObjectStore is an object-oriented database management system. It allows you to

• Describe, store, and query complex data used in sophisticated computer
applications, as well as data traditionally managed by relational database
applications, such as MIS programs

• Persistently store data independently of the data type

• Access data in the same format in which it exists in the application

• Create and modify objects instead of tables, columns, rows, and tuples by using
the ObjectStore C++, Java, or ActiveX interfaces

What Is an ObjectStore Database?
An ObjectStore database is a storage location for persistent objects. It is organized
into clusters and segments.

Clusters The basic unit of storage allocation in an ObjectStore database is the cluster. When
you create a persistent object, the storage is allocated from a cluster.

Clusters can be normal or huge. If an allocation is less than or equal to 64 KB, it is
stored in a normal cluster, which can contain any number of normal allocations, up
to a maximum size of 2 GB. If an allocation is greater than 64 KB, ObjectStore creates
a huge cluster containing just that one allocation.

Segments Clusters are organized into segments. When you create a database, ObjectStore
normally creates two segments:

• The schema segment, which holds the database roots and schema information
about the objects stored in the database. The schema segment cannot be accessed
directly by the user application.

• The default segment, which stores entities you create with persistent new.

You can create additional segments by using the os_database::create_segment()
function, and you can specify any of these for storage allocation instead of the default
segment.

The default segment and any additional segments always have a default cluster.
ObjectStore normally allocates storage from this cluster. You can create additional
clusters by using the os_segment::create_cluster() function.

How Do Objects Get into a Database?
When an application allocates an object in persistent storage, it specifies the database
to contain that storage. The object is created in the default cluster of the default
segment of the specified database. Alternatively, you can specify a segment, and the
object is created in the default cluster of the specified segment. Or you can specify a
cluster, and the object is created in the specified cluster.
18 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
You use the member functions create(), lookup(), and open() of the os_database
class to create databases. You name the database in a path name argument to the
function that creates the database.

See the C++ A P I Reference for information about these functions.

What Kinds of Databases Are There?
You can use ObjectStore to store objects in two kinds of databases: file databases and
rawfs databases. See Managing the Rawfs on page 35 for a discussion of the relative
merits of file and rawfs databases.

File Databases
A file database is a native operating system file that contains an ObjectStore
database. You can, with some restrictions, manipulate file databases with standard
operating system commands as well as with ObjectStore utilities described in this
book. A file database has a standard operating system path name.

Rawfs Databases
A rawfs database is a database that you store in an ObjectStore rawfs. A rawfs (raw
file system) is a private file system managed by the ObjectStore server. It is
independent of the file system managed by the operating system.

A rawfs can contain directories, subdirectories, and databases, just as the native file
system can. It can include links, but each link must be to another ObjectStore rawfs
database or directory either on the same server or on another server. The ObjectStore
server manages everything in the rawfs. Everything in the rawfs is invisible to the
operating system. ObjectStore provides utilities and os_dbutil class functions for
operating on databases and directories in a rawfs. An ObjectStore server can manage
one rawfs, which consists of one or more rawfs partitions.

Rawfs partitions
On UNIX platforms you specify each partition in the rawfs with a Partitionn
statement in the server parameter file. On Windows platforms you specify partitions
by using the ObjectStore setup.exe utility. Each partition can be either of the
following:

• Raw disk space set aside by the operating system, if the operating system supports
this. This is referred to as a raw partition. Raw partitions have a fixed size.

• A file allocated in the operating system’s file system. This is referred to as a file
partition. File partitions can be expandable or of fixed size.

A rawfs database can span partitions. This allows you to create a database that is
larger than any single disk.

When you create a rawfs database, you specify a path name. The server determines
where in the rawfs to store your database. Thus, the logical directory structure might
Release 6.3 19

How ObjectStore Controls Storage
not map directly to the physical placement of the databases in the partitions. For
example, two rawfs databases in different ObjectStore directories might be stored in
the same partition.

You can create a rawfs during ObjectStore installation or at any time after
installation. See Chapter 7, Managing ObjectStore on UNIX, on page 299, or Chapter
8, Managing ObjectStore on Windows, on page 317, for more information about how
to create a rawfs.

Rawfs database name format
Use the following name format to specify an ObjectStore rawfs database:

hostname::/database_pathname

A double colon separates the host name from the database path name. The name of
a rawfs database always starts at root; it is never relative to a working directory.
Slashes always separate the levels of a rawfs database name, regardless of the
platform. Case is significant. For example, the following two path names identify
different databases:

hostess::/accounts/payable/JUNE
hostess::/accounts/payable/june

How ObjectStore Controls Storage
The server is the ObjectStore process that primarily controls object storage. With help
from the client process and the cache manager process, the server can manage
databases for multiple client applications. These applications can be on one or
multiple hosts.

What Does the Server Do?
The ObjectStore server is a process that controls access to ObjectStore databases on a
host. This includes

• Storage and retrieval of persistent data

• Arbitration of concurrent access by multiple client applications

• Recovery of databases to a transaction-consistent state if any process aborts or any
host crashes, or in the event of network failure

The server also manages pages of data on behalf of clients running applications.

For the rawfs, if there is one on the host, the server manages the hierarchy of
directories and maintains permission modes, creation dates, owners, and groups for
each entry.

Typically, a server must be running before any ObjectStore application can access
databases on the host. (A locator file allows access to databases residing on a host
that is not running a server. See Chapter 5, Using Locator Files to Set Up Server-
Remote Databases, on page 265, for further information.)
20 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
An application can use databases that are stored on different hosts and managed by
different servers. A server can serve clients on any number of hosts. A network can
have a number of servers.

Multiple servers
on a host

More than one ObjectStore server can run on the same host. If you want to run two
servers of different releases on the same machine (for example, Release 6 and Release
5), you must start them on different ports and use the ports file to let clients know
the one to contact. See Modifying Network Port Settings on page 58 for details. Note
that a single client cannot address multiple servers running different releases of
ObjectStore.

Under ObjectStore Release 6.1 and later, a client can address two or more servers of
the same release, running on the same machine. This feature is chiefly useful when
enabling failover (see Failover on page 285). It allows you to configure ObjectStore
so that, in a failover situation, the services of the failed server can be restored on a
server that is running on a second machine, even if another server was previously
running on that machine. In this situation, a client can address both the previously
running server and the failover server. For more information, see "Configuring more
than One Logical Server" on page 294. Note that this feature is only available on
ObjectStore Release 6.1 or later.

What Does the Client Application Do?
ObjectStore links the client library into each ObjectStore application. In this way,
each ObjectStore application is an ObjectStore client that

• Maps persistent database objects to virtual addresses

• Allocates and deallocates storage for persistent objects

• Maintains the cache of recently used pages and the lock status of those pages

• Handles page faults on addresses that refer to persistent objects

Any number of clients can run on a particular host. These clients can contact

• The server on that host

• Any other server on any other host in the network

Client cache Each client has its own storage area, called the client cache or simply the cache. The
cache is a local holding area for data mapped or waiting to be mapped into virtual
memory. Caches are not shared by clients even when they are running on the same
host.

To change the default size of the client cache, use the OS_CACHE_SIZE environment
variable. See OS_CACHE_SIZE on page 106.

When a client application needs an object stored in a database, it dereferences a
pointer (or object reference in Java). If the page that holds the object is already in
physical memory or if the page is in the cache with the appropriate permission,
access is immediate.

If the page that holds the object is not in the cache, or is in the cache but with
inappropriate permission, the application takes a page fault. This causes the client to
Release 6.3 21

How ObjectStore Controls Storage
request the page from the server, put it in the cache, and resume executing the
program.

UNIX On UNIX platforms, by default, ObjectStore places the cache file in the /tmp/ostore
directory. To change the default, specify an alternate directory for the OS_CACHE_DIR
environment variable, or set the Cache Directory parameter in $OS_
ROOTDIR/etc/host_cache_manager_parameters.

Windows On Windows platforms, the operating system determines the location of the cache in
virtual memory. You cannot change the location. The cache is not a file; it is a region
of virtual memory. The necessary storage is obtained from system virtual memory,
which consists of physical memory plus swap file space.

What Does the Cache Manager Do?
The primary function of the cache manager is to facilitate concurrent access to data
by handling callback messages from the server to client applications. Note that the
cache manager never reads the cache itself. The cache manager coordinates access by
clients to cached data.

A cache manager starts automatically when an ObjectStore application starts, if a
cache manager is not already running on the host. Each host that runs an ObjectStore
application must have one cache manager. A single cache manager can handle
callback messages for any number of client applications running on that host.

If you are running clients from two different major releases of ObjectStore, there are
two cache managers — one for each release. Unlike running different servers on one
host, you need not configure ports.

The name of the cache manager executable is oscmgr6.

On UNIX, the oscminit6 executable starts oscmgr6. Typically, you never need to
invoke oscminit6.

Callbacks When a client requests permission to read a page and no other client has permission
to modify that page, the server grants read permission (read ownership). The cache
manager is not involved.

The cache manager is involved in the following situations:

• When a client requests permission to read or modify a page and another client has
permission to modify that page

• When a client requests permission to modify a page and other clients have
permission to read that page

In these situations, the clients with permission are blocking the requesting client
from obtaining permission, so the server sends a callback message to the cache
manager on the host of the client that has the permission.

The server cannot send callback messages directly to the client because the client
might not be listening; the client might be busy running the application. The cache
manager determines whether the read or write permission can be released or
whether the client requesting permission must wait.
22 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
If you are running an ObjectStore application that uses a database that no other
ObjectStore application is accessing, there are no callback messages for that database.

For information about ownership and locks, see Ownership and Locks on page 64.

Commseg The commseg (communications segment) is a shared-memory object where the client
and the cache manager maintain information about permissions on pages and about
whether the client is actually using the page. Each client has its own commseg. For
every page in the cache, there is a corresponding item in the commseg.

UNIX On UNIX platforms, by default, ObjectStore places the commseg file in the
/tmp/ostore directory. You can specify an alternative directory by setting the OS_
COMMSEG_DIR environment variable. Another way to change the default is to set the
Commseg Directory parameter in the $OS_ROOTDIR/etc/host_cache_manager_
parameters file.

Windows On Windows platforms, the operating system determines the location of the
commseg in shared memory. The commseg is not a file; it is a region of virtual
memory.

The following illustration shows one possible configuration of ObjectStore
processes.

Managing Processes
ObjectStore includes three main processes that communicate with each other to
manage your data:

• Server (osserver)

• Client (application)

Server Client Application

disk

host

host

hosthost

hosthost

network

Server

Cache ManagerCache ManagerCache Manager

Cache Manager

disk

Client Application

Client Application

Client ApplicationClient Application
Release 6.3 23

Managing Processes
• Cache manager (oscmgr6)

In general, the actions you perform on ObjectStore processes are

• Starting up

• Shutting down

• Obtaining process-status information

Communication Among ObjectStore Processes
The following table summarizes the communication among the server, client, and
cache manager processes.

ObjectStore uses network connections to communicate among server, client, and
cache manager processes. The kind of network connection used depends on your
platform. Typically, you need not modify network connections. However, if you do
need to make changes, see Modifying Network Port Settings on page 58.

Starting ObjectStore Processes
Server Chapter 7, Managing ObjectStore on UNIX, on page 299, or Chapter 8, Managing

ObjectStore on Windows, on page 317, provides instructions for starting the server
on your platform. Typically, the installation procedure arranges for the server to be
started automatically when the system is booted.

When you start a server, the server checks for values of server parameters you might
have changed from the default and uses the modified values. If you have not
modified any server parameters, ObjectStore uses the default parameters.

The server then makes its service available. A client can use the network connection
available on its platform to connect to the server. ObjectStore uses default network
connections. To modify these connections, see Modifying Network Port Settings on
page 58.

There are many server parameters you can set to determine the behavior of the
server. Chapter 2, Server Parameters, on page 77, describes each parameter. When
you modify a parameter, you must shut down and restart the server for the
parameter to take effect.

Process Description

Server Responds to client requests for pages

Sends callback messages to cache manager to request release of
ownership held by a client

Client Requests the server to fetch data from a database

Requests the server to store data in a database

Receives locks and pages from the server

Cache manager Receives callback requests from the server

Creates client cache and commseg files
24 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Client When a client application starts, it tries to connect to the cache manager on that
machine. If a cache manager is not running, ObjectStore starts one.

Cache manager The cache manager starts automatically if one is not already running when a client
application starts.

Windows On Windows platforms, the server and cache manager typically run as Services. You
can use the Services applet in the Control Panel to start and stop the server and cache
manager and to determine whether they start automatically when you boot the
system.

Stopping ObjectStore Processes
Server You need to shut down the server in the following situations:

• Before you reboot or halt the host

• After you modify server parameters

• To resize the transaction log (see Log File Size on page 28)

• To add a partition to the rawfs

Follow these steps to shut down the server:

1 Use the ossvrstat utility to determine whether clients are using the server.

Along with other information, this utility displays client names if they have been
set. To identify clients easily, encourage developers to use the objectstore class,
set_client_name() function. See ossvrstat on page 248.

2 Notify clients to end their connections with the server.

3 Use the ossvrclntkill utility to end the server’s connection with any dangling
clients.

Dangling clients are clients still attached to the server even though they no longer
exist. This can happen when a client is halted abnormally rather than being
stopped in the usual manner. See ossvrclntkill on page 242.

4 Use the ossvrshtd utility to shut down the server. See ossvrshtd on page 246.

For information about shutting down a server running on a node of the Sun Clusters
operating system, see Cluster operating system on page 246.

To restart the server, see the instructions in the chapter supporting your platform.

Client Shutdown of a client is the responsibility of the application.

If necessary, you can use the ossvrclntkill utility to sever the connection between
a client and the server. This disconnects the client. See ossvrclntkill on page 242 for
details.

Cache manager Before you shut down the cache manager, notify clients that you are shutting it down
and then use the oscmstat utility to confirm that there are no active clients. See
oscmstat on page 157. Use the oscmshtd utility to shut down the cache manager. See
oscmshtd on page 156 for details. The next client process that starts automatically
starts the cache manager.
Release 6.3 25

Managing Processes
Obtaining Process-Status Information
ObjectStore provides a variety of functions to obtain information about the state of
the server and clients. Some types of information are generated automatically; for
others you run an ObjectStore utility to gather the information.

Process Messages
When an ObjectStore daemon process sends output to stdout or stderr,
ObjectStore routes the output to a corresponding file. These files have different
names on different platforms. For UNIX, see Finding Files Containing ObjectStore
Messages on page 313 in Chapter 7; for Windows, see Finding Files Containing
ObjectStore Messages on page 322 in Chapter 8.

ObjectStore daemons seldom send messages to these files except in debug mode or
under certain unusual error conditions. In these cases, this information can be
helpful in understanding and resolving an error. In debug mode, the ObjectStore
server and cache manager send a lot of output to these files because all of the
debugging output goes there.

When you report a problem involving one of the ObjectStore daemons to Technical
Support, find such a file if it exists and provide the contents.

Displaying Status Information
The ossvrstat utility displays information from various server meters. Examples of
this information are

• The amount of data the server sent to clients

• The amount of modified data clients sent to the server

• The number of committed transactions the server knows about

• The number of times the server chose a deadlock victim

• The number of times a message from a client to the server had to wait to use a
message buffer

• The amount of data in the log

This utility provides these meters and many more for several periods of time, such
as the last hour and the last minute. See ossvrstat on page 248.

The oscmstat utility displays information about the cache manager, client cache
files, and commseg files. See oscmstat on page 157.

Debugging the Cache Manager
Use the following command line to start the cache manager in debug mode:

oscmgr6 -d debug_level

For debug_level, specify an integer from 0 through 50. The higher the number, the
more information ObjectStore displays about cache manager activity.
26 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Pinging
If you are having problems with a server, the first thing to do is run ossvrping to see
if the server is running. See ossvrping on page 245.

Monitoring the Server
You can run the server in debug mode to obtain information about exactly what is
happening. ObjectStore displays messages about process communication that show
where the problems are, if there are any.

There are two ways to enable debug mode:

• Shut down and restart the server with the debug option. See Chapter 7, Managing
ObjectStore on UNIX, on page 299, or Chapter 8, Managing ObjectStore on
Windows, on page 317, for specific details for your platform. When you no longer
need the debug output, shut down the server and restart it without the debug
option. Running the server in debug mode slows down the server but does not
affect clients. Use debug mode only when you are experiencing a problem.

• If you want to turn debug mode on without shutting down the server, you can use
the ossvrdebug utility to set the debug trace level for the server. To enable server
debugging, type ossvrdebug -d debug-level where debug-level is an integer
from 0 to 9. To disable server debugging, type ossvrdebug -d 0. See ossvrdebug
on page 244 for more information.

The Server Transaction Log
Each server keeps a transaction log, also called a log file. The most important function
of the transaction log is to prevent database corruption in case of failure. The log
contains modified pages of data and the records about modified pages of data.

The log file stores database modifications until they are propagated to the database.
The log does not have a fixed size. It can grow to contain as much data as is written
to it. You can use the ossvrstat utility to obtain the size of the log. This is described
more fully in ossvrstat on page 248.

By default, the server places its log file in the rawfs. If there is no rawfs, you must use
the Log File server parameter to specify a path name for the transaction log. When
you use the Log File server parameter, you cannot place the log file in a raw
partition. See Log File on page 92.

When the log is in the rawfs, it is not visible to you. Its size is limited by the size of
the rawfs. The log can span partitions.

When the log is in the native file system, its size is limited by the file partition size.
You should place the log file where it can never be deleted by users accidentally.
Deleting the log file can cause database corruption.

For best performance, the log file should be on a disk that is not used for anything
else.
Release 6.3 27

The Server Transaction Log
When a transaction modifies databases, either all or none of the modifications are
made, depending on whether ObjectStore commits or aborts the transaction. This is
true even if the server machine crashes during the transaction.

If your transaction aborts, the log entries are discarded. When your transaction
commits, your program waits until the log information is safely on disk.

The server moves committed data from the log to databases through propagation. The
information accumulated in the log is propagated from the log to the material (that
is, real) database transparently in a way that does not interfere with client
performance. After propagation, the space in the log that was occupied by
propagated data becomes available for new entries in the log.

Log File Size
When the server recognizes that it needs a bigger transaction log, it increases the size
of the log segments according to the Log Data Segment Growth Increment and Log
Record Segment Growth Increment server parameters. See Log Data Segment
Growth Increment on page 91 for details.

When you run the ossvrstat utility, Current log size, in the list of server
parameters, displays the current size of the log in terms of the number of sectors
involved. A sector is a 512-byte disk block (two sectors equal one kilobyte). Usually,
the log grows to a size that accommodates your application and then stops growing.
There usually is no reason to monitor log size or to worry about its allocation.
However, if an unusual event causes the log to grow too large, there are ways to
make it smaller.

If there is nothing in the log when you start the server, the server resets the size of
the log data segment and log record segments to the sizes set by the Log Data
Segment Initial Size and Log Record Segment Initial Size server
parameters. For log files in the rawfs, this means the space is free for other databases.
For log files in the native file system, this reallocates internal log file space; the log
file size does not change.

Shrinking the
log file

To move or shrink the log, follow these steps:

1 Set the Log Data Segment Initial Size and Log Record Segment Initial
Size server parameters to the values you want. If necessary, ensure that the
correct value is specified for the Log File server parameter.

2 Ensure that no clients are using the server.

3 Run ossvrshtd to shut down the server.

The server propagates the log before it actually shuts down. For information
about shutting down a server running on a node of the Sun Clusters operating
system, see Cluster operating system on page 246.

4 If you are reallocating a log in the rawfs, skip to step 5.

If you are reallocating a log in the native file system, run the server executable
with the -ReallocateLog option.

This does not actually start the server; it only reallocates the log. Enter
28 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
 osserver -ReallocateLog

5 Restart the server. For more information, see Starting the Server on page 302 in
Chapter 7 for UNIX platforms or Starting the Server on page 319 in Chapter 8 for
Windows platforms.

Warning Never use -ReallocateLog if the server is in an inconsistent state. Doing so can
cause database corruption. Call Technical Support for assistance if necessary.

Managing Computer Resources
The computer resources you must manage are your CPUs, memory, disk space, and
network.

CPUs Consider the speed of your CPUs. You can run computation-intensive applications
on your fastest machines, or you can distribute intensive applications evenly among
network hosts. You can also combine these approaches.

Memory ObjectStore uses several kinds of memory. Managing Memory on page 30 describes
effective memory management.

Disk space and
network

Network communications and disk input and output often are the most constraining
elements of your installation. Configure your system to minimize network and disk
activities. Ensure that applications are designed to minimize this activity. Also, you
probably want most of your disks, especially your fastest disks, on the server.

Predicting the amount of disk space you need for a client application requires a good
understanding of the particular application. In general, however, an ObjectStore
application uses disk space as follows:

• On UNIX systems, the default location for the cache and commseg files is
/tmp/ostore. On Windows, the cache is in virtual memory and the commseg is
in shared memory. The operating system determines both locations. If necessary,
you can increase the amount of virtual address space by configuring a larger swap
file.

• ObjectStore uses swap space for transient data when it cannot be mapped into
physical memory during a transaction. See Managing Memory on page 30.

The following table shows how heavily ObjectStore uses resources:

Process CPU Use Disk Use Network Use Memory Use

Server Not intensive. Intensive. Intensive. Not intensive. Uses a
little to communicate
with client.
Release 6.3 29

Managing Memory
Managing Memory
An ObjectStore application uses three kinds of memory:

• Physical memory is the real memory (RAM) available on the machine. All
applications running on the machine share the real memory

• Virtual memory contains the application’s data. Each application has its own
virtual memory.

• Persistent memory is that in which you can store an application’s persistent data.
Each application has its own persistent memory.

Persistent memory is not a limitation on the amount of persistent data an
application can have. It is just the place in which the ObjectStore client
manipulates persistent data for a transaction. Persistent memory is a subset of
virtual memory.

To manage the memory that an ObjectStore application uses, you need to
understand the concept of address space.

What Is Address Space?
ObjectStore transfers an application’s data to virtual memory. Data stored in virtual
memory can, at any particular time, reside in

• Physical memory

• The client cache, which is the backing store for persistent data

• Swap space, which the backing store for transient data

An application’s virtual memory contains both

• Persistent data that the application accesses in an ObjectStore transaction

• Transient data that is static or allocated in the stack or heap

Address space is a range of virtual memory addresses. For most 32-bit computers,
the address space is slightly less than 232 bytes. (The platform’s virtual memory
system might reserve or might not implement a portion of the 232 range.) For 64-bit
computers, the address space is substantially larger.

Client Can be intensive;
depends on
application.

ObjectStore does not
use local disk.
Application might.

Can be intensive. Can be highly
intensive. Lots of
mapping of data in
virtual memory.

Cache
manager

Not intensive. Not intensive. Not intensive. Sends
and receives short
messages.

Not intensive.

Process CPU Use Disk Use Network Use Memory Use
30 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Each client process has its own address space. Address space is distinct from virtual
memory in that

• Address space includes all addresses that could be assigned. It does not matter
whether the address is in use. It typically is larger than virtual memory.

• Virtual memory includes only addresses that currently contain application data,
either in physical memory or in backing store on disk.

How Are the Pieces of Address Space Shared?
A client’s address space includes two kinds of addresses: persistent and transient.
The data itself can be in one of three locations in physical memory or backing store.
These are described in detail in this section.

Kinds of
addresses

Address space includes

• Persistent address space — This is a range of addresses that ObjectStore uses to
store only persistent data.

• Transient address space — This includes all addresses in the address space except
those designated for persistent data.

Just as each client has its own address space, each client has its own persistent
address space, called the persistent storage region or PSR. Two environment variables
control the size and address range of the PSR. OS_AS_SIZE and OS_AS_START have
different default values on different platforms. For example, the PSR on a
SPARCstation 10 running Solaris 2 typically is 400 MB. See OS_AS_SIZE on page 103
and OS_AS_START on page 104 for specific details.

Each client also has its own transient address space. This space includes all addresses
not part of the PSR.

Locations for
data

An application’s data is stored in virtual memory. This means that data is in one of
the following:

• Physical memory

• Backing store

- Client cache for persistent data

- Swap space for transient data

Physical memory is shared by all applications running on that machine. A typical
amount of physical memory for a machine is 32 to 256 MB.

When a page of data needs to be brought into physical memory, the operating
system often needs to make room by removing another page. When the operating
system removes a page from physical memory, it places the page on disk in the
appropriate backing store.

If the page contains persistent data, the operating system pages it to the client cache.
Each client has its own cache.
Release 6.3 31

Managing Memory
If the page contains transient data, the operating system pages it to swap space.
Swap space is a disk file or disk partition that is shared by all applications running
on the host.

Virtual memory Remember that data in an application’s address space is always in virtual memory.
It does not matter whether the data has a persistent address or a transient address. It
also does not matter whether the data is in physical memory or backing store.

Illustration of Address Space
The following figure shows address space. The persistent storage region is near the
middle of the address space. The stack allocates transient data starting at one end of
the range of addresses. The heap allocates transient data starting at the other end of
the range of addresses. The stack and the heap can allocate space until they reach the
persistent storage region. However, on some platforms the stack and heap can grow
large enough so that they infringe on the PSR. This situation may cause your
application to suddenly contain invalid pointers. It can also cause ObjectStore to fail
to initialize correctly or to send mmap failed errors, indicating it could not allocate
memory. To avoid or troubleshoot this situation, conatct ObjectStore Technical
Support for information about tools you can run to monitor address space use.

How Do Transactions Use Address Space?
The PSR limits the amount of data you can touch within a single top-level
transaction. Address space in the PSR must be reserved to correctly relocate data into

Address space is a range of
virtual memory addresses.

The stack
starts
allocating
space at one
end.

The heap
starts
allocating
space at one
end.

Client
Cache

Swap

Persistent
Storage
Region

Transient data is
allocated here.

Transient data is
allocated here.

There is one range of addresses for
each client application.

There is one client cache per
client.

All clients use the same
swap space.

Data stored in address space is in
virtual memory.

Physical Memory
32 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
virtual memory. Space is reserved as each page is used in the transaction, and the
amount of space is the minimum required to relocate the page correctly into virtual
memory.

Normally, after a top-level transaction commits or aborts, the assignments of
persistent space are made available for reuse.

However, if the application is using objectstore::retain_persistent_
addresses(), ObjectStore does not release persistent address space until the
program calls objectstore::release_persistent_addresses().

If a transaction commits, the client

• Sends a copy of each modified page back to the server

• Keeps a copy of each modified page in the cache in case the page is needed in the
next transaction

• Keeps in the cache those pages already in the cache but not modified

If a transaction aborts, the client

• Throws away modified pages because they are no longer valid

• Keeps in the cache those pages already in the cache but not modified, in case they
are needed in the next transaction

An application can limit the amount of address space it uses by

• Limiting the amount of persistent dara that is accessed by a transaction. An
effective way to do this is to cluster the data in a transaction’s working set so that
it uses the minimum number of pages.

• Using ObjectStore soft pointers rather than hard pointers. ObjectStore reserves
address space for objects that are pointed to, even if the transaction does not touch
these objects. But it does not reserve address space for objects referenced by soft
pointers until they are dereferenced. See Using ObjectStore Soft Pointers in
Chapter 1 of the Advanced C++ A P I User Guide for more information.

What Happens When Resources Are Exhausted?
Address resources are large, and it is unusual to exhaust them. However, lack of a
particular resource might affect an application.

Persistent
address space

If persistent address space is needed but is not available, ObjectStore raises the err_
address_space_full exception. This can happen when a transaction tries to assign
to the persistent storage region more data than the PSR can accommodate.

Physical
memory

When physical memory is needed but is not available, the operating system swaps
pages to backing store. The application continues to run; but if a great deal of
swapping (thrashing) occurs, program execution is slower.

Client cache When space in the client cache is needed but is not available, ObjectStore attempts to
migrate modified pages from the client cache back to the server that supplied the
data. This can also degrade performance.
Release 6.3 33

Managing Memory
Swap space If swap space is needed but is not available, the operating system does one or both
of the following:

• Prohibits other processes from starting.

• Aborts the process that required additional swap space.

Often a process is aborted when it tries to allocate more memory; the allocation
function returns 0. If an ObjectStore allocation fails in this way, err_
insufficient_virtual_memory is signaled.

How Can You Control These Resources?
Persistent
address space

Increasing the size of the persistent storage region makes more address space
available for a client’s persistent data. This allows a transaction to access more
persistent data, which in turn might change a transaction that aborts to a transaction
that commits.

The environment variables OS_AS_START and OS_AS_SIZE control the amount of
persistent address space. Each application can use the default values or specify its
own settings. See OS_AS_SIZE on page 103.

Physical
memory

You can add physical memory to the machine to lower the reliance on backing store.
This increases the performance of all applications (ObjectStore as well as non-
ObjectStore) because swapping pages out of physical memory happens less often.
Operating systems include tools that help you determine when an application is
paging; for example, time and top in UNIX or Performance Monitor in Windows.

Client cache Increasing the size of the cache can improve performance if it decreases the need to
send pages containing persistent data back to the server. However, in an application
that operates on large datasets, a larger cache may mean more swapping of pages,
which will lower performance. You control the size of the client cache with the OS_
CACHE_SIZE environment variable. See OS_CACHE_SIZE on page 106.

Swap space Adding more swap space allows you to run more or larger applications. You can add
swap space by following operating system-specific procedures. Some operating
systems require a system reboot to accomplish this, while others allow swap space
to be added while the machine is running. Your operating system includes a tool for
determining the amount of swap space available, for example, pstat -s in UNIX or
the System icon in the Windows Control Panel. Increasing the size of the client cache
or adding swap space provides more potential virtual memory for the client’s data.

How Much Memory Is Needed?
The amount of memory your application needs depends entirely on the application.
Work with the application developers to understand the application’s data
structures and data access patterns. Start by using the default settings for the
variables that control address space. Use test runs of the application to refine
memory allocation.
34 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Reserving Versus Mapping an Address
When considering the way a client uses address space, it is important to understand
the difference between reserving and mapping an address.

When ObjectStore reserves an address for a page, it determines where to put the
page if the client needs it. The data on the page is not available to the client.
Reserving an address ensures that the address cannot be assigned to another page.
ObjectStore assigns address space in units of 64 KB, regardless of the page size on the
platform. Reserving an address consumes address space but not physical memory or
swap space.

When ObjectStore maps a page to an address, it means that the page is available to
the client. The client can now use the data on that page. Mapping occurs one page at
a time and consumes virtual memory (physical memory and, perhaps, swap space).

Managing the Rawfs
This section presents general information on managing a rawfs in an ObjectStore
environment. See Chapter 7, Managing ObjectStore on UNIX, on page 299, or
Chapter 8, Managing ObjectStore on Windows, on page 317, for more platform-
specific information on creating a rawfs.

Advantages The advantages of a rawfs over an environment that uses operating system file
databases are that it

• Allows for large databases because databases can span partitions. Information in
a single database is not limited to the maximum size of a file, which on some
operating systems is limited to 2 or 4 GB. (Large usually refers to multigigabyte
databases, but it also depends on the amount of disk space available.)

• Allows applications to use ObjectStore in such a way that ObjectStore is invisible
to end users.

• Simplifies management because all databases are in a single location.

Security A rawfs can provide greater security because the

• Transaction log is hidden, so accidental deletion cannot occur.

• Content of the rawfs is accessible only through ObjectStore. The rawfs is not
visible to the operating system.

• Database contents are protected at the segment level.

The disadvantages of a rawfs are that it

• Has a fixed size. You must explicitly add a partition to increase the size. While file
partitions in a rawfs can be expandable in size, the performance for file partitions
is sometimes not as good as it is for raw partitions.

• Cannot be accessed with operating system commands, so you lose the flexibility
offered by those commands.

• Might be difficult to back up because of its size.
Release 6.3 35

Managing the Rawfs
Utilities for Managing the Rawfs
ObjectStore provides the following utilities for managing the rawfs. You can use
many other utilities on the rawfs and on rawfs databases, but these supply
functionality that would otherwise be provided by the native operating system.

Note that these utilities can also be used on the file system supported by the native
operating system. In this case, many of the ObjectStore utilities invoke the
corresponding tool provided by the operating system.

ObjectStore utilities that operate on rawfs directories and databases can perform
wildcard processing. The wildcards you can use are described below. For example,
to list all databases in the sax directory that start with charlie, you enter the
following:

osls oscar::/sax/charlie*

The following table describes the wildcard characters you can use:

ObjectStore utility Function

oschgrp on page 150 Changes a database group name

oschhost on page 151 Changes link hosts

oschmod on page 152 Changes database permissions

oschown on page 154 Changes database owner

oscopy on page 167 Copies a database

osdf on page 172 Displays used and available disk space

osln on page 190 Creates a link

osls on page 194 Lists a directory

osmv on page 196 Moves a directory, database, or link

osrm on page 213 Removes a database or link

osrmdir on page 214 Removes a directory

ostest on page 257 Tests a path name for specified conditions

Wildcard Description

* Matches any string, including a null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters
separated by a dash (–) matches any character lexically between the
pair, inclusive. If the first character following the opening bracket ([)
is an exclamation point (!), any character not enclosed is matched.

{ ... } Matches any one of the enclosed sequences. For example,
file.{cc,hh} matches file.cc and file.hh.
36 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
UNIX On UNIX systems, you must precede the wildcard with a backslash (\) or enclose the
path name with the wildcard in quotation marks (" "). This prevents the shell from
interpreting the wildcard as a shell wildcard.

Reconfiguring the Rawfs
You need to reconfigure a rawfs if you want to shrink the size of the rawfs to save
space or you want to remove a partition. Reconfiguring a rawfs involves wiping out
the existing rawfs.

See Chapter 7, Managing ObjectStore on UNIX, on page 299, or Chapter 8, Managing
ObjectStore on Windows, on page 317, for specific instructions about creating a
rawfs and starting the server on your platform. If you decide to reconfigure the
rawfs, use that information with these general instructions.

To reconfigure a rawfs:

1 Confirm that you are on the machine you want to reinitialize and that the OS_
ROOTDIR environment variable reflects this. You must be careful not to delete
another rawfs accidentally.

2 Use the ossvrstat utility to confirm that no users are changing any databases in
the rawfs. The rawfs databases are backed up for the last time during this
procedure.

3 Make sure that no clients attempt to use databases during the rest of this
procedure.

4 Use the ossvrchkpt utility to move everything in the log to the relevant
databases.

5 Use the osbackup or oscopy utility to back up the databases in your rawfs.

6 Use the ossvrshtd utility to shut down the server. For information about shutting
down a server running on a node of the Sun Clusters operating system, see
Cluster operating system on page 246.

7 On UNIX platforms, modify the PartitionN server parameter specifications to
reflect your new rawfs. On Windows platforms, use the ObjectStore setup.exe
utility to modify the configuration of the rawfs.

8 Initialize the server by specifying osserver -i. This wipes out the rawfs
partitions.

9 Start the server.

10 Use the osrestore utility (or oscopy, if you used it when saving the database) to
restore any necessary databases.

What You Need to Know About the API
Some administrative tasks require familiarity with aspects of the ObjectStore API.
The following sections discuss these aspects of the API.
Release 6.3 37

What You Need to Know About the API
Capacity Planning
Capacity planning requires knowledge of the data structures underlying any
ObjectStore classes that the application stores, such as collection, relationship, and
reference classes. See the following related ObjectStore documentation.

Data Organization
Managing the physical organization of the data (what is stored next to what) requires
knowledge of the application’s creation and deletion patterns and clustering
directives. For information about creation and deletion patterns, talk to the
application developers. For information about clustering, see Chapter 3,
Programming with Persistent Storage, in the C++ A P I User Guide.

Indexes and Contention
Managing indexes uses the API, and managing contention sometimes involves the
API (for example, controlling locking granularity and lock caching). For information
about indexes, see Chapter 7, Using Indexes to Optimize Performance, in the C++
Collections Guide and Reference. For information about controlling locking granularity
and lock caching, see Chapter 2, Advanced Transactions, in the Advanced C++ A P I
User Guide.

Managing ObjectStore Programmatically
ObjectStore provides various utilities for performing different routine
administrative tasks. For example, the osverifydb utility can be used to verify
pointers and references in an ObjectStore database.

Although the utilities are intended for use on the command line, their functionality
can also be invoked programmatically. The ObjectStore API includes the os_dbutil
class whose member functions correspond to many of the utilities. For example,
pointers and references in a database can also be verified by calling the os_
dbutil::osverifydb() function within a program. The os_dbutil class thus
enables you to use its member functions as the basis for writing your own utilities.

The following tables list the different administrative tasks you can perform
programmatically by calling member functions of the os_dbutil class. Note that
before using any of these functions, you must call os_dbutil::initialize(). For
reference information about os_dbutil and its functions, see os_dbutil in Chapter
2 of C++ A P I Reference.

For Information About See

Soft pointers Chapter 1, Advanced Persistence, in the Advanced C++
A P I User Guide

Collections Chapter 1, Introducing Collections, in the C++
Collections Guide and Reference

Relationships Chapter 4, Data Integrity, in the Advanced C++ A P I User
Guide
38 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
The tables are organized according to the following components of ObjectStore that
might require management:

• Server

• Client

• Cache manager

• Database

• Schema

Managing Servers

Managing Clients

Task Function

Determining sector size os_dbutil::get_sector_size()

Making the server take a checkpoint os_dbutil::svr_checkpoint()

Killing a client thread on a server os_dbutil::svr_client_kill()

Enabling debugging information about the
server

os_dbutil::svr_debug()

Mapping a server to a host os_dbutil::svr_machine()

Pinging a server to determine if it is running os_dbutil::svr_ping()

Shutting down a server os_dbutil::svr_shutdown()

Getting information about the server os_dbutil::svr_stat()

Task Function

Closing client connections os_dbutil::close_all_connections()

os_dbutil::close_all_server_connections()

os_dbutil::close_server_connection()

Getting a client name os_dbutil::get_client_name()

Setting a client name os_dbutil::set_client_name()
Release 6.3 39

What You Need to Know About the API
Managing Cache Managers

Managing Databases

Task Function

Removing unused cache and commseg
files

os_dbutil::cmgr_remove_file()

Shutting down the cache manager os_dbutil::cmgr_shutdown()

Getting information about the cache
manager

os_dbutil::cmgr_stat()

Task Function

Copying a database os_dbutil::copy_database()

Getting the host name of a database os_dbutil::hostof()

Moving databases offline or online os_dbutil::osdbcontrol()

Getting the size of a database os_dbutil::ossize()

Verifying pointers and references in a
database

os_dbutil::osverifydb()

os_dbutil::osverifydb_one_segment()

Controlling output messages during
database replication

os_dbutil::start_backrest_logging()

os_dbutil::stop_backrest_logging()
40 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Managing the Rawfs

Managing Schema

Task Function

Changing the primary group of a directory
or rawfs database

os_dbutil::chgrp()

Changing ownership of databases and
directories

os_dbutil::chown()

Changing database permissions os_dbutil::chmod()

Getting rawfs disk space information os_dbutil::disk_free()

Expanding a rawfs file name os_dbutil::expand_global()

Testing for a rawfs pathname os_dbutil::file_db_pathname()

os_dbutil::split_pathname()

Listing the contents of a rawfs directory os_dbutil::list_directory()

Making a rawfs directory os_dbutil::mkdir()

Moving a rawfs directory or database os_dbutil::rename()

Changing the host referenced by a link in
the rawfs

os_dbutil::rehost_link()

os_dbutil::rehost_all_links()

Removing a database or rawfs link os_dbutil::remove()

Moving a rawfs directory or database os_dbutil::rename()

Removing a rawfs directory os_dbutil::rmdir()

Getting information about a rawfs
pathname

os_dbutil::stat()

Task Function

Comparing schemas os_dbutil::compare_schemas()

Setting the path of the
application schema database

os_dbutil::set_application_schema_path()
Release 6.3 41

Managing Databases
Managing Databases
When managing an ObjectStore database, you are likely to perform the following
operations:

For information about these and the other utilities for managing ObjectStore, see
Chapter 4, Utilities, on page 131.

Working with Databases and Data Sets
Database management is complicated by the fact that a database often points to other
databases and is pointed to by other databases. Databases that have such
relationships constitute a data set. To perform many administrative activities, you
must identify the databases that make up the data set. For example, a database called
databaseA might be part of a data set that includes

• databasea

• All databases that point to or reference databaseA and their data sets

• All databases that databaseA points to or references and their data sets

If a database contains no external pointers or references and is not pointed to or
referenced by any other database, it alone is the data set. The application developer
is often the best source for obtaining information about external pointers or
references. If the developer is not available, you can use the osaffiliate utility to
list a database’s affiliation tables. (An affiliation table lists the cross-database
references — for example, an affiliation table of databaseA identifies the databases
to which databaseA points.) You can use the information in the affiliation tables to
establish a database’s data set. For more information, see osaffiliate on page 135.

Once you have identified the databases in the data set, if you move all the databases
of the data set as a unit, no further action is usually required. For example, if there
are references among the three databases

Operation Utility and Reference

Copy oscopy on page 167

Move osmv on page 196

Delete osrm on page 213

Backup osbackup on page 143

Restore osrestore on
page 208

Dump osdump on page 173

Load osload on page 192

Compact oscompact on
page 160

Verify osverifydb on
page 258
42 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
host:/usr/ed/db1
host:/usr/ed/dbs/db2
host:/usr/ed/dbs/db3

and they are moved to

host:/usr/fred/db1
host:/usr/fred/dbs/db2
host:/usr/fred/dbs/db3

or

hostess:/usr/ed/db1
hostess:/usr/ed/dbs/db2
hostess:/usr/ed/dbs/db3

no action is required so long as the affiliation tables use relative pathnames. If you
move one of the set or change the name of one or more of the databases, you must
use the osaffiliate utility to update the others to reflect the change. See osaffiliate
on page 135.

Schema
databases

When you are operating on schema databases, you need not identify the data set. A
schema database does not have cross-database pointers and references.

Your application’s executable files may have references to schema databases. Use
ossetasp to determine whether the path name is embedded in the application and
to update the path name as required. Applications can use the set_application_
schema_pathname() function of the objectstore class to choose the location of the
schema database at run time. If you use this function, you must work with the
application developers to determine how best to keep schema database path names
consistent. See also ossetasp on page 221.

Operating on a
data set

After you identify a data set, you can perform administrative functions on the entire
set. If you rename or move an individual database in the set, use the osaffiliate
utility (described in osaffiliate on page 135) to fix any external pointers and
references.

Moving, Renaming, and Dumping Databases
Before moving, renaming, or dumping a database, do the following:

1 Run the osverifydb utility (described in osverifydb on page 258) to confirm that
no bad pointers or dangling references exist. This utility detects inconsistencies; it
does not fix them.

If you are moving a database within a rawfs, verification is not necessary.

2 Run the ossize utility (described in ossize on page 238) to ensure that cross-
database references are established correctly.

3 Perform steps 1 and 2 on all databases in the data set.

4 Run the ossvrchkpt utility (described in ossvrchkpt on page 241) to ensure that
all data has been propagated from the log to the affected database or databases.

To avoid administrative difficulties,

• Encourage developers to design database hierarchies that can be moved easily.
Release 6.3 43

Managing Database Fragmentation
• Keep all databases in a set in a single directory.

Managing Server-remote Databases
Databases are usually local to the server. However, you can enable a server to control
databases that reside on a remote host. See Chapter 5, Using Locator Files to Set Up
Server-Remote Databases, on page 265, for details.

Databases and Applications on CD-ROM
You can place an ObjectStore application on a CD-ROM and run the application from
the CD-ROM. You can access read-only databases on the CD-ROM. To do this, you
must allocate a server log on a local writable disk. The server itself (the executable
files that make up the server) can reside on the CD-ROM.

You should validate the schemas before you place an application or database on a
CD-ROM. In other words, run the application on the database in question (in update
mode) and then put the application or database on the CD-ROM. This validates the
schemas and sets the appropriate cache state in the databases. The result is improved
performance because schema validation is not needed when the application opens
the database on the CD-ROM.

For information about schema validation, see Chapter 9, Schemas, in the C++ A P I
User Guide.

Managing Database Fragmentation
A database becomes fragmented when its data is allocated in noncontiguous sectors
that are scattered throughout the disk. Although some degree of database
fragmentation is unavoidable, severe fragmentation can impact the performance of
the ObjectStore server.

Fragmentation can occur in two areas of an ObjectStore database:

• The mapping of persistent objects to offsets within an ObjectStore cluster — that
is, the logical structure of a database

• The mapping of clusters to database files and of files to disk storage — that is, the
physical structure of a database

The following sections describe fragmentation in the logical structure and physical
structure of an ObjectStore database. These sections also include information about
detecting and controlling fragmentation.

Fragmentation in the Logical Structure
The logical structure of a database can become a source of fragmentation when the
client application does either of the following:

• Allocates noncontiguous storage for persistent objects that are accessed together.

• Creates and deletes many persistent objects in the same cluster.
44 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Noncontiguous allocation occurs when the application does not cluster data to
match its access patterns. For example, if the application always accesses the objects
x and y together, then they should be allocated in the same cluster and as close to
each other as possible. If they are allocated in different clusters or in noncontiguous
areas of the cluster, the server must transfer each object separately, resulting in
increased disk I/O and network activity and possibly decreased performance.

The ObjectStore API enables you to control the placement of objects in the database;
see Clustering in Chapter 3, Programming with Persistent Storage of C++ A P I User
Guide. For a discussion of clustering and its impact on performance, see the
ObjectStore Technical White Paper, Designing C++ Applications for Scalability and
Performance.

Creating and deleting many persistent objects can fragment a database by resulting
in numerous free regions intervening between valid persistent objects in the same
cluster. One way to prevent this type of fragmentation is by pool allocation and by
using data structures to keep track of where the objects and free regions are in the
pool. For a simple implementation of pool allocation, see Stanley B. Lippman’s C++
Primer, 2nd edition (Reading MA, 1991), pages 149 - 150.

You can defragment a database that contains many unwanted free regions by using
the oscompact utility, as described in oscompact on page 160.

Fragmentation in the Physical Structure
The physical structure of a database can become fragmented in either of the
following circumstances:

• The mapping of the data part of a cluster onto sectors in the database file or sectors
in rawfs partitions results in the entire cluster's data not being stored in a single
contiguous range of sectors. This fragmentation can also happen for metadata
tables but is rare because these tables are composed of a number of small units that
are accessed separately.

• The mapping of a database file or rawfs partition file onto sectors of one or more
disk drives results in the entire file not being stored in a single contiguous range
of sectors.

In both cases, the root cause is the growth policy for allocating physical disk space
(that is, sectors in a database file or in rawfs partitions) to clusters. If the policy is too
small (for example, if it is biased towards minimizing consumption of disk space), a
cluster's disk space will only grow by a small number of sectors. If many clusters are
growing at the same time, their sectors will be interleaved and each cluster's disk
space will end up fragmented into many small fragments.

Checking for Fragmentation
If application performance is unexpectedly slow and the bottleneck seems to be in
the ObjectStore server rather than in the client, you should check to see if your
database is fragmented. A small amount of fragmentation is usually acceptable, but
if clusters have more than a few fragments or there are fragments smaller than a page
(4K or 8K on most platforms), fragmentation may be slowing performance.
Release 6.3 45

Managing Database Fragmentation
ObjectStore provides the following tools for detecting and reporting on database
fragmentation:

• os_database::get_fragmentation(). This function returns statistics about
fragmentation in the physical structure of a database. For more information, see
os_database::get_fragmentation() in Chapter 2 of C++ A P I Reference.

• ossize -f. When invoked with the -f option, the ossize utility displays
fragmentation statistics in report format. For more information, see ossize on
page 238. You can also use the ossize utility programmatically, as described in
os_dbutil::ossize() in Chapter 2 of C++ A P I Reference.

Minimizing Fragmentation
One way to minimize fragmentation in the physical structure of a database is to
change the policies for growing clusters, database files, and expandable rawfs
partitions. These policies can be changed by means of the server parameters
described in the following sections of Chapter 2, Server Parameters, on page 77:

• Cluster Growth Policy on page 85

• Database File Growth Policy on page 86

• RAWFS Partition Growth Policy on page 96

In the following paragraphs, it is assumed that you understand the syntax for
specifying these server parameters, which is also described in the above-mentioned
sections.

The Cluster Growth Policy parameter is probably the most useful of the three. If
disk space usage is your primary concern, you might want to set this parameter to a
smaller value than the default. For example:

Cluster Growth Policy: 512

Alternatively, you might consider a policy that grows clusters in increments equal to
the client page size — one of the following, depending on the type of client hardware
you use:

Cluster Growth Policy: 4K
Cluster Growth Policy: 8K
Cluster Growth Policy: 16K

If most of your clusters are very large, you might decide to use a policy that grows
large clusters by very large amounts, while still growing smaller clusters by small
amounts. For example, you could append three more items to the default policy to
produce this policy:

Cluster Growth Policy: 512 20K, 1K 40K, 2K 80K, 4K 160K, \
 8K 320K, 16K 640K, 32K 1280K, 64K 2560K, 128K 5120K, 256K

Your choice of cluster growth policy should be determined by how much
fragmentation you want to tolerate and how much disk space you are willing to
waste by allocating more space to a cluster than it will ever use.

The Database File Growth Policy and RAWFS Partition Growth Policy
parameters are useful for addressing fragmentation of the mapping of a database file
or rawfs partition file onto sectors of one or more disk drives. If your databases are
46 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
very large, you might consider increasing the growth increment beyond the default
of 1 MB at a time in the default Database File Growth Policy. For example, the
following policy will cause database files to grow by up to 10 MB at a time:

Database File Growth Policy: 4K 40K, 10% 100M, 10M

Adjusting the Database File Growth Policy and RAWFS Partition Growth
Policy parameters can also affect cluster fragmentation by leaving more space free
in the database file or RAWFS. ObjectStore can take advantage of this free space to
allocate clusters with buffer zones of free space between them that allow multiple
clusters to expand contiguously without bumping into each other, thus avoiding
fragmentation.

Presizing
Another way to minimize fragmentation is to presize the cluster or database file.
Presizing is best used when the final or desired size of the cluster or database file is
well understood and the application that creates it can easily have the presizing logic
added.

Rather than allow a cluster to grow incrementally as persistent objects are allocated
in it, you can presize the cluster by calling the os_cluster::set_size() function.
Cluster presizing is best done in the same transaction that creates the cluster, but it
can also be done later. Either way, no other clients (except MVCC readers) can read
or write to the cluster concurrently. Presizing a cluster is likely to cause much less
fragmentation than gradual growth would cause. If presizing can be used to fix
particular problem clusters, there may be no need to tune the Cluster Growth
Policy server parameter.

Similarly, a database file can be presized by calling the os_database::set_size()
or os_database::set_size_in_sectors() function. The presizing operation can
be slow because the host operating system requires that the entire file be written at
the time it is presized, and disks have a limited I/O speed, typically on the order of
1 GB per minute. Thus, database file presizing is best done when setting up a set of
databases rather than during production when response time is important. If
presizing can be used to fix particular problem databases, there may be no need to
tune the Database File Growth Policy parameter.

For information about the presizing API, see the following sections of Chapter 2 in
C++ A P I Reference:

• os_cluster::set_size()

• os_database::set_size()

• os_database::size_in_sectors()

You can also presize a cluster or database file on the command line, using the
osdbcontrol utility, as described in osdbcontrol on page 169.

Defragmenting the Physical Structure
The best way to defragment an existing database is to back it up and restore it, as
follows:
Release 6.3 47

Overview of the Backup/Restore Facility
1 Use the osdbcontrol utility to take it offline.

2 Change its access mode or name so that clients cannot use it.

3 Bring the database back online with the osdbcontrol utility.

4 Back up the database with the osbackup utility.

5 Delete the original database with the osrm utility.

6 Restore the database with the osrestore utility.

7 Check that the fragmentation has been removed with the ossize utility.

8 Restore the database’s original name and access mode so that clients can use it
again.

If you have enough free disk space, you can use the oscopy utility instead of Steps 4
- 6. Use oscopy to copy the database to a new database with a temporary name and
then use the osmv utility to rename the database to its original name.

For information about the ObjectStore utilities, see Chapter 4, Utilities, on page 131.

Overview of the Backup/Restore Facility
ObjectStore provides the following utilities to back up and restore databases without
interrupting the databases’ availability:

• osbackup and osarchiv

These utilities back up specified databases to a secondary storage location. The
osbackup utility performs backups according to the level that you specify; that is,
it copies clusters that have been modified since a certain date. The osarchiv
utility performs snapshots of pages modified since the previous snapshot or
backup. You specify the interval between snapshots.

• osrestore and osrecovr

These utilities copy data from backups and archive media to your disk. The
osrestore utility primarily restores databases from sources created by the
osbackup utility. The osrecovr utility primarily restores data from archive files
created by osarchiv. You can specify a point in time to which you want to recover
data.

These utilities provide protection from catastrophic data loss due to hardware failure
and can be used to transport databases from one location to another. Run the utilities
in the following order:

1 Run the osbackup utility (described in osbackup on page 143) according to a
schedule that you determine.

2 Keep the osarchiv utility active. See osarchiv on page 137.

3 Run the osrestore utility (described in osrestore on page 208) to recover data
backed up by the osbackup utility.

4 Run the osrecovr utility (described in osrecovr on page 199) to recover data from
archive logs.
48 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Online Backup and Archive Logging
Online backup is the first step in guarding against data loss, but it cannot help you
recover modifications made after the backup was performed. Archive logging
provides the information you need to recover modifications made after a backup.
Online backup gives you a starting point for using archive logging.

Online backup and archive logging provide these features:

• Interdatabase transaction consistency. Databases are consistent both internally
and across the entire set of databases being backed up.

• Distributed backup capability, which allows transaction-consistent backups of
interdependent distributed databases. You can back up databases on different
servers in the same backup operation.

• Concurrent read and write access by ObjectStore applications to databases in the
backup set. That is, online backup never obtains locks on data in the backup set,
so standard ObjectStore transactions can proceed normally.

• Support for full and incremental backup.

• Platform-independent format of backup archives, which allows databases to be
moved from a server on one architecture to a server on another architecture. (This
does not affect whether or not the clients of a given architecture can access the
database. See Chapter 5, Building Applications for Multiple Platforms in Building
C++ Interface Applications.)

• Ability to generate a single archive log for distributed databases.

• Ability to perform batch transactions to reduce the amount of data that must be
archived.

The server transaction log is not affected by archive logging.

Online Restore and Recovery
The osrestore utility restores databases from a backup image, restoring either the
entire backup set or selected databases within the set. Although osrestore runs
with the ObjectStore server online, ObjectStore applications cannot access databases
that are being restored until the entire restoration process is complete.

Online restore and recovery offer these features:

• You can almost always recover a committed transaction if archive logging was
being performed for the database when the transaction was committed. Note,
however, that there is some delay between the time when a transaction is
committed and the time when it is written to the archive log. If the crash occurs
during this interval, the transaction will not be written to the archive log.

• You can recover databases back to a transaction-consistent state at a specific time
by restoring backup images and then applying committed changes from the
archive log.

• Recovery time is fast because the archive log stores modified data and not the set
of operations that modified the data.
Release 6.3 49

Backup Strategies
• You can recover modifications from backup images and from archive logs in the
same operation.

See Backup Strategies on page 50 for particular suggestions about using
ObjectStore’s backup and restore tools in a manner that best suits your environment.

Backup Strategies
When you develop a backup strategy, you need to consider certain conditions of
your database environment. The questions to think about include the following:

• How large are your ObjectStore databases?

• How far back do you need to back up?

• How much downtime to perform backups can you tolerate, if any?

• How much time can you tolerate for recovery?

The following sections provide suggestions and examples of methods and tools you
might use, depending on your answers to the previous questions.

General Backup Practices
ObjectStore Technical Support recommends, at a minimum, a nightly backup of
ObjectStore databases. The osbackup command is an online utility that runs as if it
were an ObjectStore multiversion concurrency control (MVCC) client. It does not
cause any concurrency conflicts.

With osbackup, you can specify a backup level from 0 to 9. Files that have been
modified since the last backup at a lower level are copied to the backup image. For
example, suppose that you did a level 2 backup on Monday, followed by a level 4
backup on Tuesday. A subsequent level 3 backup on Wednesday would contain all
files modified or added since the level 2 (Monday) backup.

You can store the backup image on tape or on disk. If you are backing up to disk, use
a separate disk for the backup images. This allows reads to occur on the source disk
and writes on the target disk, which produces a faster backup. This also ensures that
a fatal hardware failure of the database disk does not destroy the backup images.

Windows You might choose to run Microsoft’s Schedule service or use the at command to
invoke this operation automatically each night.

UNIX You can take advantage of the cron facility on UNIX systems to automatically
invoke the backup operation each night.

After the backup is complete, the backup images can then be moved to tape and
eventually be stored in a safe location. For determining the best backup strategy, it
is important that the sizes of production databases be estimated. If the databases are
not in the gigabyte range, it is better to perform a level 0 (full backup) every night, as
opposed to doing additional incremental backups. The advantage is that, in the
50 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
event of a failure, only a single backup image needs to be restored. The following is
a sample backup strategy:

For example, if you need to restore the databases to their state on Saturday morning,
you must restore the backup images from Sunday night, Wednesday night, and
Friday night.

osbackup
command flags

Following is a sample backup command:

osbackup -i bkup_rec -l 0 -f full_bkup.img sample1.db \
 sample2.db sample3.db

• The -i flag specifies the incremental record file — a file that contains information
about the databases that have been backed up and when they were backed up.
The osbackup utility uses this information to determine those clusters and
segments within a database that have been modified since the last backup at a
lower level. The utility then backs up only modified clusters. The incremental
record file is comparable to the archive record file for osarchiv.

Use the same incremental record file for both osbackup and osarchiv. If you do
not, osarchiv starts its archiving operation with a full copy first. Make sure that
you use the most recent backup and archive images.

• The -l flag specifies the level of the backup. You can specify an integer from 0 to
9. Files that have been modified since the last backup at a lower level are copied
to the backup image. Backup is incremental at the cluster level, meaning that a
cluster is only backed up if it has been modified since the last backup at a lower
level. A level 0 backup (the default) backs up all clusters in all specified databases.

• The -f flag specifies the location of the backup image.

See osbackup on page 143 for further explanation of the options for this utility.

Archive Logging
The osarchiv utility takes much smaller pictures of the database than osbackup
takes. ObjectStore Technical Support recommends that you always run the osarchiv
utility, even during an osbackup. The advantage of this is that in the event of a
system failure during the osbackup process, no data is lost. The osarchiv utility
performs snapshots of pages modified since the previous snapshot or backup. You
specify the interval between snapshots. The osarchiv utility records all transaction
activity for specified databases.

Because the osarchiv process requires a backup image as initial input, the script
responsible for this operation might choose to stop osarchiv and restart it each night
after the osbackup process is completed successfully. Avoid updates in the window
of time following the start of osbackup and the startup of osarchiv so that osarchiv
does not have to dump full clusters. You can move the archive file from disk to tape
at this time if disk space is an issue.

Sun.: Backup level 0

Wed.: Backup level 1

Mon., Tues., Thurs., Fri., Sat.: Backup level 2
Release 6.3 51

Backup Strategies
osarchiv switches to the next archive file in the sequence when it encounters the
maximum size allowed for an archive file. You can specify the maximum amount
with the -s flag. The default maximum size is 2 MB. If osarchiv runs out of disk
space for archive files, it notifies you and suspends activity until additional disk
space is available.

The utility uses the following naming convention for archive files:

YYYYMMDDHH.ext, where

If you decrease the time between snapshots, you also decrease the number of
transactions recorded in each snapshot. Using shorter intervals between snapshots
has the effect of keeping the archive more up to date and keeping the amount of data
that needs to be archived smaller at each interval. However, because each snapshot
causes information to be written to the archive file, even if no data modifications are
being recorded, frequent snapshots can consume space in the archive file
unnecessarily. Longer intervals can reduce the amount of data being logged in cases
in which the same data is modified by multiple transactions. In such cases, only the
most recent copy of the committed data needs to be logged.

osarchiv
command flags

The following is an example of an osarchiv command:

osarchiv -a bkup_rec -d archive_img -i 30 sample1.db \
 sample2.db sample3.db

Remember that the incremental record file created with osbackup is the starting
point for osarchiv. In the previous command-line example:

• The -a flag specifies the path of the archive record file that osarchiv uses to record
the segment change IDs for the archive set. The osarchiv utility updates this file
each time it successfully records committed changes to the archive set. This
activity is known as taking a snapshot. The osarchiv archive record file is
equivalent to the incremental record file for osbackup. It is usually the same file.

• The -d flag specifies the directory in which to create the archive log files. You
cannot perform archive logging directly to a tape device.

• The -i flag specifies an integer that osarchiv uses as the interval between
snapshots. By default, this interval is in seconds, but you can append m, h, or d to
the interval value to indicate minutes, hours, or days. For example, -i 60 and -i
1m both specify an interval of one minute. When the interval is not 0, osarchiv
takes a snapshot immediately after being initiated and then every interval n
seconds (or minutes, hours, or days) thereafter. When you do not specify an
interval, it defaults to 0, which means that snapshots are not taken automatically.

Variable Meaning

YYYY Year

MM Month

DD Day

HH Hour

ext Extension of the form aaa, aab, aac...
52 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
See osarchiv on page 137 for further information about the options for this utility.

Special Considerations for Large Databases
The osbackup procedure backs up approximately 9 GB an hour. The backup can take
much longer under certain load conditions, such as when updates are occurring on
large numbers of pages while the backup is running. Contrast this time requirement
with an operating system backup that averages faster backups per hour. If you have
very large databases to back up, the advantage of an online back up with osbackup
might be less important than the amount of time it takes to do the backup. You might
benefit more from shutting the ObjectStore system down and backing up the file
system by using operating system commands, as described next.

The most dependable and least time-consuming method of backing up your data is
to depend on the operating system backup and the ObjectStore archiver. The
sequence of activities you need to complete is summarized in the following list:

1 Make sure osarchiv is running.

2 Run osdbcontrol -offline for the database.

3 Shut down osarchiv.

4 Run the file system backup.

5 Run osdbcontrol -online for the database.

6 Restart osarchiv.

The next section describes the way osrestore and osrecovr work.

Restore and Recovery Options
You should use the osrestore utility to restore databases from the most recent
backup images created previously by osbackup. Recover any archive images created
by the osarchiv utility by using the osrecovr utility.

Using both
osrestore and
osrecovr

When you are restoring databases to a specific point in time, make sure you run
osrestore before you run osrecovr. The following osrestore command provides
an example that assumes a full backup was performed:

osrestore -f full_bkup.img

• The -f flag specifies the location of the backup image. The osrestore utility
prompts you for incremental backup images you might want to apply after this
(you use this option if you have incremental backup images resulting from an
incremental backup procedure).

After the database has been restored, you can restore your database to a point in
time by running the osrecovr utility with a command such as

 osrecovr -F archive_list.txt

• The -F flag specifies the location of a file containing the names of all the archive
images. For example, archive_list.txt might contain

 C:\name\user>type archive_list.txt
 archive_img\1999020719.aaa
 archive_img\1999020719.aab
Release 6.3 53

The Dump/Load Subsystem
 archive_img\1999020720.aac
 archive_img\1999020720.aad
 archive_img\1999020720.aae
 archive_img\1999020720.aaf

To recover to a specific date and time, use a command such as the following:

-F archive_list.txt -D 2/8/1999 -r 19:59:45

See osrestore on page 208 and osrecovr on page 199 for further explanation of
options for these utilities.

Using system
backup and
osrecovr

Archive image files generated in a directory (specified by the osarchiv -d flag) can
be deleted or moved to tape at your discretion. In the event of a failure, you can first
restore your UNIX or Windows backup files and then invoke osrecovr with the file
name that contains a list of all the archived images in the directory specified by the
-d flag.

The Dump/Load Subsystem
The dump/load subsystem provides a facility that allows ObjectStore users to dump
databases into, and load databases from, a nondatabase format.

The ObjectStore dump/load facility allows you to

• Dump the contents of a database or group of databases to an ASCII file.

• Generate a loader executable capable of creating, given the ASCII file as input, an
equivalent database or group of databases.

The dumped ASCII files from an ObjectStore C++ database are in a compact, human-
readable format. You can read the files with an editor or string processing program
such as perl, awk, or sed. The ASCII file is the input for the loader.

See osdump on page 173 and osload on page 192 for more detailed information
about using the dump/load facility with C++ databases. For advanced topics related
to customization, see Chapter 6, Dump/Load Facility, in the Advanced C++ A P I User
Guide.

See osjidump on page 186 and osjiload on page 188 for more detailed information
about using the OSJI version of the dump/load facility with Java databases.

Upgrading a C++ Database
This section describes how to use osdump and osload to upgrade an ObjectStore
database with a Release 5.1 format to one with a Release 6.1 format.

Note To dump an ObjectStore C++ Release 5.1 database for upgrading to Release 6.1, you
must use the latest version of the Release 5.1 osdump utility; contact Technical
Support for details on how to obtain this version.

1 Verify the existing R5.1 database using the R5.1 version of osverifydb. If your
databases have any illegal pointers or other problems, the dump and load
54 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
operations will not work properly. Contact ObjectStore Technical Support if you
osverifydb reports errors you cannot resolve.

2 Dump the databases using the latest Release 5.1 version of osdump to create the
database table file and the ASCII representations of the databases.

This step creates the database table file and the ASCII representations of the
databases. The output consists of the following files: db_table.dmp,
filename.scm, and a series of files with the form databasename_segmentN.dmp
and databasename_segmentN.fix.

3 Generate a Release 6.1 application schema that corresponds to the schema of the
Release 5.1 database.

You will need the C++ header files and the schema source file (schema.cc in the
example, below) that marks all persistent types that were used to create the
original database. You need to change or remove any types that are not supported
in Release 6.1.

On Windows, generate the schema as follows:

 ossg -asof schema.obj -asdb schema.adb /nologo /GX /MD \
 /DWIN32 schema.cc

On UNIX, generate the schema as follows:

 ossg -assf dschema.cc -asdb schema.adb \
 -I$OS_ROOTDIR/include schema.cc

4 Generate the source files for the loader application from the application schema
created in step 3 by using the Release 6.1 version of osload with the -emit option.
For example:

 $OS_ROOTDIR/bin/osload -emit schema.adb

This will generate the source code for a loader application and the makefile you
can use to build the application.

Note that the osload utility used in this step is the generic version supplied by the
ObjectStore installation. In the next steps you will build and run your own version
of osload that is tailored to your specific database files.

5 Include your application’s header files in the generated ldrhdr.h file

6 Update the generated makefile as follows:

- Add your own libraries to the USER_LOAD_LIBRARIES variable.

- Add a variable named USER_INCLUDES and set it to the directory where your
application’s .h files are located.

- Add a variable named USER_LIBS and set it to the directory containing your
own libraries

- Add $(USER_INCLUDES) to the end of the CCFLAGS line.

- Add -L$(USER_LIBS) to the end of the LDFLAGS line.

7 If necessary, customize the generated loader code.
Release 6.3 55

The Dump/Load Subsystem
8 Build your database-specific version of the osload executable from the loader
source files. On Windows, use nmake and makefile.w32. On UNIX, use the make
utility and makefile.unx. These makefiles are generated in step 4.

You must build the loader using ObjectStore Release 6.1 libraries.

You should build the loader in a directory different from the directory where the
dumped database files (step 2) are located.

9 Generate the Release 6.1 format database by running osload executable you
created in step 8.

 osload -cwd -dir dirname

The -cwd option tells osload to generate the databases in the current working
directory. The -dir option specifies the location of the dumped database files.

See osload on page 192 for more information on osload.

10 Verify the new database using the R6.1 version of osverifydb.

Upgrading a Java Database
This section describes how to use the osjidump (or osdump) and osjiload utilities to
upgrade a database from ObjectStore Java interface Releases 3.0, 6.0, 6.1, or 6.2 to
Release 6.3.

Note The osjidump and osjiload utilities are only installed when you install the
ObjectStore Java interface. The utilities are located in the OSJI/bin directory. Before
dumping a database, you should obtain the latest version of osdump or osjidump for
the release associated with that database from ObjectStore Technical Support.

The osjiload utility requires the CLASSPATH environment variable include the OSJI
classes OSJI/osji.jar and OSJI/tools.jar as well as the postprocessed class files
used in your database schema.

To upgrade your ObjectStore Java interface database:

1 Dump the database using osdump or osjidump. For dumping ObjectStore Release
3.0 or 5.1 databases, use osdump. For dumping Release 6.0, 6.1 or 6.2 databases, use
osjidump.

osdump database_pathname or osjidump database_pathname

The database_pathname argument specifies the location of the database. you are
upgrading.

This creates the database table file (db_table.dmp), files representing the
database schema (database_name.scm), and a series of files with the form
databasename_segmentN.dmp and databasename_segmentN.fix that are
representations of the database with the information in ASCII . The files are
created in the current working directory.

2 Load the database by running the osjiload utility from the directory where you
want the Release 6.3 version of the database to be located.

 osjiload -cwd -dir dirname
56 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
The -cwd option tells osjiload to load the databases in the current working
directory. The -dir option specifies the location (dirname) of the dumped
database files.

For information on using osjiload, see osjiload on page 188.

For more information on upgrading databases, refer to the ObjectStore Migration
Guide, available at www.objectstore.com/documentation/objectstore.

Managing Users
There are two types of ObjectStore users:

• Those who run ObjectStore applications

• Those who develop ObjectStore applications

This section focuses on the environment an administrator must provide for users
who run ObjectStore applications.

Running
applications

To run, an ObjectStore application needs

• Client, server, and cache manager executables.

• An application schema database.

• One or more databases for storage of application data. The data can already exist
or can be created by the application.

OS_ROOTDIR References to ObjectStore executables, libraries, and utilities require a definition for
the environment variable, OS_ROOTDIR. The value of OS_ROOTDIR indicates the top-
level directory in the file system hierarchy containing the ObjectStore release. It
serves as the prefix of various directory names used in search paths.

You can set OS_ROOTDIR on each host that runs an ObjectStore server or application.
Alternatively, you can set OS_ROOTDIR in each user’s environment.

OS_ROOTDIR allows you to change the location of the ObjectStore installation and
allows users to switch to a different version of ObjectStore.

Application
schema
database

Every ObjectStore application has one application schema database that the schema
generator produces when the application is built. The application schema database
contains the definitions for all classes the application uses in a persistent context. An
ObjectStore executable embeds the path name of the application schema database.
Therefore, as administrator, you must ensure that the application schema database
is available to the executable.

You can use the ossetasp utility to change the path name of an application schema
database for a particular executable.

Alternatively, an application can specify its application schema database path name
when it runs by calling objectstore::set_application_schema_path().

Sharing
schemas

Multiple executables can share an application schema database. Developers create
the application schema database as part of the procedure for building the
Release 6.3 57

Modifying Network Port Settings
application. The purpose of the application schema database is to ensure that the
schema for an accessed database matches exactly the schema for an executable.
ObjectStore compares the application schema to the database schema during
execution.

Developing
applications

To develop an ObjectStore C++ application, a developer needs to be able to run ossg,
the ObjectStore schema generator. Developers use the schema generator to create the
application schema database. See Building C++ Interface Applications.

Modifying Network Port Settings
Normally, the default settings for ports for network services are sufficient. However,
you can modify them if you need to. You might want to do this if you are running
two releases of ObjectStore on a machine at the same time. You might also want to
modify port numbers if your site uses a firewall to prevent unauthorized network
access. You can choose to have the firewall protect the default port numbers shown
in Defaults for Port Settings on page 59, or you can select different port numbers that
are protected.

Communication Methods
To communicate with a network daemon such as the ObjectStore server, a client
requires a host address to identify the machine and a port to identify a particular
process. ObjectStore finds host addresses by looking up the host name in a host table
or similar facility. ObjectStore uses default ports, which can be overridden if
necessary, as described in the following paragraphs. On each platform, ObjectStore
supports at least two ways for processes to communicate:

• The local transport layer allows communication between processes on the same
host.

• The remote network allows the local host to communicate with remote hosts. In
Release 5.1 and above, this protocol is always TCP/IP.

The following table lists the communication channels for each platform:

UNIX For the local network, ObjectStore uses sockets or TCP/IP streams to communicate
among server, client, and cache manager processes using predefined ports that you
can modify if necessary. A port identifies a particular application on that machine.
(An address identifies a particular machine.)

Platform Local Transport Layer Remote Network

Solaris 2 TLI_LOCAL TCP/IP

Other UNIX platforms sockets TCP/IP

Windows NSharedMemory TCP/IP
58 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Windows For the local network, ObjectStore uses a proprietary local network based on Named
Shared Memory. Server, client, and cache manager processes use an identifier
instead of port addresses. You can modify this identifier in the ports file.

Defaults for Port Settings
For NSharedMemory, the port setting modifies the default port, so you can use the
same setting for all services. The defaults are

connect.server_client
accept.server_client
connrel.server_client
connreg.server_client
exception.server_client

On the other networks, a port setting replaces the existing port setting, so you must
provide unique settings for each port that you modify.

The default UNIX port settings are in the following tables:.

Modifying Port Settings
To modify settings, you change entries in the appropriate file shown in the following
table. After you modify the ports file, you must shut down and restart the server and
cache manager for the changes to take effect. When the daemons start, they detect the
existence of the ports file and use the settings in it.

On UNIX and Windows, you can also set the variable OS_PORT_FILE to the name of
a file you create.

Settings Format
Each line in the ports file specifies the port for a network service. The syntax of a line
in the ports file is

net:service:version:port

Process IP Port
Number

TLI_LOCAL Path Name UNIX Path Name

Server to R6 cache
manager

51031 os_callback_v6 /tmp/ostore/os_callback_v6

R6 client to R6
cache manager

51041 osccom6 /tmp/ostore/osccom6

Client to server 51025 objectstore_server_comm /tmp/ostore/objectstore_server_
comm

Notification 51050 objectstore_notification /tmp/ostore/objectstore_
notification

Platform Ports File

UNIX $OS_ROOTDIR/etc/ports

Windows %OS_ROOTDIR%\ETC\PORTS
Release 6.3 59

Modifying Network Port Settings
net specifies the network type. It must be one of the values that appears in the
Network column in the next table. Possible values vary according to the platform.

service specifies one of the following network services:

• cache manager client is the service the client uses to find the cache manager.
This is only meaningful when net is a local network. (The port the cache manager
listens on for clients is always accessed by local clients.)

• cache manager server is the service the server uses to find a cache manager.

• cache manager notification is the service the client uses to find a cache
manager for notification receipt.

• server client is the service a client uses to find the server.

version specifies the software version for the cache manager client or the cache
manager server. For Releases 4 and 5, specify 4. For ObjectStore Release 6, specify 6
as the version number in all cases except server client. This service requires a 1.

port specifies a port identifier as described in the following table:

Here are some examples of port settings:

TCP/IP:server client:1:54432
NSharedMemory:server client:1:new_server
UNIX:server client:1:/tmp/.ostore/objectstore_server_comm
UNIX:cache manager client:6:/tmp/.ostore/objectstore_client_cache
UNIX:cache manager server:6:/tmp/.ostore/objectstore_server_cache

If a ports file is not present, ObjectStore uses default settings.

Running Two Servers on One Host
You can run two ObjectStore servers on the same host under some circumstances. To
do so, you must specify different ports in the ports file. This lets clients know which
server to contact.

Network Port Identifier Port Identifier Example

IP (TCP/IP) TCP/IP 16-bit port
number. See
Defaults for Port
Settings on page 59.

51025

NSharedMemory The string
appended to shared
object name.
Omitted by default.

accept.server_client_myserver

TLI_LOCAL Path name in TLI
Local namespace.
No default.

objectstore_server_com

UNIX Path name in file
system. No default.

/tmp/ostore/objectstore_server_com
60 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Same Release (6.1 Or Later Only)
Under release 6.1 or later, you can run more than one ObjectStore server on the same
host so as to allow a client to address the servers at the same time. The servers must
be of release 6.1 or later. This configuration is useful when enabling failover. For
more information, see Configuring More Than One Logical Server on page 293.

Different Releases
You can also run two servers of different releases on the same host — for example, a
Release 5 server and a Release 6 server. To do so, you need to change only the server
client ports for one of the servers. The cache manager ports are already different in
different major versions of ObjectStore.

Before Release 6.1, all servers that a client can communicate with must have the same
network port number. This means that if you run two servers on one host, any single
client can access one of those servers but not the other. It also means that if a client
accesses servers on more than one host, you must change the server port settings on
all affected hosts.

UNIX notes On System V Release 4 systems, such as Solaris 2, specify a combination of TLI_
LOCAL and TCP/IP statements. Note that the TLI_LOCAL domain port names exist in
a separate, flat namespace.

Windows On Windows systems, you can specify statements for NSharedMemory and TCP/IP.

When Your Application Uses Notification
When an ObjectStore application uses notifications, the client automatically
establishes a second network connection to the cache manager on the local host. The
application uses this connection to receive (and acknowledge receipt of) incoming
notifications from the cache manager. (Outgoing notifications are sent to the server,
not to the cache manager.)

This all happens automatically and transparently, so there is no relevant API.
However, as with all network connections, you might want to control the network
port that is used by the connection. You can use the ports file in the usual way to
control the use of network ports. The following information should appear in the
networks ports file:

• Name of service - specify cache manager notification

• Default IP port number - specify 51050

• Default UNIX local socket file name - specify /tmp/ostore/objectstore_
notification

How a Client Locates the Server for a
Release 6.3 61

Managing ObjectStore on Multiple Platforms
Database
How does a client determine the server to communicate with? The answer depends
on whether the database being created or opened is a file database or a rawfs
database.

When Accessing a File Database
When a client tries to open or create a file database, the client has a path name for the
database. If the pathname contains an explicit “host:”, the client uses the server on
the specified host. Otherwise, the client looks for the server on the machine that has
the disk on which the database is or will be stored. Normally, this disk is local to the
machine with the server. In other words, the database is server local.

If the client cannot find a server that is local to the disk, it signals an error unless there
is a locator file.

A locator file allows a client to access server-remote databases. Server-remote
databases are stored on disks that are not local to an ObjectStore server. See Chapter
5, Using Locator Files to Set Up Server-Remote Databases, on page 265.

If there is a locator file, the client checks it to determine the server to communicate
with.

When Accessing a Rawfs Database
When a client tries to open or create a rawfs database, the rawfs host is specified in
the path name of the rawfs database. See Rawfs Databases on page 19.

Managing ObjectStore on Multiple Platforms
When you manage a site that runs ObjectStore on a variety of platforms, there are
issues to consider that do not exist when you run ObjectStore on a single platform.

Using Multiple File Systems
ObjectStore is not dependent on a particular file system. If the usual file system calls
(such as open, read, write, and close) work on the file, ObjectStore can use them
successfully.

Translating Path Names
You might run an ObjectStore application on both PCs and UNIX systems. UNIX
uses forward slashes (/) in path names; PCs use backslashes (\). How does
ObjectStore handle this?

Suppose you have a UNIX server along with some Windows clients.

If you are using something like an NFS client to mount the UNIX file system, you use
the client’s native syntax. For example, on a PC on which drive Q is NFS-mounted
62 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
on husky:/desktop1, ObjectStore expands the file name Q:\jet\my.db into a
reference to /desktop1/jet/my.db on the server host husky.

If you do not use file mounting, you can use server-relative path names of the form
husky:/desktop/jet/my.db. ObjectStore interprets the part of the path name that
follows the colon (:) according to the syntax of the server host (UNIX in this
example).

ObjectStore supports multibyte encoded path names. This support extends to
environments where client and server machines use different multibyte encodings.
Release 6.3 63

Ownership and Locks
Ownership and Locks
ObjectStore uses a patented system of ownership and locks for managing concurrent
access to data.

Read or write
ownership

A client has ownership of a page when the page is in the client's cache. Ownership
is managed automatically by ObjectStore as pages move in and out of the cache and
is automatically acquired when an application attempts to access persistent data.

Read or write
locks

A client has a lock on a page when the client's current transaction is using persistent
data on the page. Like ownership, locks are managed automatically by ObjectStore
and are automatically acquired when an application attempts to access persistent
data. The application can also explicitly acquire a lock by calling the
objectstore::acquire_lock() function. Once acquired, all locks are held until
the end of the transaction and released at the end of the transaction. For more
information about explicitly acquiring locks, see objectstore::acquire_lock() in
Chapter 2 of C++ A P I Reference.

To access persistent data, the client must have both ownership and a lock on the page
containing the data. Ownership provides the client with a copy of the data that can
be mapped into the client's virtual memory. The lock ensures that clients
concurrently accessing the same data do not interfere with each other. In other
words, the lock ensures consistent results, as if only one transaction were executed
at a time.

Ownership and locks are acquired either for reading or for writing. To read
persistent data, the client must have read or write ownership and a read or a write
lock. To modify persistent data, the client must have write ownership and a write
lock.

If a client has a read lock on a page, no other client can change that page until the
client releases the lock by committing or aborting the transaction. If a client has a
write lock on a page, no other client can read or write that page until the client
releases the lock by committing or aborting the transaction.

How Ownership and Locks are Related
In order to acquire read or write ownership of a page that is not already owned, a
client must have a read or write lock on the page. If the client has ownership of a page
and wants to acquire a lock on the page, it can acquire the lock without
communicating with the server because no conflict with other clients is possible.
Otherwise, it must send a request to the server and wait for the server to grant the
lock. Thus, if a client acquires a lock in one transaction and needs the same lock in
the next transaction, the client can acquire the lock quickly (unless the page has been
called back) because it still has the ownership.

A client can own a page without having a lock on it. After the completion of the
transaction in which the lock was acquired, the client releases the lock but retains
ownership. A client can also own a page without locking it when the page is
prefetched into the cache.
64 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
A client can also have a lock on a page without owning it. This situation can occur
when the client has ownership of a page and has the page locked. If the client’s cache
is full, it must evict some pages, thus releasing ownership but without releasing the
locks on those pages. A client can also have a page locked without owning it if the
client acquires a lock without fetching a page into its cache; in other words, it has the
lock but not ownership.

Ownership can be retained beyond the end of a transaction; locks cannot. Locks can
still be held on pages after they have been evicted from the cache; ownership cannot.

Lock Management
The server is the lock manager; it takes care of coordinating locks and ownership
among multiple clients. The server makes sure that the lock acquired by a client is
always valid with respect to locks held by other clients, even when a client acquires
the lock without communicating with the server. If a client requests a page that is
already owned by another client, the server sends a callback message to the owning
client before letting a conflicting lock be acquired, as described in Ownership
Conflicts on page 65.

A server grants a read lock to as many clients as request it. Many clients can have
read locks on a page at the same time, but only one client at a time can have a write
lock. When a client has a write lock, no clients can have a read lock.

If a client requests read ownership or a read lock, and another client has a write lock
on the requested page, the first client must wait until the second client ends its
transaction and releases the write lock.

If a client requests write ownership or a write lock, and other clients have read or
write locks on the requested page, the first client must wait until all the other clients
end their transactions and release their locks.

A server grants read ownership to as many clients as request it. Many clients can
have read ownership at the same time, but only one client at a time can have write
ownership. When a client has write ownership, no other clients can have read
ownership.

If a client requests read ownership or a read lock, and another client has write
ownership of the requested page, the first client must wait until the second client
releases write ownership.

If a client requests write ownership or a write lock, and other clients have read or
write ownership of the requested page, the first client must wait until all the other
clients release their ownership.

Ownership Conflicts
When an ownership conflict occurs, the server sends a callback message to the cache
manager on the client's host requesting the client's ownership to be released. The
cache manager determines whether ownership can be released or the conflicting
client must wait.

Clients release ownership in the following situations:
Release 6.3 65

ClearCase Virtual File System (MVFS)
• A callback message finds that the page is not locked.

• A callback message that requests release of write ownership finds that the page is
only read-locked, not write-locked. In this case, ownership is downgraded from
write to read.

• The transaction ends, releasing a lock, but a callback message was received before
the lock was released.

• The client closes the database.

• The client terminates its connection with the server.

Locks and Nested Transactions
Aborting a nested transaction releases locks acquired during the nested transaction
but does not release locks acquired in the parent transaction. Committing a nested
transaction does not release locks; the locks become the property of the parent
transaction.

Locks, Ownership, and MVCC
Multiple Version Concurrency Control (MVCC) modifies the normal handling of
ownership and locks. When a client has a database open for MVCC, its read locks
and read ownership of pages in the database never cause other clients to wait.
Instead, the MVCC client just sees an older, but consistent, snapshot of the database
while other clients work with the newest snapshot. Callback messages are still used,
but only to facilitate bringing the MVCC client's snapshot up to date when it starts
its next transaction. An MVCC client cannot have a write lock or write ownership.

API for Lock Management
Typically, ObjectStore performs lock management. There are, however, API features
that allow a client to control whether a client waits for a lock. For more information
about ownership and locks, see Chapter 2, Advanced Transactions, in the Advanced
C++ A P I User Guide.

ClearCase Virtual File System (MVFS)
If your ObjectStore applications reside in a ClearCase virtual file system (MVFS),
they might have trouble locating an ObjectStore server. To overcome this problem,
you should set up locator files or use ObjectStore/Single. See Chapter 5, Using
Locator Files to Set Up Server-Remote Databases, on page 265, for more information
on using locator files. See Chapter 6, Working with ObjectStore / Single, in Building
C++ Interface Applications for more information about ObjectStore/Single.
66 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
Troubleshooting
This section provides examples of problems you might encounter. In general, when
you receive an error message you should

• Try to define what the problem is

• Determine the ObjectStore resource that is affected

• Obtain more information using the procedures indicated in the following sections

These steps allow you either to take a corrective action that resolves the problem or
to provide Technical Support with enough information to resolve it.

Where to begin? If you have a problem with ObjectStore, the problem might lie in your client
application, the server, or the cache manager. It might also be due to problems with
your database or databases or application schema database or databases, or it might
be due to operating system or network configuration problems. To further define the
problem, try these procedures:

• To isolate the problem, review the Installation Guide for your platform. Ensure
that you are running a supported version of the operating system and have
installed all required patches.

• If the problem is that the server or cache manager is crashing or not responding,
see Debugging the ObjectStore Server on page 67 or Debugging the Cache
Manager on page 72.

• If you suspect problems with a database, use osverifydb to verify the content of
the database. It is good practice to run osverifydb occasionally to confirm that
your database is not corrupt. By maintaining a history of osverifydb results, you
can identify when corruption appears.

• If the problem is with your client application, see Environment Variables for
Debugging Client Applications on page 74.

The Product Support department maintains an extensive archive of answers to
frequently asked questions (FAQs) at the ObjectStore Technical Support Web site
(support.objecstore.net). Search for keywords pertaining to your problem.

Debugging the ObjectStore Server
When the server starts, exits, or encounters a severe error, it records that information
in its text output file. Examine this file for error messages. The files to examine are

• UNIX: /tmp/oss_out

• Windows: %OS_TMPDIR%\OSSERVER.TXT

Note These are default locations, and they may have changed during the installation.
Check the correct file locations for your installation.

Ensure that you are starting the server with the correct permissions. For example, on
UNIX you must be root.

Consider what the server needs to do when it starts up. See What Does the Server
Do? on page 20.
Release 6.3 67

Troubleshooting
If the server fails to start, you can try starting it by hand with additional arguments
to enable debugging output. On UNIX, as root, enter

osserver -F -d 5

On Windows, in a console window, enter

osserver -con -d 5

If you want to debug a server that is managed by Sun Clusters, see Debugging an
ObjectStore Server on Sun Clusters on page 71 for information about starting up the
server.

The server sends debug printouts to standard output, describing its actions. The
number after -d is the debug level. The levels available are described in the following
paragraphs.

You can confirm that the server has started successfully by using the ossvrstat
command.

If the server starts successfully and you want to turn on debugging output just before
a test run, you can use the ossvrdebug utility with a command such as

ossvrdebug server_host_name debug_level

This command turns on debug output from the named server, and ossvrdebug 0
turns it off. The higher the debug level, the more verbose the output and the more
server performance is affected. The levels are

The following sections discuss three different error messages you might receive
when trying to start the server:

Missing Transaction Log File
Error message 021007 114942.812 FAILURE in ObjectStore Release 6.1 Alpha 1

Database Server
Compiled by test1 on Sep 1 2002 at 08:54:01 in janus_bl1.nt
The log file "D:\OSSERVER.LOG" does not exist.
You need to create a new log file. A new log can be created using
the -ReallocateLog switch to osserver. This switch will make
osserver create a new log and then exit.

Discussion of
message

The resource affected is the server. The problem is that the server cannot find the
transaction log file. Do not use the -ReallocateLog option until you have
eliminated all possibility of restoring the transaction log. Using that option risks
corrupting databases that had unpropagated updates at the time the log was lost, as
described in Initializing the Transaction Log on page 219.

Level Description

0 Turns ossvrdebug off.

1 Reports client connect or disconnect.

2 Reports messages received.

3-8 Provides expanded message information.

9 Provides full message information.
68 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
To obtain more information, you can do the following:

• Check the content of the server output file. For the name of the file on your
platform, see the beginning of this section, Debugging the ObjectStore Server on
page 67.

• If there is a parameters file, check its content for the name of the log file.

• If the log is not in the rawfs, confirm its existence in the location specified in the
parameters file.

• Try to start the server in debug mode.

It is possible that someone accidentally deleted the log or that the log might not have
the correct permissions.

Invalid Transaction Log File
Error message 021007 115104.781 FAILURE in ObjectStore Release 6.1 Alpha 1

Database Server
Compiled by test1 on Sep 1 2002 at 08:54:01 in janus_bl1.nt
The log file "D:\OSSERVER.LOG" does not look like a log file.
This may be because the log file is from a previous release of
ObjectStore or because it has never been initialized as a log file.
You need to create a new log file. A new log can be created
using the -ReallocateLog switch to osserver. This switch will
make osserver create a new log and then exit.

Discussion of
message

The resource affected is the server. The problem is that the server's transaction log
file exists but does not have the correct contents for a valid transaction log file. It is
possible that someone accidentally replaced the log file with a non-log file or that the
log file was corrupted.

Do not use the -ReallocateLog option until you have eliminated all possibility of
restoring the correct transaction log. Using that option risks corrupting databases
that had unpropagated updates at the time the log was damaged, as described in
Initializing the Transaction Log on page 219.

Corrupted Transaction Log File
Error message 021007 120115.750 FAILURE in ObjectStore Release 6.1 Alpha 1

Database Server
Compiled by test1 on Sep 1 2002 at 08:54:01 in janus_bl1.nt
<maint-0020-0201>Unhandled exception in Main Thread:
<maint-0019-0005>transaction log contains invalid data
<maint-0019-0909>invalid log record type (158)
(err_satmgr_invalid_log)

Discussion of
message

The resource affected is the server. The problem is that the server detected an
internal inconsistency while reading the transaction log file. It is possible that there
is a bug in the instance of the server that wrote the log or in the instance of the server
that is reading the log. It is also possible that you switched from a newer release of
the server to an older release without first propagating the log; in this case, you can
fix the error by switching back to the newer release and starting the server with the
checkpoint option (osserver -c). It is also possible that a media failure corrupted
the file.
Release 6.3 69

Troubleshooting
You should save the transaction log and all affected databases and contact Technical
Support for assistance.

Do not use the -ReallocateLog option until you have eliminated all possibility of
repairing the transaction log. Using that option risks corrupting databases that had
unpropagated updates at the time the log was damaged, as described in Initializing
the Transaction Log on page 219. In some cases, you can delete one database and
successfully start the server to propagate information about other databases, so you
only have one database to recover from backup.

Sample Trace File Reading
While running a client application, you might receive a message similar to the
following example of an ossvrdebug 6 trace file:

Trace file Mon Oct 07 15:38:32 2002 DEBUG 0350 [03] client #35
(1.17.1364.3453103071.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
server_actions CLIENT MESSAGE 8 RECEIVED
Mon Oct 07 15:38:32 2002 DEBUG 0351 [04] client #35
(1.17.1364.3453103071.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
server_actions set_lock_param(able to abort,
 wait forever for lock)
Mon Oct 07 15:38:32 2002 DEBUG 0352 [05] client #35
(1.17.1364.3453103071.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
server_actions upgrade_ownership write_locking(DB handle 184,
segment #4, cluster #2, 0, 8, nl=-1)

Comment on
trace file

As indicated by the trace file, client #35 has a read lock on the page and wants to
upgrade that lock to a write lock. As shown in the next trace file, clients #32 and #34
own the page for reading, and their ownership conflicts with client #35’s lock
request.

Trace file Mon Oct 07 15:38:32 2002 DEBUG 0356 [05] Callback Thread
 (tucker) client #32
(1.17.1516.3453103059.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
callback range for write(DB handle 184, segment #4, cluster #2,
 0, 8)
Mon Oct 07 15:38:32 2002 DEBUG 0357 [04] Callback Thread
 (tucker) client #32
(1.17.1516.3453103059.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
callback range for write(DB handle 184, segment #4, cluster #2,
 0, 8) -> POSITIVE

Comment on
trace file

Client #32 gives up all ownership.

Trace file Mon Oct 07 15:38:32 2002 DEBUG 0354 [05] Callback Thread
 (tucker) client #34
(1.17.1156.3453103062.1875883738.IP@192.168.105.4,
70 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
 51025/mo.exe/mo.exe/V6.0)
:
callback range for write(DB handle 184, segment #4, cluster #2,
 0, 8)
Mon Oct 07 15:38:32 2002 DEBUG 0355 [04] Callback Thread
 (tucker) client #34
(1.17.1156.3453103062.1875883738.IP@192.168.105.4,
 51025/mo.exe/mo.exe/V6.0)
:
callback range for write(DB handle 184, segment #4, cluster #2,
 0, 8) -> NEGATIVE

Comment on
trace file

Client #34 refuses to give up ownership because it has the page read-locked.
Therefore, client #35 must wait until client #34 ends its transaction and releases the
lock. At this point, if you ran the ossvrstat utility, it would display a heading labeled
Client connections waiting for a lock, under which you would see that client
#35 was waiting for a lock held by client #34.

Interpreting
trace files

The following notes provide additional information for help in interpreting the trace
files:

• POSITIVE means that ownership was successfully called back, and NEGATIVE
means that the cache manager was unsuccessful in calling back ownership.

• DB handle 184 is assigned when the database is first opened by the client. This
handle is used to refer to the database in all subsequent messages about the
database until the database is closed by the client.

• segment #4, cluster #2 identifies by number a particular segment within the
database and a particular cluster within that segment. You can use ossize to find
what objects are in the cluster, as described in ossize on page 238.

• 0,8 is a reference to the starting sector and the number of sectors. Sectors are 512
bytes. On this client platform, a page is 4 KB, so 0,8 means that the first page of
this cluster is locked.

• nl=-1 refers to the transaction nesting level. A nesting level of -1 means that this
operation refers to the current transaction, not a parent of a current nested
transaction.

Debugging an ObjectStore Server on Sun Clusters
When looking for debug information about the ObjectStore server on Sun Clusters,
you can find error information in /var/adm/messages on any node of the cluster. To
debug an ObjectStore server that is managed by Sun Clusters, you must use the
following procedure to run the server in the foreground. This procedure will also
enable you to collect trace output from the server so you can redirect it to a file.

1 Find which cluster node the osserver process is currently running on. Execute the
following steps as root on that node.

2 Execute the following command to disable the resource and take down the
osserver process. Substitute your logical host name for hostname.

/usr/cluster/bin/scswitch -n -j EXLNosserver-hostname-hars

3 Set the OS_ROOTDIR, LD_LIBRARY_PATH, and OS_SERVER_OUTPUT_LOG_NAME
environment variables.
Release 6.3 71

Troubleshooting
4 Execute the following command to restart the server in the foreground:

$OS_ROOTDIR/lib/osserver -F -hostname hostname \
 -p $OS_ROOTDIR/etc/hostname_server_parameters

For additional information about debugging the server, see Debugging the
ObjectStore Server on page 67.

Debugging the Cache Manager
When the cache manager encounters a severe error, it records that information in its
text output file. Examine the relevant file for error messages:

• UNIX: /tmp/osc6_out

• Windows: %OS_TMPDIR%\OSCMGR6.TXT

Note that these locations are the default locations, but they can be changed during
installation. Check the correct file locations for your installation.

On UNIX, verify the setuid root. If the cache manager fails to start, you can try
starting it by hand with additional arguments to enable debugging output. On
UNIX, as root, enter

oscmgr6 -d debug_level

On Windows, in a console window, enter

oscmgr6 -con -d debug_level

The cache manager sends debug printouts that describe its actions to standard
output. The number after -d is the debug level. The debug level is an integer from 0
to 50; the greater the number, the more debug information displayed.

You can confirm that the cache manager has started successfully by using the
oscmstat command.

Debugging the Cache Manager Autostart
When an ObjectStore client is started, the application checks to see whether the cache
manager is running. If the cache manager is not running, the client starts it. This
process is called the cache manager autostart. If this process fails, you might see a
message such as the following:

Miscellaneous ObjectStore error
Reached end-of-file reading initial message from cache manager
(PID=0) (err_misc)
Segmentation Fault

The resource affected is the cache manager. To obtain more information, you can do
the following:

• Check the contents of the cache manager output file to see if the cache manager is
running.

- UNIX: /tmp/osc6_out

- Windows: %OS_TMPDIR%\OSCMGR6.TXT
72 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
• Check cache and commseg file locations and dates. You might have deleted these
files but did not use the oscmrf utility.

• On UNIX, verify suid root permissions on the oscminit6 executable.

If you are mounting the file system that contains the oscminit6 executable, make
sure that you do not specify -o nosuid. When you mount the file system, -o suid
is the default; you need not specify it. If the mount is in the fstab file, ensure that
nosuid does not appear in the mount options field.

• On UNIX, verify permissions on the cache and commseg files.

Alternate Technique to Debug the Cache Manager Autostart
Another technique for debugging problems with the cache manager autostart is to
set the environment variable OS_DEBUG_CMGR_STARTUP to 1 before starting a client
application that launches the cache manager. You can determine whether your
application is interfering with cache manager autostart by using ossize to launch
the cache manager instead.

Environment Variables for Debugging
The following are environment variables useful for debugging ObjectStore clients,
servers, and cache managers. Most of these variables are enabled with a value of 1.

Environment Variable Description

OS_DEBUG_NETWORK Displays information about each network call.

OS_DEBUG_DYNAMIC_NET Displays information about network initialization. Generates debug
information regarding the server’s decision about the network protocol
(such as TCP/IP) to use at startup.

OS_DEF_EXCEPT_ACTION Controls the outcome if an unhandled exception is signaled. Useful in
debugging unhandled exceptions. You can specify the following values:

• abort — ObjectStore aborts the process. On UNIX, ObjectStore creates
a core file if you are not running in a debugger.

• integer — Specify an integer greater than or equal to 1. Object Store
exits from the program with that specified integer as the return value.

• kill — ObjectStore action varies by platform:

On Windows: ExitProcess (0x006600);

On UNIX: kill (getpid(), SIGKILL);

OS_DEF_BREAK_ACTION

Windows only
Sets a hard-coded breakpoint that allows you to obtain a stack trace
before the unwinding of the stack.

OS_DEF_MESSAGE_ACTION

Windows only
Determines the default message action for _ODI_message (used for
unhandled TIX exceptions). You can set this variable to stderr or stdout
to send the information there, or you can specify the name of a file to
receive the information.
Release 6.3 73

Troubleshooting
Environment Variables for Debugging Client Applications
The following environment variables apply only to client applications:

No Handler for Exception Error
ObjectStore reports errors by signaling TIX exceptions. If an unexpected error occurs,
it is likely that your program does not have a handler for that exception, and your
program will exit with the message No handler for exception followed by
information on the particular error condition that was signaled. Examples of these
kinds of errors appear in the paragraphs that follow.

Database error While trying to access a database, you might receive this message:

No handler for exception:
ObjectStore internal error
An incorrect vector header was found during inbound relocation
at 0x30000070. The source architecture is an Intel platform with
Windows NT or Win32s and Visual C++. The address corresponds to
offset 0x70 within cluster #0, segment #0 of database
"K:\work\bad.db".
(err_internal)

The resource affected is the database or the client application. To obtain more
information, you can do the following:

• Use the osverifydb and ossize utilities to check all databases that the
application accessed; see osverifydb on page 258 and ossize on page 238. Check
both schema and production databases.

• Use a debugger to find the line of code that caused the error.

• Rebuild the database, checking for corruption as it is rebuilt.

Cannot open
application
schema

While trying to access a database, you might receive the following message:

No handler for exception:
Cannot open the application schema

Environment Variable Description

OS_DEBUG_CMGR_STARTUP Displays information about a client’s attempt to autostart the cache
manager. Set to any value to display useful debug information.

OS_DEBUG_LOCATOR_FILE Takes values 1, 2, or 3 to generate varying degrees of output from the
locator file mechanism. The higher the value, the more comprehensive
the reported information.

OS_TRACE_MISSING_VTBLS Useful when you are debugging problems with missing virtual function
tables (vtbls). This environment variable helps determine those classes
that need vtbls. Any nonempty value except 0 enables the debugging
message. The higher the value, the more comprehensive the reported
information.

OS_DEBUG_C0000005

Windows only

Instructs ObjectStore to display a message box if a fault occurs and the
ObjectStore exception handler sees it. The message explains the fault as
an attempt to read location 0x1234 from EIP 0x10231023. This can be
useful in tracking down access violations in your code.
74 Managing ObjectStore

Chapter 1: Overview of Managing ObjectStore
<err-0025-0311> The application schema database db.adb was not found
(err_cannot_open_application_schema)
While trying to open the application schema database.

The resource affected is the database. To obtain more information, you can

• Verify that a current application schema database exists. It might be missing.

• Use the ossetasp utility (see ossetasp on page 221) to verify that the executable
has the correct location of the application schema database.

When you move an application to a machine that is not running a server, leave the
application schema database on the server host. You must then run the ossetasp
utility to patch the executable so it can find its application schema database.

The application schema database must be local to a server. The only exception to this
is when you use a locator file. See Chapter 5, Using Locator Files to Set Up Server-
Remote Databases, on page 265.

Invalid address When trying to run a client application you might receive a message such as the
following:

No handler for exception
ObjectStore internal error
ObjectStore referenced invalid address 0x7fff0028(0)

The resource affected is the client application. To obtain more information, you can

• Execute the program in the debugger and determine the line of code that has a bad
pointer.

• Obtain a back trace from a debugger. It might be that the program is using
ObjectStore features incorrectly.

This is a case in which you might not be able to figure out the problem but you can
obtain enough information for Technical Support to solve the problem quickly.

Incompatible
releases of
ObjectStore

If you are running a Release 6 server and a non-Release 6 server on the same
machine, you can receive the following message when trying to run an application:

Attempt to use unsupported server protocol.
<err-0025-1175> ObjectStore server on host "tucker" cannot be
used because it uses protocol version 1.69, but this client uses
version 1.70
(err_protocol_not_supported)

ObjectStore displays this message when the server is an older version of ObjectStore
Release 6 than the client. You can use a newer server with an older client, but you
cannot use a newer client with an older server. If you are using a pre-release 6 server
with a release 6 client, ObjectStore displays the following message:

Attempt to use unsupported server protocol.
<err-0025-1174> ObjectStore server on host "tucker" cannot be
used because it is older than ObjectStore release 6.0.
(err_protocol_not_supported)

Related to the above error messages is the following, which can occur when a release
6 client attempts to use a pre-release 6 database:
Release 6.3 75

Troubleshooting
The file database appears to be in an inconsistent state
>> tucker:K:\work\test.db -> <err-0019-0003> The database
"DB handle 170, File DB: K:\work\test.db" cannot be used
by a client in ObjectStore release 6.0 or newer.
(err_inconsistent_db)

Changes not
propagated to
database

Either of the following two error messages can occur if the database or the
transaction log was modified, renamed, deleted, or moved other than by Objectstore,
with the result that changes that should have been propagated to the database were
lost:

The file database appears to be in an inconsistent state
tucker:K:\temp\rtee\rteeMain.db -> <maint-0019-1211> Creation
of database File DB: K:\temp\rtee\rteeMain.db was started but
not committed.
(err_inconsistent_db)

The file database appears to be in an inconsistent state
tucker:K:\temp\rtee\rteeColl.db -> <maint-0019-1212> Committed
changes to database File DB: K:\temp\rtee\rteeColl.db were not
propagated from the transaction log to the material database.
(err_inconsistent_db)

Cannot commit You must ensure that when two or more ObjectStore servers receive modified data
in a single transaction, each server can communicate with each of the other servers.
If all servers involved in such a transaction cannot communicate with each other,
ObjectStore aborts the transaction with err_cannot_commit.

The exception occurs only when a two-phase commit has problems. A two-phase
commit occurs only if multiple servers are being written to in that transaction. If a
client reads from ServerA in one transaction and writes to ServerB in the same
transaction, it is not a two-phase commit and it is not necessary for ServerA and
ServerB to be able to communicate across a common network.

Before Calling Technical Support
When you contact Technical Support, be prepared to provide the following
information:

• Site ID number

• Hardware platform

• Operating system and release number

• ObjectStore release number

• Severity of the problem

• Description of the problem

• Compiler information (if applicable)

• Information found in the server or cache manager output file (if this is relevant)

• Server debug mode output if there is a problem with the server

• Debugger output if there is a problem with an application (stack trace)

• Test case
76 Managing ObjectStore

Chapter 2
Server Parameters

This chapter describes server parameters, which determine some aspects of the way
the ObjectStore server functions. There are defaults for all parameters. You need not
do anything to use the defaults.

To modify a parameter, see the instructions in Chapter 7, Managing ObjectStore on
UNIX, on page 299; or Chapter 8, Managing ObjectStore on Windows. After you
modify a server parameter, you must shut down and restart the server for the change
to take effect.

Server parameters are available on all platforms unless otherwise noted. Case is not
significant.

List of Server Parameters
Server parameters described in this chapter include those in the following list.

Admin Host List 78

Admin User 79

Allow NFS Locks (UNIX Only) 79

Allow Remote Database Access 80

Allow Shared Communications (UNIX Only) 80

Authentication Required 80

Cache Manager Ping Time 85

Cache Manager Ping Time In Transaction 85

Cluster Growth Policy 85

Database File Growth Policy 86

DB Expiration Time 87

Deadlock Victim 87

Direct to Segment Threshold 88

ESTALE Implies Database Deleted (UNIX Only) 89

Failover Heartbeat File 89

Failover Heartbeat Time 90

Failover Script 90
Release 6.3 77

List of Server Parameters
Host Access List 90

Identical Pathnames on Failover Server 90

Log Data Segment Growth Increment 91

Log Data Segment Initial Size 92

Log File 92

Log Record Segment Buffer Size 92

Log Record Segment Growth Increment 92

Log Record Segment Initial Size 93

Max AIO Threads 93

Max Connect Memory Usage 93

Max Data Propagation Per Propagate 93

Max Data Propagation Threshold 94

Max Memory Usage 94

Max Two Phase Delay 94

Message Buffer Size 95

N Message Buffers 95

Notification Retry Time 95

PartitionN 95

Preferred Network Receive Buffer Size 95

Preferred Network Send Buffer Size 95

Propagation Buffer Size 96

Propagation Sleep Time 96

RAWFS Partition Growth Policy 96

Remote Database Grow Reserve 97

Restricted File DB Access (UNIX Only) 97

RPC Timeout 97

Admin Host List
Default: none

The Admin Host List parameter specifies the path of a file. This file must contain a
set of primary names of hosts, one per line. (If DNS is in use, they must be fully
qualified domain names.) The hosts listed in this file are the hosts on which an
administrative user, designated with the Admin User parameter, can perform
ObjectStore server operations.

When this parameter is not set, an administrative user can perform ObjectStore
server operations on any ObjectStore host.

If you specify a host in the file pointed to by the Admin Host List parameter, that
host requires only SYS authentication. This is true regardless of the setting of the
Authentication Required server parameter for that host. When you create an
administrative hosts list, and you also have a host access list set with the Host
78 Managing ObjectStore

Chapter 2: Server Parameters
Access List server parameter, ObjectStore adds all hosts in the administrative hosts
list to the host access list.

Admin User
Default: none

When Admin User is set to a user name, it allows that user to run any ObjectStore
utility without having root permission. When this parameter is not set, the user
must have root permission to run ObjectStore utilities, for example, ossvrshtd and
ossvrclntkill.

When you set this parameter, you designate a user who does not have root
privileges to perform ObjectStore administrative functions. This administrative user
can execute any ObjectStore utility that a user with root permission can, except
operating on file databases. File databases are not affected when the Admin User
parameter is set.

When a utility operates on rawfs databases, administrative users are not restricted
by access control. They can access any database and perform any operation even
though they are operating under their own user names and groups.

When a utility operates on file databases, administrative users have the same
restrictions they normally have. Being an administrative user does not give them
additional privileges.

Allow NFS Locks (UNIX Only)
Default: yes

When the Allow NFS Locks parameter is set to yes (the default), the server can
perform database-level locking. If database-level locking is on, when an ObjectStore
server handles access to a remote (or local) database, it holds a lock on the database
as long as the database is open. If the database is open for read-only, the server holds
a read lock; if the database is open for read or write, the server holds a write lock.

When an ObjectStore server holds a read lock on a database, other servers are
prevented from acquiring a write lock on the database. Read access by other
ObjectStore servers is allowed. A read lock does not prevent write access by another
application if the same server handles the access.

When an ObjectStore server holds a write lock on a database, other servers are
prevented from acquiring either a read lock or a write lock on the database. Again,
this does not prevent access by another application if the same ObjectStore server
handles the access.

If a server is blocked from acquiring a lock, ObjectStore signals the exception err_
database_lock_conflict. Access is not retried automatically.

Caution You can turn off database-level locking by setting the server parameter Allow NFS
Locks to no. You must use extreme caution if you turn off locking. Concurrent
database access by different servers can corrupt the database. Note that a mistake in
the contents of a locator file could cause unintentional concurrent access of this sort.
Release 6.3 79

List of Server Parameters
Windows File locking is always turned on.

Allow Remote Database Access
Default: no

The Allow Remote Database Access parameter determines whether the server can
handle access to remote databases. If ObjectStore determines from a locator file that
a particular ObjectStore server should handle access to a database remote to that
server, and the value of this parameter is yes for that server, the server handles
access to the database. If the value is not yes for the server, the exception err_file_
not_local is signaled.

If you allow any server-remote access, each database should be assigned exactly one
ObjectStore server that handles all access to it by all applications, unless that
database is never opened for read or write. When one server handles access to a
database, it can prevent concurrent access by other ObjectStore servers. See also
Allow NFS Locks (UNIX Only) on page 79 and Chapter 5, Using Locator Files to
Set Up Server-Remote Databases, on page 265.

Caution Use this parameter with caution. A mistake in the content of a locator file could result
in unintentional concurrent access.

Allow Shared Communications (UNIX Only)
Default: yes

The Allow Shared Communications parameter controls whether the server allows
shared memory communications between itself and the client when they are on the
same host. Allowing such communications improves performance. It is a Boolean
value that defaults to yes (meaning shared memory communication is enabled). If
these communications are enabled, the server and client exchange data by mapping
the client’s cache into the server’s virtual memory.

It is possible for the server to run out of virtual memory if you have Allow Shared
Communications set to yes and you have many local clients. This can happen
because the server maps each local client’s cache information into its virtual
memory. Setting Allow Shared Communications to no eliminates the problem.

Authentication Required
The defaults are

• NONE on Windows 98

• Name Password on Windows NT

• SYS on other platforms

The Authentication Required server parameter specifies the way the server
controls database access.

How the server
controls access
to data

ObjectStore has a client/server architecture. When an application reads or modifies
a database, it sends messages to an ObjectStore server, which in turn reads and
writes the data in the database.
80 Managing ObjectStore

Chapter 2: Server Parameters
Because each ObjectStore server handles requests from many different users, it is
responsible for enforcing access control to files containing databases. It must use
privileged access to read or write any user’s database, and it must ensure that only
users entitled by the host system’s rules for access control are allowed access to
databases. To implement access control, the ObjectStore server must know the user
name and group of the client process that is requesting that it operate on a database.

Authentication If you start an application that asks the ObjectStore server to read or modify a
protected file, the server determines whether you have proper read/write
permission for the file. This access checking has two parts. The first part is
authentication — the operation in which the server learns who the client is and on
behalf of which user it is performing operations. The second part is verifying
whether that user has permission to perform the requested operation.

The type of authentication ObjectStore uses is determined by the value of the server
parameter Authentication Required.

Note that certain server operations that deal with file databases require
authentication. If the client does not provide authentication, the server refuses to
perform such an operation. These operations include looking up, creating, and
deleting file databases, or asking their size or access modes.

Administrative commands for which authorization is required send authentication
to the server first. Administrative commands are ObjectStore utilities that affect
other people’s work environment, for example, the utility that shuts down the
server.

ObjectStore applications send authentication to the server the first time the
application performs an operation on that server for which authentication is
required. After an application sends authentication information to a server, it need
not do so again for the lifetime of the process.

Administrative
operations for
authorized
clients

The server performs several administrative operations only on behalf of an
authorized client. These are the server operations invoked by the ossvrshtd and
ossvrclntkill utilities, with these exceptions:

• ossvrshtd is also allowed for the user who owns the server process.

• ossvrclntkill is allowed if the client thread to be killed is owned by the user
issuing the command.

If the Authentication Required server parameter is set to NONE (see the following),
all clients are authorized to perform administrative operations.

Parameter
values

The Authentication Required server parameter specifies the preferred way the
server controls database access. There are six possible types of authentication:

• NONE — The only available option on Windows 98, which does not support
security.

On UNIX platforms, clients who present authentication NONE cannot access file
databases. Clients always present some other form of authentication, if possible.
Release 6.3 81

List of Server Parameters
On Windows NT, clients who present authentication NONE can access file
databases. Clients can access any file accessible to the user who is running the
server (usually Local System).

• SYS — UNIX only. ObjectStore uses the Sun ONC RPC AUTH_SYS authentication
method.

The client sends the server a UNIX user ID and group ID, which the server trusts.
The ObjectStore client library always sends the current effective user ID and
group ID. This is the same mechanism used by the NFS protocol. See Accessing
UNIX Databases from Windows on page 323.

To allow a Windows NT client to provide SYS authentication to a UNIX server,
you must set the UNIX.UID (user ID) and UNIX.GID (group ID) entries in the
Windows NT registry.

To prohibit Windows NT clients from returning SYS authentication to UNIX
servers, you can either set Authentication Required to Name Password or
forbid the user ID and group ID entries in the registry.

Caution If you use this method, be aware of the following points:

- If untrustworthy users have access to the root password, they can assume the
identity of any user.

- A malicious user might contrive to patch the ObjectStore client so that it sends
some access identity information other than the current effective user ID and
group set.

- Not all systems can generate this information in a client. If you run an
ObjectStore server on such a system, this method is not available.

Windows 98 clients do not support SYS.

• DES — Sun and System V.4.0 only. ObjectStore uses the Sun ONC RPC AUTH_DES
authentication, also known as secure RPC. To enable this mechanism, you must
first set up the Network Information System (NIS), run the keyserv daemon on
all client and server hosts, and register public keys in the publickey NIS map.
(See the newkey, chkey, keyserv, and keylogin manual pages.)

For a full explanation of the secure RPC mechanism, see the documentation
supplied with your operating system.

DES authentication protects against abuse of the root password and against
straightforward attempts to patch an ObjectStore client to send a fraudulent
access ID. However, it is not secure against a determined intruder, due to bugs
both in its design and in the reference implementation.

DES is supported by SYS V-based UNIX platforms, and it must be installed and
configured on the client and server. ObjectStore cannot determine whether the
DES installation is correct; it simply attempts to use it.

• NT Local — Windows NT only. Allows Windows NT clients to be authenticated
by local servers using ImpersonateLogged-OnUser authentication.
82 Managing ObjectStore

Chapter 2: Server Parameters
• NT Remote — Windows NT only. Allows Windows NT clients to be authenticated
by local and remote servers using Security Service Provider authentication.

• Name Password — All platforms except Windows 98. ObjectStore requires each
client application to send a user name and password to the server, which validates
them. See “User interface to authentication” on page 84. The advantage of this
method is that there is no way to fool the server — it grants exactly the access
available to the user it authenticates. The disadvantage is that ObjectStore cannot
arrange a trusted path. That is, there is no way that a user, prompted for a
password, can be sure that the password will be sent to the ObjectStore server and
only to the ObjectStore server. A malicious program author could solicit and
retain passwords.

On Windows, Name Password works only when the server is run as a service.
When the server is running as a normal process, Name Password is omitted from
the list of allowed types. This is a Windows restriction.

Parameter
value might
imply a set of
values

When you set the parameter to one of the authentication types listed next, the server
can use that value as well as any values that follow it in the list, if the value can be
specified on that server’s platform.

NONE

SYS

DES

NT Local

NT Remote

Name Password

To determine the list of authentication types that a server supports, run the
ossvrstat utility. See ossvrstat on page 248 for further information.

How does a
client choose?

How does a client determine the type of authentication to provide to the server? The
client tries to match the authentication type it supports with the type of
authentication supported by the server as described in the following steps:

The client examines the OS_AUTH environment variable. If it specifies an
authentication type the server supports, the client uses that type. See OS_AUTH on
page 105.

1 The client uses one of the programmatic authentication types (SYS, DES, NT Local,
or NT Remote) that both it and the server support.

2 The client uses NONE if the server allows it.

3 The client uses Name Password if the server allows it.

4 If no authentication method can be found, err_authentication_failure is
signaled.
Release 6.3 83

List of Server Parameters
The following matrix shows the order in which various combinations of clients and
servers attempt to match authentication types. An x indicates that an authentication
type will not work for that combination.

Windows NT
clients

When a Windows NT client provides authentication, it must provide the domain
name, the user name, and the user password.

Suppose that a Windows NT client contacts a UNIX server that can accept SYS
authentication. Further suppose that user ID and group are set in the Windows NT
registry. In this case, the client provides SYS authentication. If the server does not
allow SYS authentication or if the user ID and group are not set in the registry, the
client provides the first type of authentication that it supports in the list of server-
supported authentication types. In some cases, this is Name Password. It might,
however, be NONE, which means that a Windows NT client can access file databases
that are accessible by the user running the server.

Exceptions When a server is using Name Password for authentication and detects something
wrong, it signals the err_authentication_failure exception. This usually means
that there is no user by the specified name or that the password is incorrect.

If the server receives a command that needs authentication but the connection has
not been authenticated, and Authentication Required is not NONE, the server
rejects the command and signals the err_rpc_auth_tooweak (client credential too
weak) exception. This means that the client could not provide the authentication that
the server requested. This happens when a client cannot generate any of the types of
authentication that the server requires.

User interface to
authentication

By default, the interface to Name Password authentication communicates with the
user interactively. On UNIX, the application interface uses the /dev/tty device or
the stdin and stdout streams to prompt for a user name and a password. On
Windows, console applications work the same way. Windows applications pop up a
dialog box. Your application can control the Name Password interface with the
functions objectstore::set_simple_auth_ui() and get_simple_auth_ui(),
which are described in the C++ A P I Reference.

UNIX Client /
UNIX Server

UNIX Client /
NT Server

NT Client /
UNIX Server

NT Client /
NT Server

Authentication Type

1 x 1 x SYS

2 x x x DES (on platforms that
support DES)

x x x 1 NT Local

x x x 2 NT Remote

3 1 2 3 NONE

4 2 3 4 Name Password
84 Managing ObjectStore

Chapter 2: Server Parameters
Cache Manager Ping Time
Default: 300 seconds

The Cache Manager Ping Time parameter specifies a number of seconds. Whenever
the time between Cache Manager Ping Time seconds and twice Cache Manager
Ping Time seconds has elapsed with no message from the client, the server attempts
to send a message to the client’s cache manager to determine whether the client is
still active. If the cache manager cannot be contacted or the cache manager indicates
that the client does not exist, the server disconnects the client connection. The
minimum number of seconds you can specify is 10.

A large value for this parameter reduces network traffic and reduces the chance that
a client will be disconnected because of a transient network failure. A small value
increases network traffic but ensures that a client disconnected from the network
cannot hold locks for more than a short period of time.

If Cache Manager Ping Time and Cache Manager Ping Time In Transaction
have different values, ObjectStore uses Cache Manager Ping Time when the client
is not in a transaction.

Cache Manager Ping Time In Transaction
Default: 300 seconds

The Cache Manager Ping Time In Transaction parameter is the same as the
Cache Manager Ping Time parameter, except that the server uses the interval you
specify only during transactions. The number of seconds you specify for Cache
Manager Ping Time In Transaction must be less than or equal to the value set for
Cache Manager Ping Time. The minimum you can specify is 10 seconds.

If Cache Manager Ping Time and Cache Manager Ping Time In Transaction
have different values, ObjectStore uses Cache Manager Ping Time In Transaction
when the client is in a transaction.

Cluster Growth Policy
Default: 512 20K, 1K 40K, 2K 80K, 4K 160K, 8K 320 K, 16K 640K, 32K

The Cluster Growth Policy parameter specifies the policy for growing clusters.
This policy is applied when a cluster grows because of persistent object allocation.
The policy is not applied when the size of a cluster is set by a utility such as oscopy,
osrestore, or oscompact, when a huge object is created in its own cluster, or when
the cluster is presized by os_cluster::set_size(). In those cases, the size will be
exactly what was requested.

The syntax is:

 Cluster Growth Policy: policy

 policy = { growth size , }* growth

 growth = integer % | size

 size = integer { | K | M | G }
Release 6.3 85

List of Server Parameters
policy is a series of one or more growth/size pairs, where the last size is implicitly
infinite. size is specified in bytes (the default), kilobytes (K), megabytes (M), or
gigabytes (G). integer is a decimal integer; hexadecimal is not allowed.

When growth is followed by the percent sign (%), it specifies a percentage of the
current size; otherwise, it specifies an absolute size. The new size of the cluster data
will be rounded up to the next higher multiple of the absolute size, or the increase
will be at least as large as a percentage.

ObjectStore rounds up the new size, as well as growth and size values, to the next
higher multiple of units of its choosing.

Policy pairs must be listed in increasing order of size. The applicable policy is the one
with the smallest size that is greater than or equal to the current size. When
interpreting the policy series, read each { growth size } pair as though it said
“growth up to size”. If growth is at the end of a sequence of { growth size } pairs,
it should be read as though it said “otherwise growth”. For example, the first pair in
the default policy should be interpreted as though it said, “Grow the cluster in
increments of 512 bytes up to the size of 20 KB.” By default, the maximum
granularity for growing a cluster is 32 KB in the default policy.

To take the default policy as an example, if the current cluster size is 170 KB, and it
needs to grow by 3 KB to accomodate newly-allocated objects, the new size will be
rounded up to the next multiple of 8 KB, 176 KB, leaving 3 KB of free space at the end
of the cluster that can be used for further object allocation.

Changing the cluster growth policy can be an effective way to prevent database
fragmentation. For more information, see Managing Database Fragmentation on
page 44.

Note In releases before ObjectStore 6.1, the default policy was 512.

Database File Growth Policy
Default: 4K 40K, 10% 10M, 1M

The Database File Growth Policy parameter specifies the policy for growing
database files. This policy is applied when a file is created or grows. It is not applied
when the file is presized by os_database::set_size() or os_database::set_
size_in_sectors().

The syntax is:

 Database File Growth Policy: policy

 policy = {growth size , }* growth

 growth = integer % | size

 size = integer { | K | M | G | T }

policy is a series of one or more growth/size pairs, where the last size is implicitly
infinite. size is specified in bytes (the default), kilobytes (K), megabytes (M),
gigabytes (G), or terabytes (T). integer is a decimal integer; hexadecimal is not
allowed.
86 Managing ObjectStore

Chapter 2: Server Parameters
When growth is followed by the percent sign (%), it specifies a percentage of the
current size; otherwise, it specifies an absolute size. The new size of the database file
will be rounded up to the next higher multiple of an absolute size, or the increase will
be at least as large as a percentage.

ObjectStore rounds up the new size, as well as growth and size values, to the next
higher multiple of units of its choosing.

Policy pairs must be listed in increasing order of size. The applicable policy is the one
with the smallest size that is greater than or equal to the current size. When
interpreting the policy series, read each { growth size } pair as though it said
“growth up to size”. If growth is at the end of a sequence of { growth size } pairs,
it should be read as though it said “otherwise growth”. For example, the first pair in
the default policy should be interpreted as though it said, “Grow the file in
increments of 4KB up to the size of 40KB.” By default, the maximum granularity for
growing a file is 1 M in the default policy.

Changing the database file growth policy can be an effective way to prevent database
fragmentation. For more information, see Managing Database Fragmentation on
page 44.

DB Expiration Time
Default: 300 seconds

The DB Expiration Time parameter specifies the number of seconds that the server
keeps a rawfs database open after the last user has closed the database. This allows
data propagation to happen in the background, which means that users do not have
to wait for propagation to occur before they can close the rawfs database. Also,
applications that use the rawfs database start more quickly if they are starting during
DB Expiration Time.

Deadlock Victim
Default: Work

The Deadlock Victim parameter specifies the method that the server uses to select
a victim in the event of a deadlock. Specify one of the following to determine the
client that is the victim. The server sends a message to the selected client to abort the
transaction.

• Age

The youngest client. A client’s age is calculated as the time since its last
successfully committed transaction.

• Current

The client that made the last request to the server, causing the server to detect the
deadlock.

• Oldest

The oldest client. A client’s age is calculated as the time since its last successfully
committed transaction.
Release 6.3 87

List of Server Parameters
• Random

A random client.

• Work

The client that has done the least amount of work, as measured by RPC calls to the
server during the current transaction. This is the default.

This method of choosing a victim is secondary to transaction priority. See
objectstore::set_transaction_priority() in the C++ A P I Reference for more
information on transaction priorities.

Deadlock occurs when two or more processes are waiting for locks and there is a
circular dependency such that none of them can obtain the locks. For example,
ProcessA is waiting for a lock held by ProcessB, which is waiting for a lock held by
ProcessA. Because the dependency is circular, none of the processes can obtain the
requested lock. If the ObjectStore server did not detect deadlock situations, the
processes involved would wait for an infinite length of time.

When deadlock occurs, the server detects it automatically and chooses a victim
whose transaction is aborted. If the aborted transaction is a lexical transaction, it is
retried automatically. If it is a dynamic transaction, the transaction is aborted with
err_deadlock.

When the server aborts lexical transactions, it rolls back the persistent data that has
been modified during the transaction to its pretransaction state. Also, stack variables
declared within the scope of the transaction go out of scope. Special care must be
taken for stack variables whose values have been changed within the transaction and
for space allocated on the heap during the transaction.

To obtain information about where the deadlock occurs, run the server in debug
mode.

Direct to Segment Threshold
Default: 128 sectors (64 KB)

If the Direct to Segment Threshold parameter specifies a value of 4194304 sectors
(2 GB) or greater, the server is disabled from writing segments directly to the
database; that is, the data will always be written to the log before being written to the
database.

The following information applies to clients previous to Release 6.0.

The Direct to Segment Threshold parameter specifies, in sectors, the threshold
value that determines whether the server writes segments first to the log and then to
the database, or writes them directly to the database. If less than this threshold is
written past the current end of a segment during a transaction, the data is written to
the log before being written to the database. If the number of sectors written is
greater than this threshold, the data is written directly to the database.

Choosing a value depends on the size of the log and the cost of writing and flushing
the data separately from writing and flushing the log record. For example, if you
need to add 1 KB to each of 100 segments, writing 1 KB to each segment accesses the
88 Managing ObjectStore

Chapter 2: Server Parameters
disk 100 times. If average disk speed is between 8 and 12 milliseconds per access, it
would take between 800 milliseconds and 1.2 seconds to perform all the write
operations. If, however, you write the data to the log, either in a record or in the log
data segment, the write operation would probably be to contiguous disk storage and
take only about 50 milliseconds. This parameter lets you choose between

• Faster access and a larger log file

• Slower access and a smaller log file

The server applies the following tests in the following order; the first one that
matches determines the way the data is stored:

1 If the data is being written to a newly created segment, data is always written
directly to the database segment.

2 If the following conditions are met, the data goes directly to the database (this
formula means that the decision to write data directly to a database is not changed
by the size of individual write operations).

- Data is being written past the current end of the database segment.

- The number of the last sector being written minus the current committed size
of the segment is greater than the new Direct to Segment Threshold.

3 If neither of the previous conditions applies, data is put in the log until the commit
is done.

ESTALE Implies Database Deleted (UNIX Only)
Default: No

When the ESTALE Implies Database Deleted server parameter is set to yes,
ObjectStore allows the occurrence of events that could corrupt the database if NFS
gives an ESTALE status, instead of reporting errors that could crash the server. This
server parameter is effective only if the Allow Remote Database Access parameter
is set to yes; see Allow Remote Database Access on page 80. The default for ESTALE
Implies Database Deleted is no.

Failover Heartbeat File
Default: none

The Failover Heartbeat File server parameter specifies the pathname of the
heartbeat file, making it accessible to a failover server pair — that is, to the primary
and secondary servers in the pair. This parameter must be specified whenever the
following are true:

• ObjectStore-managed failover is enabled; for more information, see ObjectStore-
Managed Failover on page 286. The heartbeat file is not needed when failover is
managed by a cluster operating system.

• You are not using rawfs or the heartbeat is to be stored in an operating system file
rather than in rawfs.

See Chapter 6, High Availability of Data, on page 285 for more information about
setting up a failover system.
Release 6.3 89

List of Server Parameters
Failover Heartbeat Time
Default: none

The Failover Heartbeat Time parameter must be specified if you are using a
failover server. This parameter can be set to between 2 and 60 seconds. The
parameter defines how often a heartbeat message is written to disk. In the event of a
failure, it takes five times the Failover Heartbeat Time for the secondary server to
recognize the failure and to take over.

This server parameter can only be used with ObjectStore-managed failover. For
more information, see ObjectStore-Managed Failover on page 286.

Failover Script
Default: none

The Failover Script parameter specifies the path of a script or program that
should be executed when the secondary server takes over from the primary server in
an ObjectStore failover system. The script or program should return 0 if successfully
executed. If a nonzero value is returned, the secondary server will terminate.

This server parameter can only be used with ObjectStore-managed failover. For
more information, see ObjectStore-Managed Failover on page 286.

Host Access List
Default: none

The Host Access List parameter specifies the path of a file. This file must contain
a set of primary names of hosts, one name per line. (If DNS is in use, they must be
fully qualified domain names.) The server refuses connections from any host not on
the list, or whose name cannot be determined. This mechanism is only as secure as
the available means for translating host addresses to host names. On some networks,
there might not be a secure method.

This parameter is intended for use in environments in which a machine is on a
network with untrustworthy hosts and DES authentication is either unavailable or
unworkable.

When you create a host access list and you also have an administrative hosts list set
with the Admin Host List server parameter, ObjectStore adds all hosts in the
administrative hosts list to the host access list.

Identical Pathnames on Failover Server
Default: none

The Identical Pathnames on Failover Server parameter identifies which files
can be used without risk of losing access to them when a failover occurs. A server
running with failover turned on will allow these files to be used for databases,
transaction logs, and rawfs partitions, but will not allow any other files to be used.
Attempting to use another file causes an exception with the message:
90 Managing ObjectStore

Chapter 2: Server Parameters
file is not declared to be shared between the two servers in this
failover pair

Identical Pathnames on Failover Server specifies a comma-separated list of
strings. Whitespace after a comma is ignored, and string comparison is case-
insensitive. If a file pathname begins with a specified string, the file is allowed to be
used. Any file with a matching pathname must be available to both servers in the
failover pair and must have the same pathname on both machines.

Following is a Windows example of the Identical Pathnames on Failover
Server parameter. It specifies a shared disk for databases is mounted as X: on both
machines and a shared disk for the transaction log is mounted as Y: on both
machines:

Identical Pathnames on Failover Server: X:, Y:

Following is a UNIX example of the Identical Pathnames on Failover Server
parameter. It specifies a shared disk is mounted on /shared/ostore on both
machines:

Identical Pathnames on Failover Server: /shared/ostore/

Any file whose pathname starts with a string that is a member of the Identical
Pathnames on Failover Server list will be assumed by the server to be accessible
to both servers in the failover pair and to have the same pathname in both servers.
If the string ends with a directory separator, such as / on UNIX, the entire subtree of
directories under the named directory is assumed to be shared by the two servers in
the failover pair. If the string does not end with a directory separator, it is as if the
wildcard character (*) were appended to the string; thus /shared/ostore would
match the subtrees under both /shared/ostore-databases and /shared/ostore-
logs if those were the names of two directories.

If the Identical Pathnames on Failover Server parameter is not specified and
the server is a failover server, then only rawfs databases can be used, the transaction
log must be in rawfs, and all rawfs partitions must be raw-disk (that is, not in an
operating-system file).

Note Identical Pathnames on Failover Server always applies to entire directory
subtrees under the specified locations. ObjectStore does not validate that all files
within the subtree can be shared and are accessible by failover servers. It is the user’s
responsibility to ensure that no mount point in the subtree mounts an unshared file
system.

See Chapter 6, High Availability of Data, on page 285 for more information about
setting up a failover system.

Log Data Segment Growth Increment
Default: 2048 sectors (1 MB)

The Log Data Segment Growth Increment parameter specifies the number of
sectors to add to the data segment in the transaction log when more room is needed.
Release 6.3 91

List of Server Parameters
Log Data Segment Initial Size
Default: 2048 sectors (1 MB)

The Log Data Segment Initial Size parameter sets the initial size of the data
segment in the transaction log in sectors.

Log File
Default: rawfs

The Log File parameter specifies the path of the transaction log file. If you do not
specify a value for Log File, the server maintains the log in the rawfs, where it does
not need a name. If you do not have a rawfs and you do not specify a value for Log
File, the server fails to start and displays the following message:

There are no partitions specified in the parameters file. Whenever
partitions are omitted from the parameters file a log file path must
be specified in the parameters file.

If you have a rawfs, you do not specify this parameter. See The Server Transaction
Log on page 27.

If you specify this parameter, the path name cannot be for a raw partition. The
directory that contains the log file must exist before you start the server. When the
log is in the native file system, you should place it where it can never be deleted by
a user accidentally. You might want to name it in such a way that it is never deleted.

For best performance, the log file should be on a disk that is not used for any other
purpose.

Caution Deleting the log file can cause database corruption.

Windows On Windows, the value of this parameter is normally set while you run the
ObjectStore Setup utility. If you indicate that you do not want the log file to be in the
rawfs, the utility prompts you to enter the name of the log file. You can press Enter
to select the default. On Windows, the default log file name is OSSVXNT.LOG.

Log Record Segment Buffer Size
Default: 1024 sectors (512 KB)

The Log Record Segment Buffer Size parameter defines the amount of buffer
space reserved for log records.

Log Record Segment Growth Increment
Default: 512 sectors (256 KB)

The Log Record Segment Growth Increment parameter specifies the number of
sectors by which to increase the log record segment when more room is needed.
92 Managing ObjectStore

Chapter 2: Server Parameters
Log Record Segment Initial Size
Default: 1024 sectors (512 KB).

The Log Record Segment Initial Size parameter sets the initial combined size
of the two log record segments in sectors.

Max AIO Threads
Default: 3 threads

The Max AIO Threads parameter determines the number of threads the server can
start, to perform file input/output (I/O). One thread performs all I/O for a given file.
Each thread can handle I/O for multiple files. ObjectStore assigns files to threads on
a rotating basis.

If you never open more than a given number of files, you might want to set this
parameter to that number to ensure that there is one thread per file.

While ObjectStore does not have a limit on the number of threads you can use, your
operating system might.

Max Connect Memory Usage
Default: 0 (unlimited virtual memory)

The Max Connect Memory Usage parameter defines in kilobytes an amount of
virtual memory. When the server is using that amount of virtual memory, it refuses
new connections from clients. As long as the amount of virtual memory in use is less
than the amount set for Max Connect Memory Usage, the server allows a new
connection. The server does not consider the amount of memory the new connection
might need.

ObjectStore does allow its utilities to connect to the server when the amount
specified for Max Connect Memory Usage is exceeded. However, the amount of
virtual memory being used must be less than (Max Connect Memory Usage + Max
Memory Usage)/2.

The Max Connect Memory Usage parameter is always at least 1 MB less than the Max
Memory Usage parameter. When you increase the value set for Max Connect Memory
Usage, the server increases Max Memory Usage if necessary.

Max Data Propagation Per Propagate
Default: 10% of size specifiedby the Propagation Buffer Size parameter but not
less than 256KB and not more than 8MB.

The Max Data Propagation Per Propagate parameter specifies the maximum
number of sectors that can be moved in one propagate operation. This limits the
impact of propagation on the handling of client requests.

When counting the amount of data being propagated, ObjectStore weights the effect
of noncontiguous data by 64 sectors. This means that with Max Data Propagation
Release 6.3 93

List of Server Parameters
Per Propagate set to 512 sectors, a maximum of eight noncontiguous writes can
occur in a single propagation.

You can set the value of this parameter to more than the default in order to decrease
fsync overhead. You can set the value of this parameter to less than the default in
order to decrease the delays experienced by database reads that need to wait while
database writes complete.

Max Data Propagation Threshold
Default: Equal to the size specified by the Propagation Buffer Size parameter

The Max Data Propagation Threshold parameter sets the number of sectors that
can be waiting to be propagated. When the number of sectors waiting to be
propagated exceeds one half the value specified for Max Data Propagation
Threshold, the server forces propagation to run faster. When the number of sectors
waiting exceeds this parameter, propagation takes priority over clients.

You can set the value of this parameter to less than the default in order to use some
of the Propagation Buffer for caching; it should not be done to delay propagation.
Setting the value of this parameter to more than the default is not useful.

Max Memory Usage
Default: 0 (unlimited virtual memory)

The Max Memory Usage parameter specifies in kilobytes the maximum amount of
virtual memory the server can use. When the server starts, it checks this parameter,
immediately allocates the specified amount of memory, and then frees it. On some
platforms, this initial allocation confirms the availability of the memory and reserves
swap space for the server.

Specify a number that includes the minimum needed, plus some other arbitrary
amount. If you specify a number that is less than the minimum needed, the server
increases the number to an appropriate value. When calculating the minimum
amount of virtual memory needed, the server allows for

• Five clients (approximately 64 KB per client)

• Amount configured for message, propagation, and log buffers

The Max Memory Usage parameter works in coordination with the Max Connect
Memory Usage parameter. For more information, see Max Connect Memory Usage
on page 93.

Max Two Phase Delay
Default: 30 seconds

The Max Two Phase Delay parameter specifies the maximum number of seconds
that the server can delay a two-phase commit so that the server can back up data.
Sometimes, when ObjectStore is backing up data on multiple servers at the same
time, ObjectStore must synchronize the relevant servers. This ensures that a
transaction applying to more than one server is committed on all relevant servers. To
94 Managing ObjectStore

Chapter 2: Server Parameters
do this, the server must sometimes delay the commit of some transactions. Usually,
ObjectStore can synchronize the servers in much less than a second.

If a client aborts during a two-phase commit, this value could be exceeded. If this
value is exceeded, ObjectStore cancels the delay and tries again.

Message Buffer Size
Default: 512 sectors (256 KB)

The Message Buffer Size parameter sets the size of the message buffer that the
server uses for processing messages from clients. The server reads data from this
buffer and writes data requested by the clients into this buffer. The value of this
parameter is rounded to a multiple of 64 KB.

N Message Buffers
Default: 4 message buffers

The N Message Buffers parameter sets the number of message buffers the server
uses to communicate with clients. This number defines the maximum number of
clients that can simultaneously perform operations that fetch or store persistent data.

Notification Retry Time
Default: 60 seconds.

The Notification Retry Time parameter specifies the time, in seconds, between
retries for server-to-server communication. It is used during two-phase commit
recovery.

PartitionN
Default: none

The PartitionN parameter (where N is an integer) specifies a partition in the rawfs.
See Creating a Rawfs in the chapter for your platform for information about using
this parameter.

Preferred Network Receive Buffer Size

Preferred Network Send Buffer Size
Default: 16384 bytes

The Preferred Network Receive Buffer Size and Preferred Network Send
Buffer Size parameters specify the network buffer sizes in bytes for sending and
receiving messages to and from the server, respectively.

UNIX On many UNIX platforms, these are TCP buffer sizes.
Release 6.3 95

List of Server Parameters
Propagation Buffer Size
Default: Varies according to machine hardware — 8% of main memory divided by
the number of processors minus 64MB per processor, but not less than 4MB and not
more than the following maximums:

The Propagation Buffer Size parameter selects the amount of buffer space
reserved for propagation. This space is used for holding data that are to be written
to target databases. If the buffer size is large enough, data written to the log can be
kept in memory until propagation to the database, thus eliminating the need to read
the log.

Propagation Sleep Time
Default: 60 seconds

The Propagation Sleep Time parameter determines the number of seconds
between propagations. This parameter takes effect only when there is data to be
propagated. If a lot of data is waiting to be propagated, the server decreases this
interval temporarily.

RAWFS Partition Growth Policy
Default: 1M

The RAWFS Partition Growth Policy parameter specifies the policy for growing
expandable rawfs partitions. This policy is applied when a partition is created or
grows.

The syntax is:

 RAWFS Partition Growth Policy: policy

 policy = {growth size , }* growth

 growth = integer % | size

 size = integer { | K | M | G | T }

policy is a series of one or more growth/size pairs, where the last size is implicitly
infinite. size is specified in bytes, kilobytes (K), megabytes (M), gigabytes (G), or
terabytes (T). integer is a decimal integer; hexadecimal is not allowed.

When growth is followed by the percent sign (%), it specifies a percentage of the
current size; otherwise, it specifies an absolute size. The new size of the rawfs
partition will be rounded up to the next higher multiple of an absolute size, or the
increase will be at least as large as a percentage.

ObjectStore rounds up the new size, as well as growth and size values, to the next
higher multiple of units of its choosing.

AIX5 and HP32 64 MB

Other 32-bit platforms 256 MB

All 64-bit platforms 512 MB
96 Managing ObjectStore

Chapter 2: Server Parameters
Policy pairs must be listed in increasing order of size. The applicable policy is the one
with the smallest size that is greater than or equal to the current size. When
interpreting the policy series, read each { growth size } pair as though it said
“growth up to size”. If growth is at the end of a sequence of { growth size } pairs,
it should be read as though it said “otherwise growth”.

Changing the rawfs partition growth policy can be an effective way to prevent
database fragmentation. For more information, see Managing Database
Fragmentation on page 44.

Remote Database Grow Reserve
Default: 16 MB

The Remote Database Grow Reserve parameter specifies the amount of free disk
space that must be available on a remote file system to grow a database. Remote
databases are databases not located on the same host as the ObjectStore server. On
UNIX platforms, a remote database is mounted via NFS; on Windows platforms, it
is a database on a remote drive.

The Remote Database Grow Reserve parameter can be set to sizes between 16 MB
and 1 GB. When ObjectStore tries to grow a database and the amount of free space
on the remote file system is less than this parameter plus 64 KB, an err_server_full
exception is signaled.

See Chapter 5, Using Locator Files to Set Up Server-Remote Databases, on page 265,
for more information about remote databases.

Restricted File DB Access (UNIX Only)
Default: None

The Restricted File DB Access parameter determines file access when an account
that does not have root privileges starts the server. Possible values are User, Group,
All, or None. When you set this parameter to a value other than None and the account
that starts the server does not have root permission, ObjectStore allows access to file
databases, but only by clients to which the account that started the server has User
or Group access, or to all accounts if All is specified.

By default, Restricted File DB Access is set to None, which, in effect, disables this
parameter. This means that if an account with non-root permission starts the server,
ObjectStore allows access to rawfs databases but not to file databases.

RPC Timeout
Default: 60

The RPC Timeout parameter sets the timeout value in seconds for remote procedure
calls (RPCs) from the server to the cache manager.
Release 6.3 97

List of Server Parameters
98 Managing ObjectStore

Chapter 3
Environment Variables

This chapter describes the ObjectStore environment variables, which are listed here
and described in the chapter in alphabetical order.

OS_16K_PAGE 102

OS_32K_PAGE 102

OS_64K_PAGE 102

OS_8K_PAGE 102

OS_ALWAYS_CHECK_SERVER_AT_COMMIT 102

OS_AS_SIZE 103

OS_AS_START 104

OS_AUTH 105

OS_CACHE_DIR (UNIX Only) 106

OS_CACHE_SIZE 106

OS_CMGR_OUTPUT_LOG_NAME 107

OS_CMGR_STARTUP_LOCK (UNIX Only) 107

OS_COLL_DEBUG_INDEX 107

OS_COLLECTION_TRACE_INDEX_USAGE 108

OS_COMMSEG_DIR (UNIX Only) 108

OS_COMP_SCHEMA_CHANGE_ACTION 109

OS_CORE_DIR (UNIX Only) 109

OS_DEBUG_C0000005 (Windows Only) 109

OS_DEBUG_LOCATOR_FILE 109

OS_DEF_BREAK_ACTION (Windows Only) 110

OS_DEF_EXCEPT_ACTION 110

OS_DEF_MESSAGE_ACTION (Windows Only) 110

OS_DEFAULT_AS_PARTITION_SIZE 111

OS_DISABLE_PROPAGATE_ON_COMMIT 112

OS_DISALLOW_OSSINGLE_REMOTE_DATABASES 112

OS_DISPLAY_INSTALL_MISMATCHES 112

OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE 113

OS_ENABLE_REALTIME_COUNTERS 113

OS_FORCE_HANDLE_TRANS 113
Release 6.3 99

OS_HANDLE_TRANS (UNIX Only) 113

OS_IGNORE_LOCATOR_FILE 114

OS_INC_SCHEMA_INSTALLATION 114

OS_INHIBIT_TIX_HANDLE 115

OS_LANG_OVERRIDE (UNIX Only) 115

OS_LIBDIR 116

OS_LOCATOR_ESCAPE_CHARACTER 116

OS_LOCATOR_FILE 116

OS_LOG_TIX_FORMAT 117

OS_META_SCHEMA_DB 117

OS_NETWORK (Windows Only) 117

OS_NETWORK_SERVICE (UNIX Only) 118

OS_NO_MAPPED (UNIX Only) 119

OS_NOTIFICATION_QUEUE_SIZE 119

OS_OSDUMP_APPSCHEMA_PATH 119

OS_OSLOAD_APPSCHEMA_PATH 119

OS_OSSG_CPP 119

OS_OSVERIFYDB_BUFFER_SIZE 120

OS_OSVERIFYDB_FAST 120

OS_PASSWORD 120

OS_PATHNAME_ENCODING 120

OS_PORT_FILE 120

OS_PREALLOCATE_CACHE_FILES (UNIX Only) 121

OS_PRINT_CLIENT_COUNTERS 121

OS_RCVBUF_SIZE 121

OS_REMOTE_AUTH_REGISTRY_LOCATION (Windows Only) 122

OS_RESERVE_AS (UNIX Only) 122

OS_ROOTDIR 123

OS_SCHEMA_KEY_HIGH 123

OS_SCHEMA_KEY_LOW 123

OS_SCHEMA_PATH 124

OS_SECURE_RPC_DOMAIN 125

OS_SERVER_DEBUG_FILE_MAX_LINES 125

OS_SERVER_OUTPUT_LOG_NAME 125

OS_SNDBUF_SIZE 125

OS_STDOUT_FILE (Windows Only) 125

OS_TIX_BUFFER_SIZE (Windows Only) 126

OS_TIX_WD (UNIX Only) 126

OS_TMPDIR 126
100 Managing ObjectStore

Chapter 3: Environment Variables
OS_TRACE_MISSING_VTBLS 127

OS_TURN_ON_ENGLISH_MESSAGES 127

OS_USE_MAP_FIXED 128

OS_USER_ARCH_SET 128

OS_USERNAME 128

OS_VERIFYDB_BUFFER_SIZE 128

OS_VERIFYDB_FAST 129

Specifying Values for Environment Variables
You can set environment variables to modify the characteristics of the client, server,
or cache manager environment. The variables you set apply to the process in which
you set them and, consequently, to ObjectStore applications that you start from that
process. Unless specified otherwise, these environment variables are effective only
when set in the client process.

An environment variable is available on all platforms unless noted otherwise in this
chapter.

The value for a variable is either an integer, a Boolean value, or a string that can have
certain values as described in this chapter. When you set a variable string to an
empty string, ObjectStore uses the default. When you set an integer or Boolean
variable to a blank string (empty), ObjectStore interprets it as 0 or false.

Specifying
integers

When an environment variable has a numeric value, it is an unsigned integer
(leading + or – is dropped) that ObjectStore reads as a constant according to the rules
of the C programming language. An empty setting results in a value of 0. If the whole
value cannot be parsed, ObjectStore signals an error such as the following:

<err-0001-0040>The value of variable_name, bad_value, is not a valid
integer. (err-misc)

Specifying
Boolean values

When an environment variable has a Boolean value, you can specify any nonnull
value except 0 to set the variable. When the value for a Boolean variable is false, it
means that the variable is not set. To turn off a Boolean variable, set it to 0.

A true setting for an environment variable is anything nonempty or nonnull that
does not completely parse as a constant to the value of 0 according to the rules of the
C programming language. For example, the following values return true:

• 0Foo and Foo

• 23

• 0 0

• <space>1

• false, False, and FALSE

The following values return false:
Release 6.3 101

Specifying Values for Environment Variables
• 0

• 00

• <space>0

• 0 multiplied by 0

OS_16K_PAGE
Default: false

When true (nonzero), the OS_16K_PAGE variable specifies a page size of 16384 bytes
to be used by ObjectStore. The default size is defined by the system. Note that you
cannot use this variable to set the page size smaller than the system-defined size.

Caution Use the OS_16K_PAGE environment variable carefully. If you think you need to use
it, contact Technical Support.

OS_32K_PAGE
Default: false

When true (nonzero), the OS_32K_PAGE variable specifies a page size of 32768 bytes
to be used by ObjectStore. The default size is defined by the system. Note that you
cannot use this variable to set the page size smaller than the system-defined size.

Caution Use the OS_32K_PAGE environment variable carefully. If you think you need to use
it, contact Technical Support.

OS_64K_PAGE
Default: false

When true (nonzero), the OS_64K_PAGE variable specifies a page size of 65536 bytes
to be used by ObjectStore . The default size is defined by the system. Note that you
cannot use this variable to set the page size smaller than the system-defined size.

Caution Use the OS_64K_PAGE environment variable carefully. If you think you need to use
it, contact Technical Support.

OS_8K_PAGE
Default: false

When true (nonzero), the OS_8K_PAGE variable specifies a page size of 8192 bytes to
be used by ObjectStore. The default size is defined by the system. Note that you
cannot use this variable to set the page size smaller than the system-defined size.

Caution Use the OS_8K_PAGE environment variable carefully. If you think you need to use it,
contact Technical Support.

OS_ALWAYS_CHECK_SERVER_AT_COMMIT
Default: Not set
102 Managing ObjectStore

Chapter 3: Environment Variables
The OS_ALWAYS_CHECK_SERVER_AT_COMMIT variable specifies whether ObjectStore
applications check for valid server connections before committing read-only
transactions.

To set this variable, specify any nonnull value except 0.

By default, this variable is not set and ObjectStore applications do not perform this
check.

See also objectstore::set_always_check_server_connection_at_commit() in
the C++ A P I Reference.

OS_AS_SIZE
Default: by platform

The OS_AS_SIZE variable sets the size, in bytes, of the persistent storage region in the
address space for each client. Specify values in numbers of bytes that are 0x10000
aligned (64 KB). Typically, it is not necessary to specify a value for this variable. The
default value varies from platform to platform, as shown in the table below.

The size of the persistent storage region on the creating platform typically
determines the size of the largest object you can store in a database. This is because
ObjectStore commits the entire object in the transaction that allocates it. However, if
the maximum size of a cluster is smaller than OS_AS_SIZE, the largest object you can
store is limited to the maximum cluster size. (Allocation is limited to a single cluster.)

Caution An incorrect value for OS_AS_SIZE or OS_AS_START can cause failures. Be absolutely
certain that you understand the way addresses are assigned on your platform before
you modify these values.

For example, if you quadruple OS_AS_SIZE, your application can run on a Solaris 32
bit, but fails on Windows systems.

Address space
considerations

When considering address space, note the important distinction between assigning
an address and mapping an address. When ObjectStore assigns an address, it means
that the client determines where it would put those pages if it needed them.
Assigning an address reserves space so that the address cannot be assigned to
another page. When ObjectStore maps a page to an address, it means that the page
is available to the client.

Platform Default Size
OS_AS_SIZE

AIX 1024 MB (0x40000000)

Intel Windows 512 MB (0x20000000)

Linux 32 bit 255 MB (0xFFF0000)

Linux 64 bit

Solaris 32 bit 192 MB (0xC000000)

Solaris 64 bit 192 MB (0xC000000)
Release 6.3 103

Specifying Values for Environment Variables
When a page uses hard pointers to refer to pages outside the region, ObjectStore
assigns address space to those pages. This makes it possible, in certain situations, to
use up available address space by touching a single page. In many cases, changing
OS_AS_SIZE solves this problem. However, there are cases in which the schema
design could benefit from the strategic application of soft pointers and sometimes a
reworking of transaction semantics.

If an application uses soft pointers instead of hard pointers to point to data in other
regions, ObjectStore does not assign address space to the other regions until the soft
pointers are actually resolved. In programs with complex schemas using pages that
refer to objects in many other regions (a high degree of “nonlocal fan out”), use soft
pointers instead of hard pointers.

If the client exhausts the address space, it might be possible to reorganize some of the
client’s transactions to reduce the amount of data being referenced in any single
transaction.

OS_AS_START
Default: not set

The OS_AS_START variable sets the address of the beginning of the persistent storage
region (PSR) of the process’s address space. Specify values that are 0x10000 aligned
(64 KB). Typically, you do not supply a value for this variable. The default is that this
variable is not set and the operating system chooses a location for the PSR.

See OS_AS_SIZE on page 103 for a caution about the use of this variable.

Windows On Windows, 2 GB is the maximum user-mode address space. Your program, its
data, and ObjectStore’s address space must fit in 2 GB. A user program on Windows
uses the bottom 2 GB of address space. DLLs and the like use up space at 0x10000000;
stacks use up space at 0x7fxxxxxx. Consequently, there are only 1.75 GB available.

Linux If you use the OS_AS_START environment variable on Linux platforms, you are
required to also set the OS_USE_MAP_FIXED environment variable. See OS_USE_
MAP_FIXED on page 128 for more information.

Solaris If you use the OS_AS_START environment variable on Solaris platforms and the
operating system reports that the specified address region is unavailable, but you
know by other diagnostic methods that the region really is available, you can set the
OS_USE_MAP_FIXED environment variable to override the operating system’s
message. See OS_USE_MAP_FIXED on page 128 for more information.

OS_ASMARKERS_USELESS
Default: false

The OS_ASMARKERS_USELESS variable allows you to disable address-space markers.
By default, the markers are enabled.

You can also control and retrieve the setting of address-space markers
programmatically; see objectstore::get_asmarkers_useless() and
objectstore::set_asmarkers_useless() in the C++ A P I Reference.
104 Managing ObjectStore

Chapter 3: Environment Variables
OS_AUTH
The OS_AUTH variable overrides the authentication search protocol (see
Authentication Required on page 80). The format for specifying this variable is
OS_AUTH=type or OS_AUTH=host:type, where type is one of the values listed in the
table below and host is the name of the server.

The valid types that OS_AUTH can be assigned are as follows:

You can also use a semicolon-separated list of authentication types to specify
authentication types for various hosts. This list can include one default value. See
examples below.

OS_AUTH can specify only one default authentication type, and it can specify only one
authentication type per host. The client performs network name lookup, so it is not
necessary to list the aliases of a host. For example, if the default DNS domain is
odi.com and a server has two network names — server1 and server-one — the
host names server1, server-one, and server1.odi.com are all the same host.

If OS_AUTH specifies a host-specific authentication type that is not supported by the
server, the default value is used if the server supports the default.

If the server supports neither the specified authentication type nor the default type,
the client attempts to find a type supported by both the client and the server. If it does
not find a supported authentication type, it signals an err_authentication_
failure error.

Examples OS_AUTH=server1:DES;SYS

Instructs the client to use SYS authentication for all servers except server1. When
connecting to server1, the client uses DES authentication if server1 supports it. If
server1 does not support DES or SYS, an authentication method is selected from the
list of authentication types that the server supports.

OS_AUTH=NONE

Instructs the client to use no authorization. If a server does not support the NONE type,
an authentication method is selected from the list of authentication types the server
supports.

OS_AUTH=server1:NP

Value Authentication

NONE No authentication

SYS Sun ONC RPC AUTH_SYS authentication

DES ONC RPC AUTH_DES authentication

NP UNIX seteuid/setegid or Windows LogonUser authentication
(Name Password)

NT_LOCAL Windows NT ImpersonateLoggedOnUser authentication

NT_REMOTE Windows NT Security Service Provider authentication
Release 6.3 105

Specifying Values for Environment Variables
Instructs the client to use Name Password authentication when connecting to
server1. For any other server, an authentication method is selected from the list of
authentication types that the other server supports.

OS_CACHE_DIR (UNIX Only)
Default: /tmp/ostore

The OS_CACHE_DIR variable specifies the path of the directory used for the client
cache and communications segment (commseg). If /tmp is very small, it might be
desirable to locate the cache file and commseg elsewhere.

ObjectStore places the cache file and commseg in the specified directory and assigns
a file name to avoid conflicts between multiple processes that are running
ObjectStore and using the same directories.

If OS_CACHE_DIR is not set, ObjectStore places the cache file in the directory specified
by the Cache Directory parameter in the cache manager parameters file, if one
exists. See Setting Cache Manager Parameters on page 307.

Caution This directory should not be an NFS mount point; if it is, the result can be slower
client performance and potential problems with memory mapping over NFS.

Cache and commseg files should be in the same directory. See OS_COMMSEG_DIR
(UNIX Only) on page 108 for related information.

Windows The operating system determines the location of the cache in virtual memory. You
cannot change the location.

OS_CACHE_SIZE
Default: 8 MB

The OS_CACHE_SIZE variable specifies the size of the client cache, in bytes. The
default cache size can be overridden using the OS_CACHE_SIZE environment
variable.

Note that the size of the client cache does not limit the size of an object that can be in
the database. ObjectStore can store an object on multiple pages and can swap pages
in and out of the client cache as needed.

When you are trying to determine the optimum cache size for your application,
consider data access patterns as well as the amount of data that is accessed. In other
words, both size and operation are important. The goal is to minimize the number of
times the client must swap pages out of the cache and send them back to the server.

Also consider the amount of physical memory in your machine. Usually, it is
desirable for the cache to stay in physical memory rather than to be swapped out to
disk.

The cache size is limited only by the amount of resources (address space, memory,
or disk space) on the machine.

If necessary, ObjectStore rounds down the number you specify to a multiple of the
page size.
106 Managing ObjectStore

Chapter 3: Environment Variables
OS_CMGR_OUTPUT_LOG_NAME
Default: not set

This environment variable affects the cache manager and the client that starts the
cache manager.

The OS_CMGR_OUTPUT_LOG_NAME variable specifies the name of the cache manager
log file to use instead of the default name. If this variable is not set, the log file is
assigned the default name of osc6_out on UNIX or oscmgr6.txt on Windows in the
temp directory.

OS_CMGR_STARTUP_LOCK (UNIX Only)
Default: by platform

The OS_CMGR_STARTUP_LOCK variable specifies an alternative location for the cache
manager startup lock file.

ObjectStore clients automatically start a cache manager if one is not already running
on UNIX systems. ObjectStore uses a special file, called a startup lock file, to ensure
that only one cache manager starts on a host. The default location for this file is
according to platform:

• Solaris 2: /var/tmp/cmgr6_startup_lock

• Other systems (not Windows): /tmp/cmgr6_startup_lock

If a cache manager is not already running, a client

1 Creates the startup lock file

2 Launches the cache manager

3 Ensures that the client can communicate with the cache manager

4 Deletes the startup lock file

The startup lock file does not contain anything. Its existence serves as a lock while a
client is starting a cache manager, which prevents other clients from also starting a
cache manager.

If you do not want to use the default location for the startup lock file, or if the default
location is unavailable, you can specify an alternative location with the OS_CMGR_
STARTUP_LOCK environment variable. Set this variable to a local path name.

ObjectStore tries to use the default location first. If it is not possible to use the default,
ObjectStore uses the path name you specified for OS_CMGR_STARTUP_LOCK.

The client process must have the authority to create the specified file.

OS_COLL_DEBUG_INDEX
Default: Not set

The OS_COLL_DEBUG_INDEX variable is used to debug problems that may occur when
an application adds indexes to a collection or inserts elements into an index.
Release 6.3 107

Specifying Values for Environment Variables
When set, this variable instructs ObjectStore to check that

• New indexes added to a collection will expect the same type of element as do
previously added indexes for that collection

• New indexes added to a collection match the type of existing elements in the
collection

• The type of elements inserted into an index match the type of elements in existing
indexes on the collection

If this variable is set, running the utility osverifydb will check the consistency of the
type of all indexes on each collection with the type of each member of that collection.
See osverifydb on page 258 for more information.

Example Here is a sample of the displayed output from index operations when this variable
is set:

DBG: Adding index of type "A*" to collection at 0xe14b0010
DBG: Checking element at 0xe14b08d4 of type "A" OK
DBG: Checking element at 0xe14b08e8 of type "A2" OK ("A" is a
 base of "A2")
DBG: Checking element at 0xe14b08d8 of type "A" OK
DBG: Checking element at 0xe14b08dc of type "B" INCONSISTENCY

OS_COLLECTION_TRACE_INDEX_USAGE
Default: Not set.

When set, the OS_COLLECTION_TRACE_INDEX_USAGE variable sends index use
informtion to stdout after executionof each query in your program. For information
about how to use this variable, see C++ Collections Guide and Reference, Indexes and
Query Optimization, Monitoring Index Use During Queries.

OS_COMMSEG_DIR (UNIX Only)
Default: /tmp/ostore

The OS_COMMSEG_DIR variable specifies the path of the directory used for the
communications segment (commseg). ObjectStore places the commseg in the
/tmp/ostore directory automatically. If the UNIX file system containing
/tmp/ostore is very small, it might be desirable to locate the commseg elsewhere.

ObjectStore places the commseg in the specified directory and assigns a unique file
name to avoid conflicts between multiple processes that are all running ObjectStore
and using the same OS_COMMSEG_DIR setting.

Commseg and cache files should be in the same directory. See OS_CACHE_DIR (UNIX
Only) on page 106 for related information.

If OS_COMMSEG_DIR is not set, ObjectStore places the commseg in the directory
specified by the Commseg Directory parameter in the cache manager parameters
file, if one exists. See Setting Cache Manager Parameters on page 307.

Caution This directory should not be an NFS mount point because this can result in slower
client performance and can create potential problems with memory mapping over
NFS.
108 Managing ObjectStore

Chapter 3: Environment Variables
Windows The operating system determines the location of the commseg in shared memory.
You cannot change the location.

OS_COMP_SCHEMA_CHANGE_ACTION
Default: error

The OS_COMP_SCHEMA_CHANGE_ACTION variable controls the severity of the error
resulting from a type mismatch during library and compilation schema generation.
You can specify the following values:

OS_CORE_DIR (UNIX Only)
Default: root directory

This environment variable affects the server, the cache manager, and the client that
starts the cache manager.

The OS_CORE_DIR variable specifies the location where the server and cache manager
are to dump core files.

OS_DEBUG_C0000005 (Windows Only)
Default: false

The OS_DEBUG_C0000005 variable instructs ObjectStore to display a message box if a
fault occurs and the ObjectStore exception handler sees it. The message explains the
fault as an Attempt to read location 0x1234 from EIP 0x10231023. This can
be useful in locating access violations in your code. To set this variable, specify any
nonnull value except 0.

OS_DEBUG_LOCATOR_FILE
Default: 0

The OS_DEBUG_LOCATOR_FILE variable instructs ObjectStore to send diagnostic
information about the processing of the locator file to stderr.

When this variable is set to 0, the default, no information is provided.

When this variable is set to 1, ObjectStore generates a report every time the locator
file is searched. This allows you to determine the input to the search exactly, which

Value Description

error The type mismatch is reported as an error. The compilation is
eventually terminated and the compilation schema remains
unchanged.

silent The type mismatch is not reported. The new type definition replaces
the previous definition in the compilation schema.

warn The type mismatch is reported as a warning. The new type definition
replaces the previous definition in the compilation schema.
Release 6.3 109

Specifying Values for Environment Variables
in turn enables you to diagnose the reason that the locator file is not providing the
expected results.

If your application is a Windows GUI application, see OS_STDOUT_FILE (Windows
Only) on page 125.

OS_DEF_BREAK_ACTION (Windows Only)
Default: false

This environment variable affects the server, client, and cache manager.

The OS_DEF_BREAK_ACTION variable allows you to set a breakpoint that obtains a
stack trace before the stack is unwound. When you set this variable to 1, ObjectStore
reaches a hard-coded breakpoint immediately before an exception is signaled. This
is useful when your application exits with an unhandled TIX exception and works
with Visual C++’s just-in-time debugging. Setting OS_DEF_BREAK_ACTION also hits a
breakpoint if ObjectStore’s internal abort routine is called.

OS_DEF_EXCEPT_ACTION
Default: Not set

This environment variable affects the server, client, and cache manager.

The OS_DEF_EXCEPT_ACTION variable controls what happens if an unhandled
exception is signaled. It is useful in debugging unhandled exceptions. You can
specify the following values:

OS_DEF_MESSAGE_ACTION (Windows Only)
Default: Not set

This environment variable affects the server, client, and cache manager.

The OS_DEF_MESSAGE_ACTION environment variable determines the default message
action for _ODI_message (used for unhandled TIX exceptions). You can set this
variable to stderr or stdout to send the information there, or you can specify the
name of a file to receive the information.

Value Description

abort ObjectStore aborts the process. On UNIX, ObjectStore creates a
core file and, if you are running in a debugger, returns control to
the debugger.

integer Specify an integer greater than or equal to 1. ObjectStore exits
from the program with the specified integer as the return value.

kill ObjectStore action varies by platform:

• Windows — ExitProcess (0x006600);

• UNIX — kill (getpid(), SIGKILL);

Any other value ObjectStore exits from the program with a return value of 1. This
is the default.
110 Managing ObjectStore

Chapter 3: Environment Variables
OS_DEFAULT_AS_PARTITION_SIZE
Default: Not set

The OS_DEFAULT_AS_PARTITION_SIZE variable specifies, in bytes, the amount of
address spaced assigned to newly created sessions unless overridden by
objectstore::set_default_address_space_partition_size(). The actual
amount assigned is the specified amount rounded up to the next multiple of 64 KB.

For more information on sessions, see Chapter 3, Multithread and Multisession
Applications, in the Advanced C++ A P I User Guide.
Release 6.3 111

Specifying Values for Environment Variables
OS_DISABLE_PROPAGATE_ON_COMMIT
Default: false

Intended for use with ObjectStore/Single, OS_DISABLE_PROPAGATE_ON_COMMIT
controls when ObjectStore propagates committed data from the transaction log to a
database. By default, this environment variable is false and data is propagated to a
database when a top-level transaction commits. If this environment variable is set to
true, the data is propagated when a database is closed and when an application ends
normally. If an application ends prematurely, some of the data might not have been
propagated to the database. This data is propagated the next time the ObjectStore is
initialized or on a call to progagate_log().

For some applications, setting this environment variable to true can improve
performance because data is written to the database less frequently. However, doing
so increases the risk of data loss, which can happen if an application ends
prematurely and the transaction log is deleted before the data is propagated to the
database.

Applications can override this environment variable by using objectstore::set_
propagate_on_commit(). For more information, see objectstore::get_
propagate_on_commit() and objectstore::set_propagate_on_commit() in the
C++ A P I Reference and Chapter 6, Working with ObjectStore / Single, in Building C++
Interface Applications.

OS_DISALLOW_OSSINGLE_REMOTE_DATABASES
Default: Not set

This variable is for use with ObjectStore/Single. When the OS_DISALLOW_OSSINGLE_
REMOTE_DATABASES environment variable is set, ObjectStore/Single applications are
prevented from accessing databases on remote file systems. To set this variable,
specify any nonnull value except 0.

By default, this variable is not set and ObjectStore/Single applications can access
databases on remote file systems.

If this environment variable is set and the application detects a remote database
during os_database::open() or os_database::create() the exception err_
file_not_local is raised.

For more information, see Chapter 6, Working with ObjectStore / Single, in Building
C++ Interface Applications.

OS_DISPLAY_INSTALL_MISMATCHES
Default: false

The OS_DISPLAY_INSTALL_MISMATCHES variable displays to stdout any mismatches
found during Metaobject Protocol (MOP) dynamic type installation. When this
variable is not set, the only indication of failure is that an exception is raised. To set
this variable, specify any nonnull value except 0.
112 Managing ObjectStore

Chapter 3: Environment Variables
If your application is a Windows GUI application, see OS_STDOUT_FILE (Windows
Only) on page 125.

OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE
Default: false

The OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE variable enables
automatic soft-pointer decaching after any address space is released. By default,
ObjectStore does not automatically decache soft pointers on a page when that page
is accessed again. When a page that contains cached soft pointers is reused, the
address space for the soft-pointer targets is immediately reserved. When soft-pointer
decaching is enabled and a page containing cached soft pointers is reused, the soft
pointers on the page are decached, ensuring that address space is not reserved for
their targets.

To enable soft-pointer decaching, set this variable to true (any nonnull value except
0). For more information about soft-pointer decaching, see Soft-Pointer Decaching in
Chapter 1 of the Advanced C++ A P I User Guide.

OS_ENABLE_REALTIME_COUNTERS
Default: false

The OS_ENABLE_REALTIME_COUNTERS variable turns on the collection and display of
timing statistics that measure ObjectStore performance. ObjectStore displays values
of real-time counters that help show where time is being spent. To set this variable,
specify any nonnull value except 0.

OS_FORCE_HANDLE_TRANS

OS_HANDLE_TRANS (UNIX Only)
Default: false

The OS_FORCE_HANDLE_TRANS and OS_HANDLE_TRANS variables control what
ObjectStore does if there is a memory fault on an address that is not in the persistent
storage region of address space; for example, if you happen to dereference a null
pointer.

When you set OS_FORCE_HANDLE_TRANS to any nonnull value except 0 (or
objectstore::set_handle_transient_faults() is called with the true
argument) ObjectStore signals the appropriate exception: err_null_pointer or
err_deref_transient_pointer. This causes dereferences to illegal non-
ObjectStore addresses to signal a TIX exception and display a message, and lets you
get a stack trace.

When you set OS_HANDLE_TRANS, ObjectStore runs the SIGSEGV handler that was in
force before ObjectStore was fully initialized. If there is no such handler, ObjectStore
signals the appropriate exception.

If neither of these variables is set, ObjectStore runs the SIGSEGV handler that was in
force before ObjectStore was fully initialized. If there is no such handler, ObjectStore
Release 6.3 113

Specifying Values for Environment Variables
returns the signal to the operating system to handle. The operating system performs
the usual actions for SIGSEGVs, for example, dumping core or some other action that
depends on other environment variable settings.

If you do not set up your own SIGSEGV handler before ObjectStore is initialized, the
error message is Segmentation Violation: Core Dumped. If both variables are set,
OS_FORCE_HANDLE_TRANS has precedence.

OS_IGNORE_LOCATOR_FILE
Default: false

The OS_IGNORE_LOCATOR_FILE variable indicates that no locator file is associated
with any application on the client. This overrides all other settings and function calls,
including the existence of $OS_ROOTDIR/etc/locator. Specify any nonnull value
except 0 to set this variable. Set this variable to 0 to allow locator files (this is the
default).

When this variable is set to a nonnull nonzero value, locator files are not used.
However, a small part of the locator file logic in the client is executed nonetheless.
Consequently, if you have locator file debugging enabled, you still receive diagnostic
information. See OS_DEBUG_LOCATOR_FILE on page 109.

For information about the locator file, see Description of the Locator File on page 267.

OS_INC_SCHEMA_INSTALLATION
Default: false

When the OS_INC_SCHEMA_INSTALLATION variable is set to any nonnull value except
0, ObjectStore creates new databases in incremental schema installation mode. This
means that ObjectStore adds types to the database schema as they are needed. When
this variable is not set, ObjectStore creates new databases in batch schema
installation mode. This means that when ObjectStore creates a database, it creates a
database schema that includes all types that might be allocated in the database.

An application performs incremental rather than batch schema installation if either
of these conditions is true:

• The application has OS_INC_SCHEMA_INSTALLATION set to any nonnull value
except 0.

• The database was created with incremental schema installation.

You can override the effect of this environment variable for a particular process by
using objectstore::set_incremental_schema_installation(). See the C++
A P I Reference. For a discussion of the issues involved, see the C++ A P I User Guide.
114 Managing ObjectStore

Chapter 3: Environment Variables
OS_INHIBIT_TIX_HANDLE
Default: not set

This environment variable affects the server, client, and cache manager.

The OS_INHIBIT_TIX_HANDLE variable specifies an error message substring for
which exception handling is to be disabled.

Many end-user applications have omnibus error handlers to catch all errors being
signaled and to present them in an easily readable format to the user. This sometimes
makes debugging difficult because the backtrace information has disappeared.
When you specify a substring to OS_INHIBIT_TIX_HANDLE, if the substring appears
in the formatted error message, exception handling is disabled for the specific error.
You can then generate an unhandled exception dump for analysis or view the
backtrace in a debugger.

Specify all to disable all handling.

OS_LANG_OVERRIDE (UNIX Only)
Default: not set

This environment variable affects the server, client, and cache manager.

The OS_LANG_OVERRIDE variable changes the behavior of ObjectStore without
affecting other applications that depend on LANG.

LANG is a public environment variable that controls the selection of the message
catalog sets that are appropriate for the specific language locale. It also is used
internally to identify the character encoding used and, thus, affects the processing of
strings. This variable might already be set by your system manager.

Because the LANG variable is public, ObjectStore supplies another variable, OS_LANG_
OVERRIDE, that takes precedence over LANG. The result is that anywhere ObjectStore
uses catalogs, OS_LANG_OVERRIDE can change the catalog path construction as well
as the way strings are processed. OS_LANG_OVERRIDE also affects .msg file path
construction for ObjectStore scripts such as osinstal and osconfig on platforms
that use them.

There is a possibility that the value of LANG is not one of the variables shown in the
following table. If the value set is not listed in the table, English is assumed unless
OS_LANG_OVERRIDE is set to one of the values in the table.
Release 6.3 115

Specifying Values for Environment Variables
The values recognized by ObjectStore appear in the following table:

OS_LIBDIR
Default: OS_ROOTDIR\lib

The OS_LIBDIR variable specifies the directory that contains schema files distributed
with ObjectStore. The directory must be on a machine that has a server, so you do not
receive an error when trying to access the schema files. This is set up by the
installation process. The only exception to this is if you have a locator file set up to
handle remote access to databases and you configure the relevant server to allow
remote access to databases.

If OS_ROOTDIR is on a machine that does not have an ObjectStore server, you must
copy or move the library schema files to a machine that is running a server. Use this
variable to specify the new directory.

OS_LOCATOR_ESCAPE_CHARACTER
Default: $

The OS_LOCATOR_ESCAPE_CHARACTER variable specifies the escape character for
regular expressions in an ObjectStore locator file. The default escape character for
regular expressions in locator files is a dollar sign ($), rather than the usual backslash
(\). You can specify an escape character explicitly with this environment variable.
For information about the locator file, see Description of the Locator File on page 267.

OS_LOCATOR_FILE
Default: false

The client environment variable OS_LOCATOR_FILE can be set to any legitimate
argument to objectstore::set_locator_file(), with the same meaning. Calls to
set_locator_file() override this setting. For more information about set_

Value HP–UX Non-HP–UX

japanese Shift JIS Code (SJIS) Extended UNIX Code (EUC)

Ja_JP
jp_JP.sjis
ja_JP.sjis
japanese.sjis
ja__JP.PCK
jp__JP.PCK

Shift JIS Code (SJIS) Shift JIS Code (SJIS)

Japanese
japanese.euc
japan
Japan
ja
jp_JP
jp_JP.euc
ja_JP
ja_JP.euc

Extended UNIX Code (EUC) Extended UNIX Code (EUC)
116 Managing ObjectStore

Chapter 3: Environment Variables
locator_file() see Chapter 2, Class Library, in the C++ A P I Reference. See also
Description of the Locator File on page 267 of this book.

OS_LOG_TIX_FORMAT
Default: false

This environment variable affects the server, client, and cache manager.

The OS_LOG_TIX_FORMAT variable specifies the name of a log file to record all
exceptions signaled. This file logs all printf control strings signaled, regardless of
whether the exception is handled. This facility is especially useful for debugging two
situations: recursive exceptions (common if you get exceptions during message
processing) and bad printf strings.

OS_META_SCHEMA_DB
Default: $OS_ROOTDIR/lib/metaschm.db

The OS_META_SCHEMA_DB variable specifies the location of the metaschema database.

The metaschema database, which is shipped with ObjectStore, describes hidden
internal types and is needed for operations such as data browsing, schema evolution,
database verification, and the Metaobject Protocol (MOP).

The metaschema database must be on the same machine as the server. The only
exception to this is if you have a locator file that is set up to handle remote access to
databases and you configure the relevant server to allow remote access to databases.

Normally, the metaschema database is in $OS_ROOTDIR/lib, but under certain
circumstances, it might be elsewhere. This can happen when the machine on which
$OS_ROOTDIR resides does not have a local ObjectStore server. In this situation,
unless you set up a locator file, you must copy the metaschema database to the
machine that the server runs on.

If you move the metaschema database out of $OS_ROOTDIR/lib, be sure to set this
variable to the new location so that ObjectStore can find the metaschema database.

OS_NETWORK (Windows Only)
Default: O6NETNSM, O6NETTCP

This environment variable affects the server, client, and cache manager.

The OS_NETWORK variable specifies the network dynamic link libraries (DLLs) to be
loaded and used by all ObjectStore executables.

Normally, you need not change the default setting. In other words, you do not
usually set OS_NETWORK. Possible values for OS_NETWORK are

• O6NETTCP — TCP/IP network DLL. Used for network communication.

• D6NETTCP — TCP/IP network DLL. Used for network communication. Use for
ObjectStore DEBUG builds.
Release 6.3 117

Specifying Values for Environment Variables
• O6NETNSM — Named shared memory DLL. Used for local interprocess
communication.

• D6NETNSM — Named shared memory DLL. Used for local interprocess
communication. Use for ObjectStore DEBUG builds.

In standard operation, ObjectStore automatically detects the networks that are
present, and OS_NETWORK does not need to be set. However, you can set OS_NETWORK
to a comma-delimited list in situations in which you want more control over the
network used by ObjectStore.

The order of the list is important. When you set the OS_NETWORK variable, you must
almost always specify O6NETNSM, the local network for Windows, as the first network
in the list. For local connections, this network offers significantly higher performance
than any other network.

If you omit the local network or do not specify it first, starting an ObjectStore
application might fail to start the cache manager automatically. You must then start
the cache manager manually before running the first ObjectStore application. Many
other operations can fail if these DLLs are not specified at all or are not specified first.

When to change
the default

Suppose that you originally installed ObjectStore on a system connected to a
network and then you disconnect the system from the network. You must set OS_
NETWORK so that it no longer expects to enable network protocols. For example, if
your system was previously using TCP and now it is a stand-alone system, you
might receive the following error when you try to run ObjectStore:

ObjectStore internal error
connect failed (err_internal)

Set OS_NETWORK to O6NETNSM on Windows to prevent the TCP interface from loading
and to allow the server to initialize normally.

On Windows, if you have an unsupported TCP/IP stack on your machine and you
experience problems, set OS_NETWORK to O6NETNSM so that ObjectStore does not
attempt to initialize or use the unsupported network.

OS_NETWORK_SERVICE (UNIX Only)
Default: echo

This environment variable affects only the server.

The OS_NETWORK_SERVICE variable specifies which of the Internet services listed in
/etc/services should be used for ObjectStore networking. The default Internet
service used by ObjectStore is echo. If echo is not available when starting up the
ObjectStore server, you can set this variable should be set to another service.

The OS_NETWORK_SERVICE variable applies only to UNIX SVR4 and has no effect on
other operating systems.
118 Managing ObjectStore

Chapter 3: Environment Variables
OS_NO_MAPPED (UNIX Only)
Default: true

When the OS_NO_MAPPED variable is set to false (0), ObjectStore does not use
mapped communication between the client and the server. Note that ObjectStore
uses mapped communication only if the client and the server are on the same host
and the server parameter Allow Shared Communications is not set to no; see Allow
Shared Communications (UNIX Only) on page 80. To set the OS_NO_MAPPED variable
to true (the default), specify any nonnull value except 0.

OS_NOTIFICATION_QUEUE_SIZE
Default: 50

The OS_NOTIFICATION_QUEUE_SIZE variable specifies the maximum number of
notifications that can be in a process’s notification queue. Notification queues are
part of the ObjectStore cache manager process. The cache manager has a notification
queue for each local client.

If an application does not call the set_queue_size() function, ObjectStore uses the
value you specify for OS_NOTIFICATION_QUEUE_SIZE. If an application does not call
set_queue_size() and this environment variable is not set, ObjectStore uses a
default value of 50.

The maximum allowable value for this variable is 16384. If you set this variable to a
higher value, ObjectStore uses 16384 as the value, rather than the value you set.

The function for setting the maximum length of the notification queue is os_
notification::set_queue_size().

OS_OSDUMP_APPSCHEMA_PATH
The OS_OSDUMP_APPSCHEMA_PATH variable allows users to provide a different path
for osdump.adb.

OS_OSLOAD_APPSCHEMA_PATH
The OS_OSLOAD_APPSCHEMA_PATH variable allows users to provide a different path
for osload.adb.

OS_OSSG_CPP
Default: by platform

The OS_OSSG_CPP variable sets the C preprocessor used by ossg. You can set this
variable to a nondefault C preprocessor. On UNIX, the default preprocessor is cpp
and on Windows, it is cl.
Release 6.3 119

Specifying Values for Environment Variables
OS_OSVERIFYDB_BUFFER_SIZE
Default: 512 MB

The OS_OSVERIFYDB_BUFFER_SIZE variable specifies the maximum size of the
transient buffer used to optimize locality of reference by the osverifydb utility in
fast mode.

OS_OSVERIFYDB_FAST
Default: false

The OS_OSVERIFYDB_FAST variable specifies that the osverifydb utility will run in
fast mode. This is equivalent to running the osverifydb utility with the -F option.

OS_PASSWORD
The OS_PASSWORD variable specifies a password to be used by a client application to
connect to an ObjectStore server, used with the OS_USERNAME environment variable.
If the client allows Name Password authentication, the client connects to the server
without prompting for a username and password.

OS_PATHNAME_ENCODING
Default: by platform

This environment variable affects the server, client, and cache manager. For
ObjectStore client applications written in the Java interface, this environment
variable has no effect.

ObjectStore supports multibyte encoded path names. The OS_PATHNAME_ENCODING
variable specifies a character set encoding to override the default encoding. The
default encoding is determined by the system on which the client application is
running. The valid values that can be specified for this variable are:

• ASCII – 7 bit ASCII.

• CP1252 – Microsoft Code Page 1252 (US English).

• CP932 – Microsoft Code Page 932 (Japanese).

• EUCJP – Extended UNIX Code (Japanese).

• UTF8 – UCS Transformation Format 8.

• NONE – No encoding translation; values 0x01 through 0xFF are passed through
without modification.

OS_PORT_FILE
Default: by platform

This environment variable affects the server, client, and cache manager.

The OS_PORT_FILE specifies the name of a ports file for network services. See
Modifying Network Port Settings on page 58.
120 Managing ObjectStore

Chapter 3: Environment Variables
OS_PREALLOCATE_CACHE_FILES (UNIX Only)
Default: true

The OS_PREALLOCATE_CACHE_FILES environment variable controls the preallocation
of cache and commseg files.

Note This environment variable is for use with ObjectStore / Single applications only. To
control preallocation on other ObjectStore applications running on UNIX platforms,
use the Preallocate Cache Files cache manager parameter, as described in
Preallocate Cache Files Parameter on page 310.

By default, ObjectStore preallocates cache files during client initialization. If the files
are large (hundreds of megabytes or more), preallocation can cause a noticeable
delay during initialization. To increase performance, set this parameter to false (0),
preventing the up-front allocation of disk blocks to cache and commseg files. Instead,
space is allocated for the files as needed. Setting this environment variable to true
(nonzero) restores the default behavior.

Caution When running clients with the OS_PREALLOCATE_CACHE_FILES environment
variable set to false, you must ensure that the file system that contains the cache and
commseg files never gets full. If the system is unable to allocate free space for the
cache files, the client or server can crash.

OS_PRINT_CLIENT_COUNTERS
Default: false

The OS_PRINT_CLIENT_COUNTERS variable turns on display of counters that provide
information about client performance. To set this variable, specify any nonnull value
except 0.

OS_RCVBUF_SIZE
Default: 16384 bytes

The OS_RCVBUF_SIZE variable sets the default size of the network buffer used by the
client to receive data from the server. For best results, this size should be the same as
that specified by the server parameter Preferred Network Send Buffer Size. See
Preferred Network Send Buffer Size on page 95 for further information.

Note that some applications benefit from an increase in the size of the network
buffers used by ObjectStore clients and servers. You can change the size used by the
clients from the default of 16384 bytes by setting the environment variables OS_
SNDBUF_SIZE and OS_RCVBUF_SIZE. You can change the size used by the server by
setting the server parameters Preferred Network Send Buffer Size and
Preferred Network Receive Buffer Size. Usually, you achieve the best
performance if OS_SNDBUF_SIZE is the same as Preferred Network Receive
Buffer Size and OS_RCVBUF_SIZE is the same as Preferred Network Send
Buffer Size.

Depending on the operating system, you might find that large values for this
variable are rejected, which leads to reduced performance. ObjectStore Technical
Release 6.3 121

Specifying Values for Environment Variables
Support recommends that you experiment by doubling the size until performance
no longer improves.

OS_REMOTE_AUTH_REGISTRY_LOCATION (Windows Only)
Default: Object Design Inc.\ObjectStore 6.0

The OS_REMOTE_AUTH_REGISTRY_LOCATION variable sets the Windows registry
location for ObjectStore clients. It specifies a location relative to HKEY_LOCAL_
MACHINE\SOFTWARE. For example, if the environment variable is set to my_location,
the registry location is

HKEY_LOCAL_MACHINE\SOFTWARE\my_location

You can also set the registry location programmatically by calling os_
authentication::set_nt_registry_location(). For more information, see os_
authentication::set_nt_registry_location() in the C++ A P I Reference. For
information about setting the registry location, see Changing the Registry Location
for ObjectStore (Windows Only) on page 325.

OS_RESERVE_AS (UNIX Only)
Default: false

The OS_RESERVE_AS variable specifies whether ObjectStore’s reserve address space
mode is on or off. When off, ObjectStore is optimized to increase performance,
sometimes by a very significant factor. ObjectStore uses this optimization when this
environment variable is not set. This means that performance is fast but that there is
potential for confusion. ObjectStore does not use the optimization when this
environment variable is set.

This optimization can cause problems if your own program calls the mmap system call
with 0 as the first argument or if your program calls a subroutine library that does
so. If your program does either of these things, you should disable the optimization
either by calling the entry point objectstore::set_reserve_as_mode(os_
boolean new_mode) or by setting the environment variable OS_RESERVE_AS to any
nonnull value except 0. If you both call the entry point and set OS_RESERVE_AS, the
entry point takes precedence.

This variable affects the setting of reserve address space mode. When ObjectStore is
in this mode, it always keeps the entire persistent region reserved, from the
operating system’s point of view, so that any other subsystem in the client process
that maps something in and asks the operating system to assign some address space
receives address space outside the persistent region.

If reserve address space mode is off, such a request might assign space that is part of
ObjectStore’s persistent storage region. This can cause problems because the
subsystem appears unable to coexist with ObjectStore.

If reserve address space mode is off, however, operating system calls that
manipulate the virtual address space are faster on some platforms.
122 Managing ObjectStore

Chapter 3: Environment Variables
OS_ROOTDIR
Default: by platform

This environment variable affects the server, client, and cache manager.

The OS_ROOTDIR variable specifies the top-level directory in the part of the file
system hierarchy containing ObjectStore files. The name specified by this variable
serves as the prefix of various directory names used in search paths. This
environment variable is required to run ObjectStore. You set the value of the variable
when you install ObjectStore.

If you change the location of your ObjectStore installation, be sure to change the
value specified for OS_ROOTDIR. Not doing so can cause the following message to be
signaled:

no handler for exception:
no networks where registered, please verify your ostore network
configuration: <err_0001_0141>

The client tried to find the server over the network. With an incorrect setting for OS_
ROOTDIR, this happens even when the client and server are on the same machine.

Defaults The following are the defaults for OS_ROOTDIR according to platform:

• AIX: /usr/lpp/ODI/ostore

• Solaris: /opt/ODI/ostore

• Other UNIX platforms: /usr/local/ODI/ostore

• Windows: The parent of the directory containing the O6LOW.DLL that is executing

Windows If ObjectStore was not installed in C:\OSTORE, you must set OS_ROOTDIR to the
location of the directory in which ObjectStore was installed. OS_ROOTDIR should be
kept in the DOS environment so that makefiles and DOS utilities can reference it.

OS_SCHEMA_KEY_HIGH

OS_SCHEMA_KEY_LOW
Default: 0

The OS_SCHEMA_KEY_HIGH environment variable specifies the high 4 bytes of a 64-bit
schema key.

The OS_SCHEMA_KEY_LOW variable specifies the low 4 bytes of a 64-bit schema key.

If you run certain ObjectStore tools and utilities on schema-protected databases, set
OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH to specify the schema keys of the
databases to be accessed. The tools and utilities for which you must set these
variables include

• oscompact

• osexschm

• ossevol

• ossg
Release 6.3 123

Specifying Values for Environment Variables
• ossize

• osverifydb

Any ObjectStore application, including an ObjectStore tool or utility, can have a
schema key that allows it to access a protected database with a matching key.
Normally, you specify a key for an application programmatically. See
objectstore::set_current_schema_key() in the C++ A P I Reference. OS_SCHEMA_
KEY_HIGH and OS_SCHEMA_KEY_LOW are provided because it is not possible for you to
set the schema key of a tool or utility programmatically.

You can, however, build an application that performs the same function as an
ObjectStore utility by calling a member of the class os_dbutil, os_compact, or os_
schema_evolution. This application can specify the schema key programmatically.

Deploying
applications

If you are deploying an application, you need to know that some ObjectStore tools
(such as ossg) cannot be invoked from the ObjectStore API. To allow your customers
to use such a tool on a database that you have protected, build an application that
spawns the tool as a child process. Specify the key of the child process by setting the
environment variables from within the application.

OS_SCHEMA_KEY_HIGH and OS_SCHEMA_KEY_LOW determine an application’s schema
key when an ObjectStore application attempts to access data in a schema-protected
database and either of the following is true:

• The application did not set the schema key using objectstore::set_current_
schema_key().

• The application’s most recent call to objectstore::set_current_schema_
key() specified 0 for both arguments.

Remember that when these environment variables determine an application’s
schema key, all schema-protected databases that the application accesses must have
the same schema key.

If you run an application on a schema-protected database and the application does
not have a schema key, or the application’s schema key does not match the
database’s schema key, ObjectStore signals err_schema_key and issues an error
message such as the following:

Error using schema keys
<err-0025-0151> The schema is protected and the key, if provided, did
not match the one in the schema of database db1.

For information about the schema protection API, see objectstore::set_current_
schema_key(), os_database::change_schema_key(), and os_
database::freeze_schema_key() in the C++ A P I Reference.

OS_SCHEMA_PATH
Default: not set

The OS_SCHEMA_PATH variable specifies an alternative path by which an ObjectStore
application or DLL locates its associated schema database. The path to the schema
database is written into the executable or DLL when it is built. If ObjectStore cannot
find the schema database at that location, it searches in a list of directories specified
124 Managing ObjectStore

Chapter 3: Environment Variables
by OS_SCHEMA_PATH. To specify more than one directory path, separate the paths
with semicolons.

See also ossetasp on page 221 for information on how to permanently store a new
path in an executable or DLL.

OS_SECURE_RPC_DOMAIN
Default: not set

The OS_SECURE_RPC_DOMAIN variable specifies a local domain name. You use the
variable with AUTH_DES authentication. If there is no system getdomainname()
routine or if it returns null, this variable is consulted for the name of the local
domain.

OS_SERVER_DEBUG_FILE_MAX_LINES
Default: Not set

This environment variable affects the server.

The OS_SERVER_DEBUG_FILE_MAX_LINES variable specifies the size of the server
output log file in lines written to the file. When the number of lines in the file reaches
the limit, the current file is renamed with the extension .old and a new server output
log file is created.

OS_SERVER_OUTPUT_LOG_NAME
Default: Not set

This environment variable affects the server.

The OS_SERVER_OUTPUT_LOG_NAME variable specifies the name of the server output
log file to use instead of the default name. If this variable is not set, the log file is
assigned the default name of oss_out on UNIX or osserver.txt on Windows, in
the temporary directory.

OS_SNDBUF_SIZE
Default: 16384 bytes

The OS_SNDBUF_SIZE variable sets the default size of the network buffer used by the
client to transmit data to the server. For best results, this size should be the same as
the value of the server parameter Preferred Network Receive Buffer Size.

See Preferred Network Receive Buffer Size on page 95 for additional
information about the server network buffer size. See further discussion about these
parameters and the ways they affect performance in OS_RCVBUF_SIZE on page 121.

OS_STDOUT_FILE (Windows Only)
Default: Not set

The OS_STDOUT_FILE variable specifies the path of a file to which you want to
redirect output that ObjectStore would otherwise send to stdout and stderr.
Release 6.3 125

Specifying Values for Environment Variables
If your application is a Windows GUI and this variable is not set, ObjectStore
displays the output in a message box.

To separate the output from several applications, you can set this variable to a path
name such as C:\TEMP\DEBUG.%d. ObjectStore substitutes the process ID in place of
the %d.

OS_TIX_BUFFER_SIZE (Windows Only)
Default: 8192 bytes

This environment variable affects the server, client, and cache manager.

The OS_TIX_BUFFER_SIZE variable specifies the size in bytes of the error report
buffer. The default size is large enough for all reasonable and expected errors.
However, if an error message is extremely long, it might overflow the buffer and
cause the application to abort. If this happens, you can resolve the problem by setting
this variable to a larger value.

OS_TIX_WD (UNIX Only)
Default: Not set

This environment variable affects the server, client, and cache manager.

The OS_TIX_WD variable specifies the working directory for ObjectStore when an
unhandled TIX exception causes ObjectStore to create a core dump. (Whether there
is a core dump depends on the platform and on the setting of the OS_DEF_EXCEPT_
ACTION environment variable.)

When you specify a directory for OS_TIX_WD, ObjectStore sets that directory to be the
working directory before it creates the core file.

This is particularly useful for ObjectStore daemons. For example, on UNIX systems
the cache manager always runs with its working directory set to the root directory.
This avoids administration problems such as preventing volumes from being
unmounted. Set the OS_TIX_WD variable to control where ObjectStore puts core
dumps of the cache manager daemon.

OS_TMPDIR
Default: Not set

The OS_TMPDIR variable specifies a directory in which to place temporary files. If you
do not set OS_TMPDIR, ObjectStore uses the path returned by the Win32 function
GetTempPath() on Windows or /tmp on UNIX. To set this variable, specify any
nonnull value except 0.
126 Managing ObjectStore

Chapter 3: Environment Variables
OS_TRACE_MISSING_VTBLS
Default: false

The OS_TRACE_MISSING_VTBLS variable causes a run-time debugging message to be
printed to stderr when a missing vtbl handler is installed for a class. The message
identifies the class with the missing vtbl handler. For example:

Installing missing vtbl: Class: CCC Name: NNN Symbol: SSS

Where

• CCC identifies the class of the top-level object for which the vtbl was found to be
missing.

• NNN identifies the independent name of the vtbl; for example, Derived_
class::Base_class.

• SSS identifies the mangled name of the vtbl symbol that was missing.

When you are missing a vtbl, the err_missing_vtbl run-time error message does
not indicate the vtbl that is missing. If you rerun the application with OS_TRACE_
MISSING_VTBLS turned on, ObjectStore catalogs vtbls that

• Were not found at initialization

• Might signal err_missing_vtbl errors at a later time

When you are debugging problems involving missing vtbls, turning on this variable
helps determine those classes that need vtbls. Any nonempty value except 0 enables
the debugging message.

OS_TURN_ON_ENGLISH_MESSAGES
Default: false

This environment variable affects the server, client, and cache manager.

When set to 1, the OS_TURN_ON_ENGLISH_MESSAGES variable forces the printing of
English messages along with the catalog-retrieved language-specific message.
Release 6.3 127

Specifying Values for Environment Variables
OS_USE_MAP_FIXED
Default: Not set

This environment variable is used on Solaris and Linux platforms to specify that
ObjectStore will always use the address range for the persistent storage region (PSR)
specified by the OS_AS_START environment variable. On Linux platforms, OS_USE_
MAP_FIXED is required if you use the OS_AS_START environment variable. On Solaris
platforms, OS_USE_MAP_FIXED is optional. The Solaris operating system checks
whether the address range specified for the PSR by the OS_AS_START environment
variable is available, and if it is not, reports an error. If you know by means of other
diagnostic tools that the specified range really is available, you can use OS_USE_MAP_
FIXED to override the operating system check and place the PSR in the specified
range.

For more information, see OS_AS_START on page 104.

OS_USER_ARCH_SET
Default: Not set.

The OS_USER_ARCH_SET variable allows users to define their own architecture sets.
The name of an architecture set is specified as the argument to ossg’s -arch option,
as described in ossg.

The OS_USER_ARCH_SET variable accepts strings of the form

set_name1(arch_name1 [arch_name2 ...]) [set_name2 ...]

where set_name is a user-defined name of an architecture set and arch_name is a
predefined name of a platform that is a member of set_name. For a list of the
predefined names of platforms, invoke ossg with the -showsets option, as
described in ossg.

Caution Do not use this environment variable to define names of architecture sets, unless
directed by Technical Support. Only the standard architecture sets (all, all32, and
all64) and versioned architecture sets are supported. For information about
architecture sets, see ossg Neutralization Options on page 89 in Chapter 5, Building
Applications for Multiple Platforms, on page 81 of Building C++ Interface
Applications.

OS_USERNAME
Default: Not set.

The OS_USERNAME variable specifies a username to be used by a client application to
connect to an ObjectStore server; used with the OS_PASSWORD environment variable.
If the client allows Name Password authentication, the client connects to the server
without prompting for a username and password.

OS_VERIFYDB_BUFFER_SIZE
Default: 512 MB
128 Managing ObjectStore

Chapter 3: Environment Variables
The OS_VERIFYDB_BUFFER_SIZE variable specifies the maximum size of the
transient buffer used to optimize locality of reference by osverifydb in fast mode.

OS_VERIFYDB_FAST
Default: Not set.

The OS_VERIFYDB_FAST variable specifies that you want the osverifydb utility to
always run in fast mode. Fast mode uses techniques that are optimized for
performance purposes. Alternatively, you can run osverifydb with the -F option
to specify fast mode.

If you set the OS_OSVERIFYDB_FAST environment variable to true (non-zero),
osverifydb runs in fast mode by default.

You can use the OS_OSVERIFYDB_BUFFER_SIZE environment variable to specify the
maximum size of the transient buffer used to optimize locality of reference by
osverifydb in fast mode. The default size is 512 MB.

When you run the osverifydb utility, the default ObjectStore client cache size is 256
MB. The normal default cache size is 8 MB. You can override the default cache size
by setting the OS_CACHE_SIZE environment variable.

The fast mode for osverifydb is not compatible with the following options:

• -ignore_references

• -illegal_pointer_action

• -o

• -v

• -whohas
Release 6.3 129

Specifying Values for Environment Variables
130 Managing ObjectStore

Chapter 4
Utilities

This chapter provides information about ObjectStore utilities. Many of these utilities
are implemented using the os_dbutil class functions. See the C++ A P I Reference for
more information about the functions.

Note that the path of the executable for an ObjectStore utility is

• UNIX: $OS_ROOTDIR/bin/utility_name

• Windows: %OS_ROOTDIR%\bin\utility_name.exe

The following utilities are described in alphabetical order in this chapter:

osaffiliate on page 135

osarchiv on page 137

osbackup on page 143

oschgrp on page 150

oschhost on page 151

oschmod on page 152

oschown on page 154

oscmrf on page 155

oscmshtd on page 156

oscmstat on page 157

oscompact on page 160

osconfig on page 164

oscopy on page 167

osdbcontrol on page 169

osdf on page 172

osdump on page 173

osexschm on page 180

osgc on page 181

osglob on page 184

oshostof on page 185

osjidump on page 186

osjiload on page 188

osln on page 190
Release 6.3 131

osload on page 192

osls on page 194

osmkdir on page 195

osmv on page 196

osprop on page 198

osrecovr on page 199

osreplic on page 205

osrestore on page 208

osrm on page 213

osrmdir on page 214

osscheq on page 215

osserver on page 217

ossetasp on page 221

ossetrsp on page 223

ossevol on page 224

ossg on page 229

ossize on page 238

ossvrchkpt on page 241

ossvrclntkill on page 242

ossvrdebug on page 244

ossvrping on page 245

ossvrshtd on page 246

ossvrstat on page 248

ostest on page 257

osverifydb on page 258

osversion on page 263

The following table alphabetizes the different tasks you might need to perform when
managing ObjectStore. The second column lists the ObjectStore utilities to use when
performing each task.

Task ObjectStore Utility

Backing up a database osbackup on page 143

Changing database affiliations osaffiliate on page 135

Changing database group names oschgrp on page 150

Changing rawfs link hosts oschhost on page 151

Changing database permissions oschmod on page 152

Changing database owners oschown on page 154

Compacting databases oscompact on page 160

Comparing schemas osscheq on page 215
132 Managing ObjectStore

Chapter 4: Utilities
Configuring ObjectStore osconfig on page 164

Copying databases oscopy on page 167

Creating a rawfs directory osmkdir on page 195

Creating a rawfs link osln on page 190

Disconnecting a client thread on a server ossvrclntkill on page 242

Displaying cache manager status oscmstat on page 157

Displaying class names in a schema osexschm on page 180

Displaying database host name oshostof on page 185

Displaying used and available rawfs disk space osdf on page 172

Displaying version information for ObjectStore osversion on page 263

Dumping C++ databases osdump on page 173

Dumping Java databases osjidump on page 186

Evolving schemas ossevol on page 224

Expanding file names osglob on page 184

Freeing unreachable storage osgc on page 181

Generating schemas ossg on page 229

Getting server and client statistics ossvrstat on page 248

Listing a directory osls on page 194

Loading a C++ database from a dump osload on page 192

Loading a Java database from a dump osjiload on page 188

Logging transactions between backups osarchiv on page 137

Measuring Database Size ossize on page 238

Moving databases offline and online osdbcontrol on page 169

Moving a directory, database, or link osmv on page 196

Patching an executable with application schema
path names

ossetasp on page 221

Pinging a server ossvrping on page 245

Propagating data from the transaction log to the
database

ossvrchkpt on page 241

Propagating data from the transaction log to the
database (ObjectStore / Single)

osprop on page 198

Removing cache and commseg files oscmrf on page 155

Removing a database or rawfs link osrm on page 213

Removing a directory osrmdir on page 214

Restoring a database from an archive log osrecovr on page 199

Restoring a database from backup osrestore on page 208

Task ObjectStore Utility
Release 6.3 133

Replicating a database osreplic on page 205

Setting a remote schema path name ossetrsp

Setting the server debug trace level ossvrdebug on page 244

Shutting down the cache manager oscmshtd on page 156

Shutting down the server ossvrshtd on page 246

Starting the Server osserver on page 217

Testing a Path Name for Specified Conditions ostest on page 257

Verifying Pointers and References in a Database osverifydb on page 258

Task ObjectStore Utility
134 Managing ObjectStore

Chapter 4: Utilities
osaffiliate
The osaffiliate utility displays or changes the external database affiliations for the
specified database. When used to change the affiliations, this utility changes the path
to the affiliated database; it does not change data or pointers created by the user.

Syntax
osaffiliate [options] db_path [index] [target_db_path]

Arguments db_path

The path of the database whose path to an external database you want to view or
change.

index

The index number associated with an external database as found in the affiliation
table of the database specified by db_path.

target_db_path

The canonical path of the external database that you want to affiliate with the
database specified by db_path.

Options -absolute

Causes the complete path of the target database (including server prefix) to be
stored in the affiliation table. This option overrides the default of storing a relative
path from the source database to the target database. This option cannot be
combined with the -parent option.

If osaffiliate is run with the -absolute option and the target pathname contains the
fully qualified domain name of the target host, the affiliation will also have the
fully qualified domain name.

-force

If target_db_path does not exist, -force causes a temporary version of target_
db_path to be created to update the affiliation table. After the affiliation table is
updated, the temporary version of target_db_path is destroyed. If target_db_
path exists, the target database is left unchanged.

-parent parent_dir

Forces the relative path to traverse through the parent_dir even if that directory
is not the shortest path. The parent_dir must be a prefix of both the source and
target database canonical paths. This option cannot be combined with the
-absolute option.

Description
When an ObjectStore database refers to objects in another (external) ObjectStore
database, the external database is affiliated with the database containing the cross-
database references. The ObjectStore database keeps the location information for the
external databases in an affiliation table.
Release 6.3 135

If you change the location of some of the files relative to each other, you probably will
need to use the osaffiliate utility to change the affiliation table entries so they
point to the correct new locations.

The affiliation table lists the index values of the external databases affiliated with the
database specified with db_path. Use the following syntax to display the affiliation
table:

osaffiliate db_path

Then run osaffiliate [options] db_path index target_db_path for each
affiliated database for which you need to specify a new location.

API See os_database::change_affiliation() in the C++ A P I Reference.

Examples
osaffiliate d:\db\rentals.db

This example displays the affiliation table of rentals.db as follows:

Affiliations of "D:\db\rentals.db":
Index 0: <reserved>
Index 1: <reserved>
Index 2: "common\inventory.db"

In this case, an external database (inventory.db) has an index value of 2.

The next example changes the affiliation of the external database referred to by
rentals.db from its old location (common\inventory.db) to a new location
indicated by shared\inventory.db.

osaffiliate d:\db\rentals.db 2 shared\inventory.db
136 Managing ObjectStore

Chapter 4: Utilities
osarchiv
The osarchiv utility records all transaction activity for specified databases. You can
run this utility interactively or in the background. See also Overview of the
Backup/Restore Facility on page 48.

Syntax
osarchiv [options] -d directory [pathname ...]

Argument pathname ...

Specifies a database, or a rawfs directory containing databases, whose
transactions you want to log. You can specify one or more paths, and paths can be
on different servers.

When you specify a rawfs directory, osarchiv logs transactions for all databases
in that directory. It does not operate on databases that are in subdirectories unless
you specify the -r option.

The group of databases for which you are performing archive logging is called the
archive set.

If you do not specify at least one path name, you must specify the -I option with
an import file name.

Options -a archive_record_file

Optional. Specifies the path of the file that osarchiv uses to record the change IDs
for the archive set. The osarchiv utility updates this file each time it successfully
records committed changes to the archive set. (This process is referred to as taking
a snapshot.) The archive record file is comparable to the incremental record file for
osbackup.

-B size

Optional. Specifies the size of the buffer used by each server that osarchiv
contacts. size is a number optionally appended with k, m, or g to indicate
kilobytes, megabytes, or gigabytes, respectively. If no letter is specified, m is
presumed. For example, -B 1024k, -B 1m, and -B 1 each specify a maximum
buffer size of 1 MB. The default value is 1 MB.

-C

Enables the interactive command-loop feature. This feature is disabled by default.
See Commands on page 139 for the commands available in interactive mode.

-c

 Optional. Provides a clean-up handler if you use Control-C to exit the utility.

-d directory

 Required. Specifies the directory in which to create the archive log files.

-i interval
Release 6.3 137

Optional. Specifies an integer that osarchiv uses as the interval between
snapshots. By default, this interval is in seconds, but you can append m, h, or d to
the value of the interval to indicate minutes, hours, or days. For example, -i 60
and -i 1m both specify an interval of one minute.

When interval is not 0, osarchiv takes a snapshot immediately after being
initiated, then every interval seconds (or minutes, hours, or days) thereafter.

When you do not specify an interval, it defaults to 0, which means that snapshots
are not taken automatically. You can take a snapshot at any time that osarchiv is
active by issuing the x command. See the command description for x.

-I import_file

Optional. Specifies the name of a file that contains a list of either file or rawfs
database path names. The osarchiv utility logs transactions for the databases in
this list. The osarchiv utility cannot read such a list from stdin.

The list contains one path name per line. Leading and trailing white space are
ignored.

If you specify the -I option, you can also specify additional path names on the
command line. After you initiate the osarchiv utility, you can use the a command
to add databases to the archive set. See a pathname. You cannot specify -I-.

-o output_file

Optional. Redirects output to output_file.

-P

Optional. Specifies that osarchiv will use data compression.

-r

Optional. Instructs osarchiv to descend into subdirectories of any rawfs
directories specified on the command line, adding all rawfs databases found to the
archive set. By default, only databases in the specified directory are backed up.

When you are archiving file databases, specifying the -r option has no effect. You
must specify each file database explicitly.

After archive logging begins, you can add a rawfs directory to the archive set. If
you specified -r when you initiated osarchiv, it applies to subsequently added
rawfs directories.

You cannot specify the -r option for some directories and not for others. When -r
is specified, it applies to the entire archive set.

-s size

Optional. Specifies the maximum amount of data to write to an archive file. By
default, this size is in megabytes. You can specify KB, MB, or GB by appending k,
m, or g to size. For example, -s 1024k, -s 1m, and -s 1 each specify a maximum
archive file size of 1 MB.
138 Managing ObjectStore

Chapter 4: Utilities
When an archive file is full, the osarchiv utility automatically starts using the
next file in the archive file sequence. A particular snapshot is always in a single
archive file; osarchiv never stores it across two files.

The default is 2 MB.

-T seconds

Optional. Specifies the network timeout value. The value seconds is the amount
of time. By default the value is the number of seconds, but m, h, or d can be
appended to to the value to specify minutes, hours, or days, respectively. For
example, -T 60 and -T 1m both specify a timeout value of one minute. The default
timeout value is 10 hours.

Commands
You can execute the following commands when you use osarchiv in interactive
mode. The utility processes the commands between snapshots.

a pathname

Adds the specified file database or rawfs database or directory to the archive set.

h

Displays online help.

i interval

Interval — changes the interval between snapshots. Specify an integer for
interval. You can append the letter m, h, or d to indicate minutes, hours, or days.
For example, i 60 and i 1m both specify an interval of one minute. When
interval is 0, snapshots are not taken automatically.

You can specify i without an integer to display the current interval.

n

Next — closes the current archive file and starts saving snapshots in the next
archive file in the sequence.

q or EOF

Quit — takes a snapshot immediately and then terminates the osarchiv utility.

r pathname

Removes the specified file database or rawfs database or directory from the
archive set.

t

Table of contents — displays the path names of the databases and rawfs
directories in the archive set.

x

eXplicit — takes a snapshot as soon as you issue the command. This command has
no effect on snapshot intervals.
Release 6.3 139

Description
When archive logging is active, ObjectStore takes snapshots of modifications to the
archive set. An archive snapshot records all data modified by transactions that have
committed since the last snapshot was taken.

When a transaction commits, its modifications are not saved in the archive until the
next snapshot.

When you start osarchiv, the first snapshot records data modified by transactions
that committed since the last time the osbackup or osarchiv utility was run.

If a failover occurs while osarchiv is running, the utility will restart using the last
snapshot and continue to write to the current archive log file.

Tape device You cannot perform archive logging to a tape device.

Archive file
format

The osarchiv utility places snapshots in archive files in the directory that you
specified when you initiated the osarchiv utility. The utility uses the following
naming convention for archive files:

YYYYMMDDHH.ext

Switching
archive files

The osarchiv utility places consecutive snapshots in the same archive file until one
of the following happens:

• You issue the n command, which instructs osarchiv to use the next archive file.

• An archive file contains the maximum amount of data allowed (specified with -s)
and osarchiv switches to the next archive file in the sequence. The default
maximum size is 2 MB.

Ensuring
sufficient disk
space

You must ensure that there is sufficient disk space available to the osarchiv utility
by periodically moving archive files to secondary storage. When osarchiv runs out
of disk space for archive files, it notifies you and suspends activity. You must move
archive files or allocate additional disk space to allow the utility to continue.

Adding to
archive set

When you add a database to a directory for which you are performing archive
logging, the osarchiv utility does not begin to take snapshots of that database
automatically. To enable archive logging for the additional database, you must use
the a command to explicitly add the database to the archive set.

Deleting a
database

When you are performing archive logging for a database, the server keeps the
database open. This has implications for deleting databases.

Variable Meaning

YYYY Year

MM Month

DD Day

HH Hour

ext Extension of the form aaa, aab, aac, and so on
140 Managing ObjectStore

Chapter 4: Utilities
Windows On Windows, you cannot delete a database for which you are performing archive
logging until you invoke the osarchiv r command to remove the database from the
archive set.

UNIX On UNIX systems, when you remove a file, the operating system removes its
directory entry but does not actually delete the file or free associated disk space until
there are no applications with the database open. Again, you must invoke the
osarchiv r command to remove the database from the archive set.

On all systems, the r command does not take effect until the end of a snapshot.

Tradeoffs for Obtaining the Results You Need
Decreasing the time between snapshots decreases the number of transactions
recorded in each snapshot. Shorter intervals between snapshots have the effect of
keeping the archive more up to date and keeping the amount of data that needs to
be archived smaller.

However, each snapshot causes information to be written to the archive file, even if
no data modifications are being recorded. Taking snapshots too frequently can
consume space in the archive file unnecessarily. Longer intervals can reduce the
amount of data being logged in cases in which the same data is modified by multiple
transactions. In such cases, only the most recent copy of the committed data needs to
be logged.

Examples
In the following example, ./inc is the path name of the file that osarchiv uses to
record the cluster change IDs for the archive set. The osarchiv utility updates this
file each time it takes a snapshot. The directory in which to create the archive log files
is /vancouver1/archives. The -i option indicates that snapshots should be taken
every 30 seconds. The -r option instructs osarchiv to descend into any rawfs
directories specified on the command line, adding to the archive set all rawfs
databases found. Finally, vancouver::/ specifies a rawfs directory whose
transactions you want to log.

% osarchiv -C -a ./inc -d /vancouver1/archives/ -i 30 -r vancouver::/
Writing backup volume #1 (/vancouver1/archives/1999011216.aaa)...

Display archive set members:

> t
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Release 6.3 141

Take a snapshot now:

> x
Archiving 452 sectors in database vancouver::/dbdir/bar.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.

Add to the archive set:

> a /vancouver1/dbdir/foo.db

Display archive set members:

> t
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
vancouver:/vancouver1/dbdir/foo.db

If you press Enter while the osarchiv utility is taking a snapshot, the utility displays
a message such as the following. If it is not taking a snapshot, the utility displays
another prompt symbol.

>
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.

Save snapshots in next archive file:

> n
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
Writing backup volume #2 (/vancouver1/archives/1999011216.aab)...

Display the snapshot interval:

> i
Snapshot interval is 5 seconds.

Change the snapshot interval:

> i 1m
> i
Snapshot interval is 60 seconds.

Remove a member of the archive set, and display archive set members:

> r vancouver::/foo.db
> t
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
vancouver:/vancouver1/dbdir/foo.db

Take a snapshot now:

> x
Archiving 68 sectors in database vancouver::/foo.db.

Take a snapshot and terminate the osarchiv utility:

> q
Closing volume #2 (/vancouver1/archives/1999011216.aab).
%

142 Managing ObjectStore

Chapter 4: Utilities
osbackup
The osbackup utility copies specified databases to another online location or to tape.
See also Overview of the Backup/Restore Facility on page 48.

Syntax
osbackup [options] -i incremental_record_file
-f backup_image_file [-f backup_image_file]... pathname ...

Arguments pathname ...

Specifies a database or rawfs directory to be backed up. You can specify one or
more paths. Paths can be on different servers.

Options -a

Optional. Aborts the backup operation if the utility cannot open the backup
device; for example, if a tape is write protected or is not loaded. This option raises
an exception that indicates the problem.

The default is that if the backup utility fails to open the backup device, it displays
a message and waits for you to correct the problem.

-b blocking_factor

Optional. Specifies a blocking factor to use for tape input and output. The
blocking factor is in units of 512-byte blocks. This parameter is ignored for regular
files. The default on UNIX is 126 blocks. The maximum blocking factor is 512
blocks.

-B size

Optional. Specifies the size of the buffer used by the servers contacted by
osbackup. size is a number optionally appended with k, m, or g to indicate
kilobytes, megabytes, or gigabytes, respectively. If no letter is given, m is
presumed. For example, -B 1024k, -B 1m, and -B 1 each specify a maximum
buffer size of 1 MB. The default value is 1 MB.

-c

 Optional. Provides a clean-up handler if you use Control-C to exit the utility.

-f backup_image_file

Required. Specifies the location of the backup image.

You can specify a local file or a locally mounted file.

You can specify a tape device that is directly accessible from the host on which you
are running osbackup. You cannot specify a remote tape device.

You can repeat the -f option with a new backup_image_file to create a multifile
backup. When you do this, specify the -s option to indicate the size of each
backup_image_file.

For example:
Release 6.3 143

 osbackup -s 1m -f back1 -f back2 -f back3 db1 db2 db3

ObjectStore tries to back up the databases to the back1, back2, and back3 files.
The utility prompts for additional file names if 1 MB per file is not sufficient.

On UNIX systems, you can specify -f - (hyphen) to indicate stdout. This allows
you to pipe osbackup output directly to the osrestore utility.

On Windows systems, you specify a tape device with this syntax, \\.\Tape0, the
standard Windows name for the first tape drive.

-i incremental_record_file

Required. Specifies the incremental record file, a file that contains information
about those databases that have been backed up and when they were backed up.
The osbackup utility uses this information to determine the clusters within a
database that have been modified since the last backup at a lower level. The utility
then backs up only modified clusters. The incremental record file is comparable to
the archive record file for osarchiv.

Performing a backup at any level for which no previous information exists is
equivalent to doing a level 0 backup for that database.

-I import_file

Optional. Specifies the name of a file that contains a list of either file or rawfs
database path names. The osbackup utility backs up the databases in this list. If
you specify "-" as the import file name, osbackup reads from standard input.

The list contains one path name per line. Leading and trailing white space is
ignored.

If you specify the -I option, you can also specify additional paths on the
command line.
144 Managing ObjectStore

Chapter 4: Utilities
-l level

Optional. Specifies the level of the backup. Specify an integer from 0 to 9. Files that
have been modified since the last backup at a lower level are copied to the backup
image. For example, suppose that you did a level 2 backup on Monday, followed
by a level 4 backup on Tuesday. A subsequent level 3 backup on Wednesday
would contain all files modified or added since the level 2 (Monday) backup.

Backup is incremental at the cluster level, meaning that a cluster is only backed up
if it has been modified since the last backup at a lower level. A level 0 backup (the
default) backs up all clusters in all specified databases.

-o output_file

Optional. Redirects output to output_file.

-P

Optional. Specifies that osbackup will use data compression.

-r

Optional. Instructs osbackup to descend into subdirectories of any rawfs
directories specified on the command line, adding all rawfs databases found to the
list of databases to be backed up. By default, only databases in the specified
directory are backed up. When backing up file databases, specifying the -r option
has no effect. You must explicitly specify each file database.

-s size

Optional. Sets the size of the volume being dumped to. The osbackup utility
prompts you to insert a new tape or specify a new backup image file after it writes
the amount of data specified by size.

You can specify k, m, or g to indicate that size is in units of kilobytes, megabytes
(the default), or gigabytes. For example, -s 1024k, -s 1m, and -s 1 each specify
a maximum backup image size of 1 MB.

You can use this option with the -f option to perform a multivolume backup.

This option is mainly for use when you are backing up to a tape device, because
end-of-media cannot be detected reliably on some systems.

On Solaris 2, the -s option is not required because the end of the tape is reliably
signaled to the application without any loss of data. On other systems, if you do
not specify -s, the osbackup utility terminates when it reaches the end of the tape.

-S exec_command_name

Optional. Specifies the path of a command to be executed when the osbackup
utility reaches the end of the media. This command should mount the next
volume before returning. The exit status from this command must be 0 or the
backup operation aborts. Note that this option is an uppercase S.

-T seconds

Optional. Specifies the network timeout value. The value seconds is the amount
of time. By default the value is the number of seconds, but m, h, or d can be
Release 6.3 145

appended to to the value to specify minutes, hours, or days, respectively. For
example, -T 60 and -T 1m both specify a timeout value of one minute. The default
timeout value is 10 hours.

Description
When backing up databases, ObjectStore takes advantage of any operations already
being performed by the server on behalf of various client applications. This reduces
the cost of performing the backup. The osbackup utility gives priority to databases
that are already open at the time the backup starts and, within a database, to those
sectors that are being actively used.

When backup starts, osbackup determines those clusters that require backup, builds
a map that describes this data, and sets itself up to intercept read and write requests
to and from these sectors. Any time the server reads a sector of interest to the backup
process that has not already been backed up, osbackup allows the read to proceed
and makes a copy of the data at that time. Similarly, write requests are intercepted
and delayed long enough for osbackup to retrieve the transaction-consistent data
first. Otherwise, the backup process operates in the background, retrieving data as
efficiently as possible.

If a failover occurs while osbackup is backing up a database, the utility restarts from
the beginning.
146 Managing ObjectStore

Chapter 4: Utilities
Considerations
You can mix file databases and rawfs databases in the set of databases to be backed
up.

• Backing up a rawfs directory

When you specify a rawfs directory, osbackup backs up all databases in the
directory. When you specify the -r option, osbackup also backs up all databases
in all subdirectories, subsubdirectories, and so on.

• Backing up file databases

When backing up file databases, you must explicitly specify the name of each
database with the pathname argument or in an import file, specified with the -I
option.

• Specifying an incremental record file

If you do not specify an incremental record file for your backup, osbackup creates
one with a default path name.

If a file of this name already exists, it is written over and data in it is lost. For this
reason, it is recommended that you use the -i option to provide a unique name
for the incremental record file.

• Compacted databases

When you run the oscompact utility on a database, it has the potential to modify
each cluster in the database. When you back up a database after compacting it, the
osbackup utility copies each modified cluster; this might be the entire database.
Consequently, you might want to compact databases before you perform a full
backup.

Examples
% osls -l vancouver::/foo.db
-rw-rw-r-- smith odi 231424 Dec 20 16:17 vancouver::/foo.db
%

Full backup of a rawfs database to three files:

% osbackup -i ./inc -f ./s1 -f ./s2 -f ./s3 -s 80k vancouver::/foo.db
Writing backup volume #1 (./s1)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./s1).
Auto switching to volume #2 (./s2).
Writing backup volume #2 (./s2)...
Closing volume #2 (./s2).
Auto switching to volume #3 (./s3).
Writing backup volume #3 (./s3)...
Closing volume #3 (./s3).
%

If you do not specify enough files, you are prompted as follows:

% osbackup -i ./inc -f ./s1 -f ./s2 -f ./s3 -s 10k vancouver::/mdltst1.db
Writing backup volume #1 (./s1)...
Closing volume #1 (./s1).
Auto switching to volume #2 (./s2).
Release 6.3 147

Writing backup volume #2 (./s2)...
Closing volume #2 (./s2).
Auto switching to volume #3 (./s3).
Writing backup volume #3 (./s3)...
Archiving 913 sectors in database vancouver::/mdltst1.db.
Closing volume #3 (./s3).
Please enter the pathname of the next file to use for backup.

Full backup of a rawfs database to an existing image:

% osls vancouver::/
dbdir/
foo.db
% osls vancouver::/dbdir
bar.db
foo.db

% touch ./img <-- create file to demonstrate problem
% osbackup -f ./img -i ./inc vancouver::/foo.db

Error encountered while opening file ./img (File ./img already exists.
Cannot archive to an existing file.)

Do you wish to try_again? (yes/no): yes
Please enter the pathname of the next file to use for backup. ./img2
Writing backup volume #1 (./img2)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img2).

Full backup of directory:

% osbackup -f ./img -i ./inc -r vancouver::/
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver::/dbdir/bar.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).

Full backup of the databases listed in the import file:

% cat ./import_file
vancouver::/foo.db
/vancouver1/dbdir/foo.db
%

% osbackup -f ./img -i ./inc -I ./import_file
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).
%

Using an import file and specifying a path:

% osbackup -f ./img -i ./inc -I ./import_file vancouver::/dbdir/foo.db
Writing backup volume #1 (./img)...
Archiving 452 sectors in database vancouver:/vancouver1/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/dbdir/foo.db.
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img).
%

Incremental backups of a rawfs database:

% $OS_ROOTDIR/bin/osbackup -f ./img0 -i ./inc -l 0 vancouver::/foo.db
148 Managing ObjectStore

Chapter 4: Utilities
Writing backup volume #1 (./img0)...
Archiving 452 sectors in database vancouver::/foo.db.
Closing volume #1 (./img0).

% $OS_ROOTDIR/bin/osbackup -f ./img1 -i ./inc -l 1 vancouver::/foo.db
Writing backup volume #1 (./img1)...
Closing volume #1 (./img1).

% $OS_ROOTDIR/bin/osbackup -f ./img2 -i ./inc -l 2 vancouver::/foo.db
Writing backup volume #1 (./img2)...
Closing volume #1 (./img2).

% osrm vancouver::/foo.db

Restoring from incremental backups:

% $OS_ROOTDIR/bin/osrestore -f ./img0
Recovering from volume #1 (./img0)...
Restoring 452 sectors to database "vancouver::/foo.db"
Recovered to time Tue Jan 12 15:50:10 1999

Do you wish to restore from any additional incremental backups?
(yes/no):
yes
Closing volume #1 (./img0).
Please enter the pathname of the next file from which to restore.
./img1
Recovering from volume #2 (./img1)...
Recovered to time Tue Jan 12 15:50:21 1999

Do you wish to restore from any additional incremental backups?
(yes/no):
yes
Closing volume #2 (./img1).
Please enter the pathname of the next file from which to restore.
./img2
Recovering from volume #3 (./img2)...
Recovered to time Tue Jan 12 15:50:41 1999

Do you wish to restore from any additional incremental backups?
(yes/no):
no
Closing volume #3 (./img2).
%

Release 6.3 149

oschgrp
The oschgrp utility changes the group name of the specified databases and
directories.

Syntax
oschgrp [-R][-f] group pathname ...

Arguments group

Specifies a group name or group number in a group ID file.

pathname ...

Specifies the databases or directories whose group name you are changing. You
can specify either rawfs paths of any kind or file database paths.

Options -f

Forces execution. Errors are not reported.

-R

Specifies that ObjectStore should change the group name recursively for all
specified directories. That is, it changes the group name for subdirectories and
their contents, subsubdirectories and their contents, and so on.

Description
The oschgrp utility operates on rawfs databases and file databases.

When you specify a file database, you cannot specify a remote file-server host name
in the path name of the file database. The oschgrp utility passes the operation to a
local native utility. If you specify a remote file-server host name, ObjectStore informs
you that you specified an illegal path name.

Wildcards The oschgrp utility can perform wildcard processing using regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX systems, when you are operating on a rawfs database, you must enclose
the wildcard in quotation marks (" ") or precede it with a backslash (\) to keep the
shell from interpreting the wildcard as a shell wildcard.

The oschgrp utility accepts a combination of rawfs path names and file path names.

The group ID file is /etc/group. You must be the owner of the database or be the
superuser to use this utility.

API See os_dbutil::chgrp() in the C++ A P I Reference.
150 Managing ObjectStore

Chapter 4: Utilities
oschhost
The oschhost utility changes the host that a link in the rawfs points to.

Syntax
There are two forms of the oschhost utility. Note that the second form does not
include options.

oschhost [-f][-R] newhost pathname ...
oschhost [server_host] old_link_host new_link_host

Arguments newhost

Specifies the name of the new host for the specified rawfs link.

pathname ...

Specifies one or more rawfs links.

server_host

Specifies the server on which you are running oschhost. When you do not specify
this argument, ObjectStore runs the utility on the local host.

old_link_host

Specifies the name of the host the link currently points to.

new_link_host

Specifies the name of the new host the link will point to.

Options -f

Forces execution. Errors are not reported.

-R

Specifies that ObjectStore should change the host recursively for all specified
directories.

Description
The oschhost utility operates only on rawfs links. The oschhost utility changes only
the host component of the rawfs symbolic link, or all links in the rawfs. The utility
does not physically move any databases or directories.

You can use oschhost to update the rawfs after you restore an entire file system from
one server to another. Use the first form of the utility to change specified links, that
is, links with particular path names.

Use the second form of the utility to change all links on a particular host (server_
host) that point to a specified host (old_link_host) so that they point to a new host
(new_link_host).

UNIX On UNIX systems, you must be the superuser to change the host for a rawfs.

API See os_dbutil::rehost_link() and os_dbutil::rehost_all_links() in the
C++ A P I Reference.
Release 6.3 151

oschmod
The oschmod utility changes the permission mode for the specified databases and
directories.

Syntax
oschmod [-R][-f] new_mode pathname ...

Arguments new_mode

Specifies the new permission mode for the specified databases and directories.

pathname ...

Specifies the databases and directories whose permission you want to change.
You can specify both rawfs and file path names.

Options -f

Forces execution. Errors are not reported.

-R

Specifies that ObjectStore should change the permission recursively for all
specified directories.

Description
To change the permission mode for a database, you must be the owner of the
database or, on UNIX, the superuser.

The new_mode argument can be absolute or symbolic.

Absolute mode An absolute mode is an octal number constructed from the OR operation performed
on the following modes (note that execute is meaningful only for directories):

Symbolic mode A symbolic mode has the form

[who] op permission [op permission] ...

Mode Meaning

400 Read by user.

200 Write by user.

100 Execute (search in directory) by user.

040 Read by group.

020 Write by group.

010 Execute (search) by group.

004 Read by others.

002 Write by others.

001 Execute (search) by others.
152 Managing ObjectStore

Chapter 4: Utilities
where who is a combination of the following:

If you omit who, the default is a, but the setting of the file creation mask (on UNIX,
see umask in sh(1) or csh(1) for more information) is taken into account. When who
is omitted, oschmod does not override the restrictions of your user mask.

op is one of the following:

permission is any combination of the following:

Omitting permission is useful only with =, to remove all permissions.

When you specify a file database, you cannot specify a remote file-server host in the
path name of the file database. The oschmod utility passes the operation to a local
native utility. If you specify a remote file-server host name, ObjectStore informs you
that you specified an illegal path name.

Wildcards The oschmod utility can perform wildcard processing using regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX systems, when you are operating on a rawfs database, you must enclose
the wildcard in quotation marks (" ") or precede it with a backslash (\) to keep the
shell from interpreting the wildcard as a shell wildcard.

API See os_dbutil::chmod() on page 177 in the C++ A P I Reference.

Value Meaning

u User permissions

g Group permissions

o Others

a All, or ugo

Value Meaning

+ Add the permission.

– Remove the permission.

= Assign the permission explicitly (all other bits for that category, owner,
group, or others, are reset).

Value Meaning

r Read

w Write

x Execute
Release 6.3 153

oschown
The oschown utility changes the ownership of specified databases and directories.

Syntax
oschown [-R][-f] owner[.group] pathname ...

Arguments owner

Specifies the user name of the new owner of the specified databases and
directories.

.group

Specifies the group name of the specified databases and directories. Be sure to
precede it with a period. Optional.

pathname

Specifies the databases and directories whose owner you want to change. You can
specify both file and rawfs path names.

Options -f

Forces execution. Errors are not reported.

-R

Specifies that ObjectStore should change the owner recursively for all specified
directories.

Description
This utility operates on rawfs databases and directories and on file databases and
directories.

When you specify a file database, you cannot specify a remote file-server host in the
path name of the file database. The oschown utility passes the operation to a local
native utility. If you specify a remote file-server host name, ObjectStore informs you
that you specified an illegal path name.

Wildcards The oschown utility can perform wildcard processing using regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX systems, you must be the superuser to run this utility. The owner must be
a user name in the password file /etc/passwd. Only the superuser can change the
owner of a directory or database. The group is a group name found in the GID file
/etc/group.

When you are operating on a rawfs database, you must enclose the wildcard with
quotation marks (" ") or precede it with a backslash (\) to keep the shell from
interpreting the wildcard as a shell wildcard. The -f and -R options are identical to
the shell chown command’s force and recursive options, respectively. The oschown
utility accepts a combination of rawfs path names and file path names.

API See os_dbutil::chown() on page 177 in the C++ A P I Reference.
154 Managing ObjectStore

Chapter 4: Utilities
oscmrf
The oscmrf utility instructs the cache manager on the specified host to delete the
cache files and commseg files in its free pool.

Syntax
oscmrf [hostname]

Argument hostname

Specifies the host of the cache manager that you want to instruct to delete cache
and commseg files. The default is the local host.

Description
It is always safe to run the oscmrf utility. The cache manager deletes only files that
are not in use by any client.

After oscmrf runs, if an additional client appears, the cache manager must create
new cache and commseg files. This is slightly slower than if it did not have to create
these files.

Windows The cache manager does not use cache files or commseg files on Windows systems.
However, you can use the oscmrf utility on these operating systems and specify
hosts that do use cache and commseg files.

API See os_dbutil::cmgr_remove_file() on page 178 in the C++ A P I Reference.

Example
% oscmrf
Deleted 2 cache files and 2 commseg files.
%
Release 6.3 155

oscmshtd
The oscmshtd utility shuts down the cache manager on the specified host.

Syntax
oscmshtd [hostname] [version]

Arguments hostname

Specifies the host of the cache manager that you want to shut down. The default is
the local host.

version

Specifies the version of the cache manager that you want to shut down. The default
is 6.

Description
Be sure to notify users before you shut down the cache manager.

API See os_dbutil::cmgr_shutdown() on page 178 in the C++ A P I Reference.

Example
%oscmshtd
Shutting down Cache Manager process
%
156 Managing ObjectStore

Chapter 4: Utilities
oscmstat
The oscmstat utility displays status information about the cache manager process
running on the specified host.

Syntax
oscmstat [hostname] [version_number]

Arguments hostname

Specifies the name of the host of the cache manager for which you want
information. The default is the local host.

version_number

Specifies the version of the cache manager for which you want information. The
default is 6.

Description
The information provided by the oscmstat utility is useful for debugging the storage
system.

The oscmstat utility prints information about every server to which the cache
manager is connected. For each server, it displays

• The name of the server host

• The client process ID of the client being processed, or 0 if none is being processed

• Information on notifications queued for clients

UNIX If the cache manager is running on a UNIX system, oscmstat also displays the
names of cache and commseg files managed by the cache manager. This is useful in
determining whether files are in active use by ObjectStore or are free and available
to be deleted using the oscmrf utility.

The information for the cache and commseg files includes the size of the files, the
directory used to store them, the version of ObjectStore, and the name of the host that
created and owns or owned the file. In the example shown below, the host name is
kellen.

You can safely delete files labeled “Free” using oscmrf.

If oscmstat reports that no cache manager is running, it is safe to delete the files as
long as you are certain that oscmstat did not fail due to temporary network failure
or something similar.

API See os_dbutil::cmgr_stat() on page 178 in the C++ A P I Reference.

Examples
Output for a cache manager on a UNIX platform typically looks like the following.
(A cache manager on Windows systems uses no cache or commseg files, so there is
no reference to them in the oscmstat output.)
Release 6.3 157

kellen% oscmstat

ObjectStore Release 6.0
Cache Manager:
 Host: kellen
 PID: 11679 1
 Executable: /os/top/lib/oscmgr6 2
 Version: 6.0
 Started at: Fri Jan 22 14:35:40 1999
 Soft Allocation Limit: none 3
 Hard Allocation Limit; none
 Used Temp File Space: 8.04MB 4

 Free Temp File Space: 1.91MB
Free Cache Files: 5
 1.91MB /tmp/wirth/ostore/objectstore_6_kellen_cache_1
In-Use Cache Files:
 8MB /tmp/ostore/objectstore_6_kellen_cache_109
Free Commseg Files:
 8KB /tmp/wirth/ostore/objectstore_6_kellen_commseg_2
In-Use Commseg Files:
 40KB /tmp/ostore/objectstore_6_kellen_commseg_110
Client Connections: 6
 PID UID Commseg Name & Version
 272 30263 0x00000000 /h/mangle/3/mj/tests
 /mj.houdini.sol2c4.picsym.2/obj/tscoll/houdini/colltest
 -dbname colltest.db -lgcard 100 (6.0)
Client Notifications: 7
 Client Queue Received Sent to Pending Overflows
 PID Size by cmgr Client
 272 51 0 0 0 0
Server Connections: none
kellen00
kellen%
158 Managing ObjectStore

Chapter 4: Utilities
Notes 1 Operating system process ID of the cache manager process.
2 The executable cache manager file that is accessed by oscmstat.
3 The allocation limit parameters are as described in the cache manager parameter

file. See Setting Cache Manager Parameters on page 307. oscmstat does not
display this information for cache managers running on Windows systems.

4 Total sizes of the Free and In-Use cache and commseg files. oscmstat does not
display this information for cache managers running on Windows systems.

5 Free and In-Use cache and commseg files known to the cache manager. Files
labeled “Free” can be safely deleted with the oscmrf utility. oscmstat does not
display this information for cache managers running on Windows systems.

6 Clients (ObjectStore application processes) currently running on this host. For
each client, oscmstat gives the operating system process ID, the user ID
associated with the client process, the commseg address for the process (useful in
debugging the cache manager), the name of the client (assuming that the client has
called objectstore::set_client_name()), and the ObjectStore version number.

7 Notification information for each client. The oscmstat output displays the
following:

- Process ID (PID) of the client.

- Size of the queue.

- Received by cmgr, which is the number of notifications that were received
from any servers and were addressed to this client process. Each such
notification either went into the client's queue or was discarded because the
queue was full (that is, it was an overflow notification). Both kinds are counted
here. This number only increases.

- Sent to Client, which is the number of notifications sent to the client. This
means that the client called os_notification::receive() and obtained the
notification. This number does not include the overflow notifications or the
notifications that are still in the queue. This number only increases.

- Pending, which is the number of notifications that are in the queue. This
number can increase and decrease.

- Overflows, which is the number of notifications that were discarded during
the lifetime of the client process because the queue was full. This number only
increases.
Release 6.3 159

oscompact
The oscompact utility removes deleted space in specified databases.

Syntax
oscompact -dbs_to_compact pathname ... [options]

Options Numeric values can be in decimal or hexadecimal format. Hexadecimal values must
be prefixed by the characters 0x.

-dbs_to_compact pathname ...

Specifies one or more databases to compact. If using cross-database pointers or
ObjectStore references then all affiliated databases should be compacted in the
same command.

-address_space_release_interval interval

Controls the frequency of address-space releases, in units of bytes. Specify a
smaller value for more frequent releases, a larger value for less frequent. The
default value is displayed when you run oscompact with no options.

This option is useful when you want to prevent compaction from running out of
address space while executing transformer functions.

-explanation_level n

Specifies the level of debugging information output by oscompact. The argument
n must be an integer between 0 and 4, which have the following meanings:

- 0 — Do not output debugging information (default).

- 1 — Output phase-level information for each cluster, segment, and database
that is compacted.

- 2 — Output information about all types in the database.

- 3 — Output information about objects with transformers.

- 4 — Output all possible debugging information.

Note that the levels of information are accumulative: each level includes all
information at the previous levels.

-malloc_size size

Specifies the malloc size in KB for the relocation map. The default is 1024. This
option is rarely used.

-max_bytes_wasted_to_avoid_page_boundary size

Specifies that you want compaction to avoid placing objects across page
boundaries in the compacted database. This applies to objects that the utility
moves to compact the database into a smaller amount of space. When compaction
avoids a page boundary, the utility inserts a free region and leaves some bytes on
the page unused.

Replace size with the maximum number of bytes that it is okay to leave unused
on a page. When the utility would leave more than size bytes free in order to
160 Managing ObjectStore

Chapter 4: Utilities
avoid allocating an object across a page boundary, it does not avoid the page
boundary. You can specify a value of 0 through 4095 for size. Avalue of 0 disables
this feature. The default is that compaction does not avoid placing objects across
page boundaries.

Note: In the context of this option, all pages are server pages, which are always 4K
in size. It does not matter what platform the server is running on.

-maximum_cluster_size max_size_bytes

Specifies that clusters larger than that the size represented by max_size_bytes
will be split into multiple clusters. The value of max_size_bytes is rounded up
to the next multiple of 64 KB. The default is to split any cluster that exceeds 1600
MB.

Note that some ObjectStore collections manage an internal cluster which will not
be split because the internal clusters maintain data structures that cannot be split
across multiple clusters. Examples of collections that maintain internal clusters
are os_set, os_Set, os_bag, os_Bag, os_Dictionary, and indexes.

-memory size

Specifies the maximum memory size in MB to use for the pointer relocation map.
The default is half the main memory or half the virtual memory, whichever is
smaller.

-prefetch prefetch_KB

Specifies the maximum size in KB of persistent pages to prefetch at one time. The
default is 1024 KB which should provide good performance on most hardware.

-secondary_psr_size secondary_psr_size

Specifies the size in MB of virtual address space for secondary sessions. The
default is 16 MB.

-threads n_threads

Specifies the number of threads to use. This option is available only if the -work_
db option is also used. If the -work_db option is used, the default number of
threads is 1.5 times the number of CPUs in the system (rounded up). If the -work_
db option is not used, one thread is used.

-work_db pathname

This option is used when compacting a large set of databases that require a
lengthy compaction. The option should be a path to a database that oscompact
will use to store information so that an interruption of compaction can be resumed
from the most recent consistent state. Using this option allows the compaction to
be done in multiple smaller transactions rather than one large transaction, which
can prevent the osserver transaction log from becoming too large and prevent
address_space_full exceptions.

When you do not specify this option, ObjectStore performs the entire compaction
operation in one transaction. When you specify the -work_db option, ObjectStore
uses a separate transaction for each cluster. Therefore, you can use separate
threads to concurrently work on separate clusters.
Release 6.3 161

Description
ObjectStore databases consist of clusters containing persistent data. As persistent
objects are allocated and deallocated in a cluster, internal fragmentation in the
cluster can increase because of the presence of holes produced by deallocation. Of
course, the ObjectStore allocation algorithms recycle deleted storage when objects
are allocated; however, there might be a need to compact persistent data by
squeezing out the deleted space. Such compaction frees persistent storage space so
it can be used by other clusters. The oscompact utility removes deleted space in
specified databases by compacting all C++ persistent data, including ObjectStore
collections, indexes, and bound queries, and correctly relocates pointers and all
forms of ObjectStore references to compacted data. After you compact a database,
access is usually faster so performance improves. Once a database is compacted it
cannot be de-compacted.

Note The fast schema evolution internals are used for speedy compaction so seeing an
err_schema_evolution exception coming from oscompact is normal.

You can use the oscompact utility on both file databases and rawfs databases.

Compacting file
databases

The clusters in file databases are made up of extents, all of which are allocated in the
space provided by the host operating system for the single host file. When there are
no free extents left in the host file and growth of an ObjectStore cluster is required,
the ObjectStore server extends the host file to provide the additional space. The
compactor permits holes contained in clusters to be compacted for return to the
allocation pool for the host file. This frees that space for use by other clusters in the
same database. However, because operating systems provide no mechanism to free
disk space allocated to regions internal to the host file, any such free space remains
inaccessible to other databases stored in other host files. In other words, compacting
a file database does not reclaim space for use by other databases.

To decrease the size of the file database after compaction, use the oscopy utility to
copy the database. The newly copied database will not contain the free space
reclaimed by the compactor.

Compacting
rawfs
databases

The ObjectStore rawfs stores all databases in a storage pool, on either one or more
host files or raw partitions. Any space in a rawfs that is freed by the compaction
operation can be reused by any cluster in any segment in any database stored in the
rawfs.

Database
locking

During compaction the database is locked and only applications running MVCC
transactions can access the database. However, when running with the -work_db
option the compaction is done in multiple transactions which can result in an MVCC
application seeing an inconsistent view of data. For example, some objects might
have been moved but if an ObjectStore collection containing pointers to those objects
has not been transformed, the result is an inconsistent view.

Backing up
compacted
databases

Before compacting a database the database should be backed up to safeguard against
unexpected results. After compacting a database the next backup for that database
should be a full backup. The reason for this is that most clusters will be modified
during compaction and running an incremental backup after that will not be
practical.
162 Managing ObjectStore

Chapter 4: Utilities
Transformers Some data structures become invalid as a result of compaction. The classic example
of a data structure that might require user transformation is a hash table that hashes
on the offset of an object within a cluster. Because compaction modifies these offsets,
there is no way that such an implicit dependence on the cluster offset can be
accounted for by compaction. Therefore, the compacted hash table becomes invalid.
ObjectStore collections and indexes are transformed by compaction. Invocation of a
user data transforms can only be done when using the C++ os_compact() API.

C++ interface
API

See os_compact::compact() in the C++ A P I Reference.

Very large
databases

See Advanced C++ A P I User Guide, Evolving or Compacting Very Large Databases.

Restrictions
You must observe certain data restrictions when you use the compactor:

C++ interface Because the ObjectStore retain_persistent_addresses facility requires that
persistent object locations within a cluster do not vary, any client application using
this facility on a database being compacted should release and retain the addresses
after compaction completes.

Schema key
protection

If you are developing an application and will be running oscompact on a database
protected with a schema key, ensure that the correct key is specified for the
environment variables OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH. If the
correct key is not specified for these variables, oscompact fails. and ObjectStore
signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

Java interface Applications must not retain references to non-exported objects in a database while
it is being processed by the oscompact utility.

For more information about the compact() function, see os_compact::compact()
in the C++ A P I Reference. For more information about protecting databases with
schema keys, see Restricting Access with Schema Keys in the C++ A P I User Guide.
Release 6.3 163

osconfig
The osconfig utility configures ObjectStore clients and servers on UNIX platforms.
Although it can be used to modify server parameters after you have installed
ObjectStore, it is most commonly used when you are installing ObjectStore.

Note The osconfig utility is only for use on UNIX platforms. It cannot be used on
Windows platforms.

Syntax
The osconfig utility can be invoked using the following command lines:

osconfig server

Configures an ObjectStore server and client on this machine. The server will be
configured to use file databases. After configuration, this command line will
check that the client can address the local server. If you want to check that the
client can address remote servers, you must use the osconfig check -host
command line (see below).

osconfig rawfs

Configures an ObjectStore server and client on this machine. The server will be
configured to use rawfs and file databases. This command line will also create and
configure the rawfs. After configuration, osconfig will check that the client can
address the local server. If you want to check that the client can address remote
servers, you must use the osconfig check -host command line (see below).

osconfig client [-host list_of_names]

Configures an ObjectStore client on this machine. The -host option (if specified)
must be followed by a space-separated list of names of servers that this client can
address. If the servers run on a cluster, the list should consist of logical host
names, not node names. After configuration, osconfig will check that the newly
configured client can address the specified servers. If you do not specify the -host
option, this command line will only check that the client can address the local
server.

osconfig failover [-server server1 server2]

Configures an ObjectStore server to use ObjectStore-managed failover on this
machine and another machine that shares a disk with this machine. The osconfig
utility will prompt you for the other machine on which the failover server is
running. If you are configuring failover to use two logical servers, you must
specify the -server option, followed by the names of the two logical servers. For
information about failover, see Cluster-Managed Failover on page 288.

osconfig cluster -logical_host list_of_names

Configures an ObjectStore server to use cluster-managed failover. You must
specify the -logical_host option, which must be followed by a space-separated
list of one or two logical host names. For more information, see Cluster-Managed
Failover on page 288.
164 Managing ObjectStore

Chapter 4: Utilities
osconfig check [-host list_of_names]

Verifies that the ObjectStore client can address the local server on this machine. If
you specify the -host option, osconfig will verify that the client can address the
list of servers specified after the option. The names in the list must be space-
separated and can include logical servers, real servers, or logical hosts on a cluster.

osconfig { server | rawfs | failover | cluster } -upgrade

Upgrades an existing ObjectStore server with an updated version of ObjectStore.
For more information, see Performing ObjectStore Upgrades on page 165.

Description
The osconfig utility is typically used when installing ObjectStore to configure
servers and clients that you plan to use. But it can also be used if you later decide to
add another server or client, or if you want to verify that a client can address a remote
server. If you plan to use the same host as both a server and a client, you can run
either osconfig server or osconfig rawfs on that host. Either command line will
configure the host to be both an ObjectStore server and client.

After osconfig configures ObjectStore, it verifies the configuration by checking the
following:

• The server is running and is addressable by the client.

• The cache manager is available as setuid root.

• The library schemas are available.

For more information about using osconfig when installing ObjectStore, refer to the
Installation Guide for UNIX.

The osconfig utility can also be used to enable ObjectStore to use failover — either
ObjectStore- or cluster-managed failover. For more information, see Failover on
page 285.

Performing ObjectStore Upgrades
This section describes how to use the osconfig utility to upgrade an existing server
with a new release of ObjectStore. Before running the osconfig utility, however, you
must install the new version of ObjectStore in a new directory and change the OS_
ROOTDIR environment variable to point to the new directory. After you have installed
ObjectStore and used osconfig to configure the upgraded server, you are free to
delete the old OS_ROOTDIR directory and its contents. For information installing
ObjectStore, see the Install Guide that accompanies the installation package. For
more information about the OS_ROOTDIR variable, see OS_ROOTDIR.

To use the osconfig utility to upgrade an existing ObjectStore server with an
updated version of ObjectStore, use either of the following command lines.

osconfig server -upgrade

osconfig rawfs -upgrade

The osconfig utility will prompt you for configuration information. The osconfig
utility will shutdown the old server so that you can install the updated version of
Release 6.3 165

ObjectStore. After the installation is complete, osconfig will restart the new server
with the updated configuration information. No server parameters will be modified.
You must restart the clients.

Rolling upgrade You can also use the osconfig utility to perform rolling upgrades. A rolling upgrade
enables you to upgrade an ObjectStore failover server without stopping client use of
the server. Initially, osconfig shuts down the primary server, causing it to failover
to the secondary server and allowing the primary server to be upgraded. During the
upgrade process, the secondary server takes over the services of the primary server.
After the primary server has been upgraded and is ready to be brought back online,
osconfig shuts down the secondary server, causing it to failover to the primary
server. At this point, the primary server resumes services and the secondary server
can be upgraded.

To use the rolling upgrade feature, you must have configured ObjectStore to use
either ObjectStore-managed failover or cluster-managed failover; see Failover on
page 285. To perform a rolling upgrade on a system configured with ObjectStore-
managed failover, invoke the following command line:

osconfig failover [-server server1 server2] -upgrade

If you are using cluster-managed failover, invoke the following command line:

osconfig cluster -logical_host list_of_names -upgrade

After either command line is invoked, osconfig will prompt you to enter new
configuration information. The rawfs and transaction log information will remain
the same. The Identical Pathnames on Failover Server server parameter will
be re-generated based on the configuration information you entered. (For more
information about this server parameter, see Identical Pathnames on Failover Server
on page 90.) All other server parameters will remain the same.

Note that during the rolling upgrade, the server will failover several times in the
process of being upgraded. Its clients will pause and retry each time failover occurs.

If the server is not running at the time you invoke osconfig -upgrade, the server
will be upgraded without the rolling upgrade feature.
166 Managing ObjectStore

Chapter 4: Utilities
oscopy
The oscopy utility makes a copy of an ObjectStore database. A key benefit of oscopy
is that it performs transaction-consistent database copying without incurring locking
conflicts.

The oscopy utility cannot copy segment-level permissions and it cannot copy
ObjectStore/Single databases. For copying ObjectStore/Single databases, use the
standard operating system copy facilities. When copying an ObjectStore/Single
database, make sure that the transaction log has been propagated and that no
application has the database open.

Syntax
This utility has three forms. Note that the second form includes an option.

oscopy [-R] source target

oscopy database1 . . . databaseN rawfs_dir

Arguments source

Specifies the ObjectStore file or rawfs database to be copied.

target

Specifies the path for the copy. ObjectStore either creates this database or
overwrites it.

source_dir

Specifies the path of the rawfs directory to be copied.

target_dir

Specifies the target rawfs path name. If this directory does not exist, ObjectStore
creates it if its base name exists. ObjectStore copies the source directory
recursively into the target directory.

database1, database2, databasen

Specifies the ObjectStore file or rawfs database or databases to be copied.

rawfs_dir

Specifies the rawfs directory to which the databases are copied.

 Options -R

Instructs oscopy to copy a directory recursively. You must specify a rawfs
directory for both the source and the destination path names. The top-level name
of the destination path name must exist before you issue oscopy.

Description
The oscopy utility has three forms. The first copies a file or rawfs database to another
file or rawfs database. The second recursively copies a rawfs directory and its
contents to another location. The third copies a database or databases to a rawfs file
Release 6.3 167

system. In this form, you can specify either file or rawfs databases as sources; the
target must always be a rawfs directory.

You cannot specify wildcards in database path names.

When you specify more than one database as a copy source, oscopy ensures
transaction consistency among the specified databases for a particular moment in
time.

Copying a rawfs database to a file database results in the loss of segment-level access
control information (os_segment_access).

If a failover occurs while oscopy is copying a database, the utility restarts from the
beginning.

Your database might appear to have a different size after you use oscopy to copy it.
This is because the server might allocate the copy in a way that is different from the
way it allocated the original database. Also, when you perform oscopy, the size of
the database is set. The server can make exactly the right amount of space available
for the copy of the database. For example, using oscopy after running oscompact
eliminates the free space reclaimed by compaction, reducing the size of the file
database.

There are many conditions that can affect how oscopy interprets path names:

• Settings of environment variables

• Whether there is a locator file

• Whether file systems are NFS-mounted

• Symbolic links

When you copy a file and the result is not what you expect, be sure to consider these
conditions.

API See os_dbutil::copy_database() on page 181 in the C++ A P I Reference.
168 Managing ObjectStore

Chapter 4: Utilities
osdbcontrol
The osdbcontrol utility allows a user to perform various control options on a list of
databases, primarily to move them offline or back online.

Syntax
osdbcontrol options pathname ...

Argument pathname

Specifies the path name of a database that is the target of the osdbcontrol
command. Multiple path names can be listed.

Options -cluster_size seg_num cluster_num n_bytes

Sets the size in bytes of the specified cluster. The cluster must be identified by
segment number, cluster number, and the pathname of the database. The size (n_
bytes) is specified as a decimal integer, which may be followed by the optional
suffix K (kilobytes), M (megabytes), or G (gigabytes). Multiple database pathnames
can be specified and the command is applied individually to the specified cluster
in each database.

The following command line sets the size of segment 2, cluster 8 to 14 kilobytes:

osdbcontrol -cluster_size 2 8 14K \temp\test1.db

This option enables the user to presize a cluster in order to minimize
fragmentation. You can also presize a cluster programmatically, as described in
os_cluster::set_size() in Chapter 2, Class Library of the C++ A P I Reference.
Note that you cannot make a cluster smaller than needed to hold all of the objects
in it.

For more information about fragmentation, see Managing Database
Fragmentation on page 44.

-size n_bytes

Sets the size in bytes of the specified database file. The size (n_bytes) is specified
as a decimal integer, which may be followed by the optional suffix K (kilobytes),
M (megabytes), G (gigabytes), or T (terabytes). Multiple database pathnames can be
specified and the command is applied individually to each database.

The following command line sets the size of the specified database file to 100
megabytes:

osdbcontrol -size 100M \temp\test1.db

This option enables the user to presize a database file in order to minimize
fragmentation. You can also presize a database file programmatically, as
described in os_database::set_size() and os_database::set_size_in_
sectors() in Chapter 2, Class Library of the C++ A P I Reference. Note that you
cannot decrease the size of a database file.

For more information about fragmentation, see Managing Database
Fragmentation on page 44.
Release 6.3 169

-offline

Sets a database offline after all users have closed the database specified by
pathname and after all data has been propagated to the database.

-reason string

Only allowed with -offline. The string specified is appended to the offline
exception message.

-kill_clients

Only allowed with -offline. This option disconnects all clients accessing the
database before putting the database offline.

When using the -kill_clients option, if the server’s authentication is set to
something other than NONE (authentication is SYS by default), any user can
disconnect clients that the user owns. Otherwise, authentication fails and no
clients are disconnected.

When the Admin User is set, that user can disconnect all clients. Any user can
disconnect all clients if the authentication is set to NONE.

Without the -kill_clients option, the offline request first waits for all clients to
close the database and then puts the database offline.

-online

Puts the database specified by pathname back online.

-status

Returns the current status of the specified database. For an online database, the
number of opens on the database along with a list of clients currently accessing
the database are displayed.

-statistics

Displays various statistics about the database.

If you use an invalid combination of options or if no options are specified, an
Invalid combination of options exception is thrown.

Note: If a database is set offline while osbackup is backing up that database, the
osbackup process will ignore the offline state and complete the backup. Using the
-kill_clients option while osbackup is backing up that database will disconnect
the osbackup client, leaving the backup logs in an inconsistent state.

API See os_dbutil::osdbcontrol() on page 184 in the C++ A P I Reference.
170 Managing ObjectStore

Chapter 4: Utilities
Examples
osdbcontrol -offline -kill_clients -reason "will be back in 5 minutes" parts.db

In the above example the -kill_clients option first disconnects all clients
accessing the database and then puts the database offline.

osdbcontrol -online parts.db

The above example places the database back online.

osdbcontrol -status parts.db

In the above example, the -status option outputs the current status of the database,
as shown below. The output shows that the database is online and four clients
currently have the database open. If the database is going offline, then the status
output will show OSDBCONTROL_DATABASE_IS_GOING_OFFLINE and list the clients
that still have the database open.

osdbcontrol for database: parts.db
Status: OSDBCONTROL_DATABASE_IS_ONLINE
Number of clients with database open = 4
 Client #64 (mangle/16197/partapp -db parts.db/0)
 priority=0x8000, duration=1 seconds, work=0, no transaction
 on server
 Client #65 (mangle/16197/partapp -db parts.db/1)
 priority=0x8000, duration=1 seconds, work=0, no transaction
 on server
 Client #66 (mangle/16197/scanner -db parts.db/2)
 priority=0x8000, duration=0 seconds, work=0, no transaction
 on server
 Client #67 (mangle/16197/partapp -db parts.db/3)
 priority=0x8000, duration=0 seconds, work=20, transaction in
 progress
Release 6.3 171

osdf
The osdf utility shows the amount of used and available disk space for the rawfs on
the specified server.

Syntax
osdf hostname

Argument hostname

Specifies the name of the host for which you want to display rawfs disk space
information.

Description
If one or more of the partitions that make up the rawfs are expandable and there is
free disk space in the file system holding such a partition, the rawfs grows as needed.
In this situation, the osdf utility does not show the amount of growth room
available.

API See os_dbutil::disk_free() on page 181 in the C++ A P I Reference.

Examples
osdf elvis

Filesystem kbytes use avail capacity

elvis 95749 533 95215 0%
172 Managing ObjectStore

Chapter 4: Utilities
osdump
The osdump utility dumps an ObjectStore C++ database or group of databases to
ASCII files.

Note: if you are dumping an ObjectStore Java database, use the osjidump utility. See
osjidump on page 186.

Syntax
The syntax for osdump is

osdump [options] pathname ...

Argument pathname ...

One or more database path names, separated by spaces, specifying the database
or databases to be dumped.

Options -d |-debug level

Sets debugging level to the specified value level. The range is 1–6. The default is
that debugging information is not displayed.

-dir | -dest_dir dump_pathname

Specifies the path for the dump output.

-pr | -process processes

Specifies the number of processes available for multiprocessing. The default is 1.

Description
Each execution of the osdump utility does the following:

• Creates a group of ASCII files with names in the form databasename_
segmentN.dmp. A separate file is created for each segment in each database. These
files represent the data content of the database in ASCII format and are used by
the osload application you create.

• Creates a group of ASCII files with names in the form databasename_
segmentN.fix. A separate file is created for each segment in each database. These
files contain information about collections in the databases.

• Creates a table file named db_table.dmp. This file contains a representation of the
physical layout of the dumped databases and is used by the osload application
you create.

See Default Dumper ASCII Format for C++ Databases on page 175 for a
description of the layout of this file.

• Creates a file named databasename.scm. This file contains a representation of the
database schema and is used by the osload application you create.

These ASCII files are used as input files to the osload utility. The dumped files must be
available to the osload utility when the utility runs. After the osload utility
successfully runs, you can delete the files generated by the osdump utility.
Release 6.3 173

See also osload on page 192.

Default vs.
customized
dump and load

For the C++ interface, you can use the default dump and load processes or customize
the dump and load of particular types of objects. Customization is appropriate for
certain location-dependent structures, such as hash tables. Databases with unions,
pointers-to-members, or address-dependent data of types that are not C++ pointers
or ObjectStore references or soft pointers cannot be dumped by this utility and need
customized dump and load applications.

Upgrading a Database
To determine when to customize, see When Is Customization Required for C++
Databases? on page 174 To learn how to customize, see Chapter 6, Dump/Load
Facility, in the Advanced C++ A P I User Guide.

For a description of how to use osdump and osload to migrate databases from
Release 5.1 format to Release 6.1 format, see Upgrading a C++ Database on page 54.

Considerations
When you are planning how to dump and load a database, the following points
might influence your plans:

• Any database that you dump must be taken offline.

• Dumping and loading a large database with segments or collections comparable
in size to the available address space might not be possible.

• Indexes for collections are always put into the same segment as the collection even
if the original index was in a different segment.

• If you are dumping a database with cross-database pointers or references to
objects in other databases, you must dump the other affiliated databases at the
same time; otherwise, the integrity of the database you are dumping will not be
maintained.

• User-defined constructors for nonspecialized classes are not executed during the
load.

• If you plan to load a database on a platform with a different architecture from the
architecture of the original database, you should neutralize the database and emit
the loader on the platform with the target architecture.

When Is Customization Required for C++ Databases?
In most cases, customization is not required. If you have a database with objects
whose structure depends on the locations of other objects, you might have to
customize the dumping and loading of those objects.

A dumped object and its equivalent loaded object do not necessarily have the same
location; that is, the same offsets in their cluster. Among the implications of this are
the following:

• Other objects might use different pseudoaddresses to refer to them.
174 Managing ObjectStore

Chapter 4: Utilities
• Their addresses might hash to different values; that is, objectstore::get_
pointer_numbers(), for example, might return different values for them.

The default dumper and loader take into account the first implication, and the loader
adjusts all pointers automatically in loaded databases to use the new locations.

The default dumper and loader also take into account the second implication for
ObjectStore types including collections with hash-table representations. Because a
dumped collection element hashes to a different value than the corresponding
loaded element does, their hash-table slots are different. The facility, then, does not
simply dump and load the array of slots based on fundamental values (which would
result in using the same slot for the dumped and loaded objects).

Instead, it dumps the collection in terms of sequences of high-level API operations
(that is, string representations of create and insert arguments) that the loader can
use to recreate the collection with the appropriate membership.

The default dumper and loader do not take into account the second implication for
non-ObjectStore classes. If you have your own classes that use hash-table
representations, you must customize their dumping and loading. Any other
location-dependent details of data structures (such as encoded offsets) also should
be dealt with through customization.

See Chapter 6, Dump/Load Facility, in the Advanced C++ A P I User Guide.

Default Dumper ASCII Format for C++ Databases
Each db_table.dmp file has the format for database_table described in the
following section.

For each dumped database, filename.db, the files databasename_segmentN.dmp
have the format shown for database, in the following information:

meta::=
 <
 objectstore major release number
 objectstore minor release number
 objectstore maintenance release number
 name of the dump format
 dump format version number
 build number
 value of the application architecture
 >

database_table ::=
 databases [number_databases]
 {database_entry [database_entry]*}

number_databases ::=
 the integer number of dumped databases

database_entry ::=
 <
 pathname
 database_size
 number_segments
 odi_release
 architecture (date)
Release 6.3 175

 >

database ::=
 database [database_index] pathname segments roots
 finalization fixups

pathname ::=
 the pathname of the database being dumped

database_size ::=
 the size of the database in an integral number of bytes

number_segments ::=
 the integral number of segments contained in the database

odi_release ::=

 the ObjectStore release information

architecture ::=
 the host architecture set for the database

date ::=
 the date the database was last modified

database_index ::=
 the index of this database within the list of databases being
 dumped (0-based)
roots ::=
 roots [number_roots] {root [, root]*}

root ::=
 name (Type) id

segments ::=
 segments [segment]*

segment ::=
 segment segment_number [segment_size]
 (pathname) data

segment_number ::=
 integral segment number of this segment within its database

data ::=
 (objects)*

cluster ::=
 cluster [cluster_size] {objects}

objects ::=
 object*

object ::=
 id (type) value

id ::=
 <database_index,segment_number,cluster_number,offset>

offset ::=
 integral value denoting the byte offset of an object within its cluster

type ::=
 integral | real | pointer | reference | array | class

value ::=
 character | integral | floating_point | pointer_value | reference|
 collection | string | array_elements | class_members
176 Managing ObjectStore

Chapter 4: Utilities
integral ::=
 char | signed char | unsigned char | signed short |
 unsigned short | int | unsigned int | signed long |
 unsigned long
real ::=
 float | double

pointer ::=
 type*

reference ::=
 type&

array ::=
 array type [size]

class ::=
 (class | struct | union) name

character ::=
 ‘ c' where c is any printable ascii character or escaped hex value

integral ::=
 any non-floating-point decimal number

floating_point ::=
 any floating-point decimal number

pointer_value ::=
 id

string ::=
 "s" where s is any sequence of printable ascii characters or
 escaped hex value with '"' escaped as "\"" and '\' escaped as "\\".

array_elements ::=
 {value [, value]*}

class_members ::=
 {value [, value]*}

Each object is emitted as a single line of text.

The special storage types cluster, segment, and database denote underlying
ObjectStore storage structures. When a storage type appears, each object following is
contained within that storage structure.

Other types denote C++ type constructs. Values appear as single values or as a
bracketed comma-separated list of values. Base class instances and other embedded
subobjects are flattened into a class_members list.

ObjectStore references or soft pointers, collections, cursors, indexes, and queries are
instances of Object Store types that require special treatment. The following special
dump formats are used for them:

reference ::=
 id

collection ::=
 simple_collection | dummy_cursor | cursor | cursor_with_index |
 cursor_with_range | collection_index |
 collection_element_load | collection_query

simple_collection::=
 [behavior cardinality collection_type representation_enum]
Release 6.3 177

behavior::=
 integral

cardinality::=
 integral

collection_type::=
 string

representation_enum::=
 integral

dummy_cursor::=
 [D]

cursor::=
 [C options]

collection_reference::=
 reference

safe_flag::=
 integral

cursor_with_index::=
 [C options

 {I path_name_length path_name element_name_length
 element_name}]

path_name_length::=
 integral

path_name ::=
 string

element_name_length::=
 integral

element_name::=
 string

cursor_with_range::=
 [C collection_reference safe_flag
 {R range_type key_type low_condition low_value H
 high_condition high_value}]

range_type::=
 integral

key_type::=
 integral

low_condition::=
 boolean

low_value::=
 integral

high_condition::=
 boolean

high_value::=
 integral

boolean::=
 0 | 1

collection_index::=
178 Managing ObjectStore

Chapter 4: Utilities
 [[{path_name_length path_name element_type_length
 element_type_name}]*]

collection_element_load::=
 [[element_reference]*]

element_reference::=
 reference

element_type_length::=
 integral

element_type_name::=
 string

collection_query::=
 [element_type_length element_type <query_string_length
 query_string> <file_name_length file_name>
 <line_number>]

query_string_length::=
 integral

query_string::=
 string

file_name_length::=
 integral

file_name::=
 string

line_number::=
 integral
Release 6.3 179

osexschm
The osexschm utility lists the names of all classes in the schema referenced by the
specified database.

Syntax
osexschm [-detail] pathname

Argument pathname

Specifies a file or rawfs database.

Option -detail

Describes the structure of every class in detail.

Description
For each class, osexschm indicates whether an object of the class type can be
allocated persistently.

Schema
protection

If you are developing an application and will be running this utility on a protected
schema database, ensure that the correct key is specified for the environment
variables OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH. If the correct key is not
specified for these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."
180 Managing ObjectStore

Chapter 4: Utilities
osgc
The osgc utility frees storage associated with persistent objects that are unreachable.

The command-line utility for collecting garbage is osgc.

Syntax
osgc [options] database_name

Argument database_name

Specifies the pathname for the database on which to run osgc.

The osgc utility is only installed when you install the ObjectStore Java interface. For
the ObjectStore Java interface, executing osgc db is the same as calling the
Database.GC() method on the db database.

Options -seg segment_id

Collects garbage from only the specified segment. The segment must have the
segment reference policy objectstore::export_id_access_required. By
default, the osgc utility operates on the entire database.

-retries number

Indicates the number of times the tool tries to resume the sweep phase of garbage
collection after it waits for a lock. The default is 10.

For the ObjectStore Java interface, this option is identical to the
com.odi.gc.retries property.

-retryInterval interval

Indicates the number of milliseconds the sweep operation waits between sweep
attempts for a concurrency conflict to be resolved before it tries to resume the
sweep. The default is 1000.

For the ObjectStore Java interface, this option is identical to the
com.odi.gc.retryInterval property.

-lockTimeOut interval

Indicates the number of milliseconds the sweep operation waits for a lock conflict
to be resolved. If it is not resolved in the specified length of time, the tool aborts
the current transaction and starts a new transaction. ObjectStore rounds this value
up to the nearest second. The default is 1000.

For the ObjectStore Java interface, this option is identical to the
com.odi.gc.lockTimeOut property.

-transactionPriority n

Specifies the transaction priority associated with transactions started by the tool.
The server uses this specification when it must determine the transaction that
must be the victim in a deadlock. This number is intentionally low so that the
garbage collection transaction is the deadlock victim of choice. The default is 0.
Release 6.3 181

For the ObjectStore Java interface, this option is identical to the
com.odi.gc.transactionPriority property.

-displayGarbage level

Displays information about the candidates for garbage collection instead of
actually destroying the candidates. The level you specify determines the amount
of information the tool displays. Level 1 lists the number of objects per segment
that would be destroyed. Level 2 is not currently supported. Level 3 lists the
location of each garbage collector candidate. Level 4 lists the roots of garbage
graphs. Level 4 can require intensive computations.

-statistics

Displays statistics for the garbage collection operation. These include the total
number of reachable objects and the total number of garbage objects.

Description
Performing
garbage
collection in a
database

The ObjectStore persistent garbage collector (osgc) deletes unreferenced, non-
exported objects and ObjectStore collections in an ObjectStore database.
Applications can continue to use a database while garbage collection is in process.
Note, however, that you should not retain transient references to non-exported
objects while you are using osgc.

Persistent garbage collection frees storage associated with objects that are
unreachable. It does not move remaining objects to coalesce the free space. (See
oscompact on page 160.)

The osgc utility performs its job in two major phases. In the mark phase, osgc
identifies the unreachable objects. In the sweep phase, osgc frees the storage used by
the unreachable objects.

A segment is the smallest storage unit that can be garbage collected. You can specify
a segment or a database for garbage collection. You can only specify a segment if it
has the segment reference policy objectstore::export_id_access_required.

C++ usage note Normally, databases resulting from ObjectStore applications written in C++ do not
require garbage collection because all storage allocation is handled explicitly.

osgc can be useful as a debugging tool. For example, if unreferenced objects are
being harvested, it is an indication of a persistent memory leak. The identity of these
objects can be a clue to the root of the problem.

Caution If your application relies on interdatabase pointers, you should use segments with
the segment reference policy of objectstore::export_id_access_required.
Otherwise, references to one database from another will not be detected by osgc and
objects pointed to by references from other databases will be seen as unreferenced
and, therefore, removed.

Applications can continue to use a database while persistent garbage collection is in
progress — with the restriction noted in the next paragraph. Garbage collection locks
portions of a segment as needed, as if it were just another application. In this way,
the osgc utility minimizes the number of pages that are locked and the duration for
182 Managing ObjectStore

Chapter 4: Utilities
which the locks are held. Also, the osgc utility retries operations when it detects lock
conflicts.

Restriction Applications must not retain references to non-exported objects in a database while
it is being processed by the osgc utility. This restriction applies to both the C++ and
Java interfaces to ObjectStore.

By default, the osgc utility runs with a transaction priority of 0. Consequently, it is
the preferred victim when the server must terminate a transaction to resolve a
deadlock. At a later time, the osgc utility redoes the work that was lost when the
transaction was aborted.

The GC uses read- and write-lock timeouts of short duration. This avoids
competition with other processes for locks. If the osgc utility cannot acquire a lock
because of a timeout, it retries the operation at a later time.

You must not simultaneously run multiple osgc processes against the same database
or segment. You must synchronize osgc processes so that a new osgc process on a
database or segment is initiated only after the previous osgc process on the database
or segment has run to completion.
Release 6.3 183

osglob
The osglob utility performs ObjectStore file name expansion.

Syntax
osglob wordlist

Argument wordlist

Specifies strings, such as rawfs path names, containing wildcards that you want
to expand into all matching path names.

Description
The osglob utility can perform wildcard processing similar to regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX systems, when you are operating on a rawfs database, you must enclose
the wildcard in quotation marks (" ") or precede it with a backslash (\) to keep the
shell from interpreting a wildcard as a shell wildcard.

API See os_dbutil::expand_global() on page 181 in the C++ A P I Reference.
184 Managing ObjectStore

Chapter 4: Utilities
oshostof
The oshostof utility displays the host name of the specified database to standard
output.

Syntax
oshostof pathname

Argument pathname

Specifies the database for which you want to display the host name.

Description
The oshostof utility can operate on file or rawfs databases.

Normal path name syntax is supported.

When you specify a path that is a symbolic link, oshostof displays the host name of
the database that the link points to.

When you specify the path of a server-remote database, the oshostof utility returns
the name of the host where the database resides.

API See os_dbutil::hostof() on page 182 in the C++ A P I Reference.

Example
A typical use is as follows:

ossvrchkpt ‘oshostof a/b/c’
Release 6.3 185

osjidump
The osjidump utility dumps an ObjectStore Java database or group of databases to
ASCII files.

The osjidump utility is only installed when you install the ObjectStore Java interface.
The utility is located in the OSJI/bin directory.

Syntax
The syntax for osjidump is

osjidump [options] pathname ...

Argument pathname ...

One or more database path names, separated by spaces, specifying the database
or databases to be dumped.

Options -d |-debug level

Sets debugging level to the specified value level. The range is 1–6. The default is
that debugging information is not displayed.

-dir | -dest_dir dump_pathname

Specifies the path for the dump output.

-pr | -process processes

Specifies the number of processes available for multiprocessing. The default is 1.

Description
Each execution of the osjidump utility does the following:

• Creates a group of ASCII files with names in the form databasename_
segmentN.dmp. A separate file is created for each segment in each database. These
files represent the data content of the database in ASCII format and are used by
the osjiload utility.

• Creates a group of ASCII files with names in the form databasename_
segmentN.fix. A separate file is created for each segment in each database. These
files contain information about collections in the databases.

• Creates a table file named db_table.dmp. This file contains a representation of the
physical layout of the dumped databases and is used by the osload application
you create.

• Creates a file named databasename.scm. This file contains a representation of the
database schema and is used by the osjiload utility

These ASCII files are used as input files to the osjiload utility. The dumped files
must be available to the osjiload utility when it runs. After the osjiload utility
successfully runs, you can delete the files generated by the osjidump utility.

See also osjiload on page 188.
186 Managing ObjectStore

Chapter 4: Utilities
Upgrading a Database
For a description of how to migrate databases from Releases 3.0 format to Release 6.3
format, see Upgrading a Java Database on page 56 (note, for Release 3.0, you will use
a version of the osdump utility).

Considerations
When you are planning how to dump and load a database, the following points
might influence your plans:

• Any database that you dump must be taken offline.

• Dumping and loading a large database with segments or collections comparable
in size to the available address space might not be possible.

• Indexes for collections are always put into the same segment as the collection even
if the original index was in a different segment.

• If you are dumping a database with cross-database pointers or references to
objects in other databases, you must dump the other affiliated databases at the
same time; otherwise, the integrity of the database you are dumping will not be
maintained.
Release 6.3 187

osjiload
The utility osjiload creates an ObjectStore Java database or group of databases
using as input the ASCII files generated by the osjidump utility. The resulting
databases are equivalent to the ones from which the ASCII files were produced.

The osjiload utility is only installed when you install the ObjectStore Java interface.
The utility is located in the OSJI/bin directory.

Syntax
The syntax for osjiload is

osjiload [options]

Options -cwd | -current_dir

Tells osjiload to recreate databases in the current working directory rather than
in their original location.

-d | -debug level

Sets debugging level to the specified value level if debugging information is
available. The range is 1–6. The default is that debugging information is not
displayed.

-dir | -source_dir pathname

Specifies the directory from which to read the input files such as db_table.dmp.

-pr | -process processes

Specifies the number of processes available for multiprocessing. The default is 1.

-rc -recluster size_in_bytes

Specifies the maximum reclustering size to a given integral value in bytes. By
default, the original cluster size is retained.

-wdir |-workdir location

Specifies the location to use for temporary work storage.

Description
For given ASCII input, the databases created by the osjiload utility have the same
file names as the databases from which the ASCII was generated (as stored in db_
table.dmp).

-cwd option The -cwd option forces osjiload to ignore paths from db_table.dmp and create the
databases in the current working directory.

If you do not set the -cwd option, the databases have the same path names as stored
in db_table.dmp. If files with the given paths already exist (for example, because the
dumped databases are still in their original locations), the osjiload utility aborts.
This prevents you from overwriting your original databases.
188 Managing ObjectStore

Chapter 4: Utilities
To load a database or group of databases from a set of osjidump-generated ASCII
files, run the osjiload utility against the dumped ASCII files.

CLASSPATH The osjiload utility requires the CLASSPATH environment variable include the OSJI
classes OSJI/osji.jar and OSJI/tools.jar as well as the postprocessed class files
used in your database schema.

Upgrading a Database
For a description of how to use osjidump and osjiload to migrate databases from
Release 3.0 format to Release 6.1 format, see Upgrading a Java Database on page 56.
Release 6.3 189

osln
The osln utility creates a symbolic link in the rawfs hierarchy.

Syntax
osln pathname linkname

Arguments pathname

The path name of the rawfs directory or database that you want to point to.

linkname

The path name of the rawfs directory or database that is the new link. It points to
pathname.

Description
Different links can point to the same rawfs path name.

To indicate hosts, specify path names in the form

host::/pathname

Limitation To access a particular database or directory, a client can follow as many as 15 cross-
server links. For example, a client traverses a link to Server Q. Server Q sends the
client to Server P. Server P sends the client to another Server or even back to Server
Q. Each connection to a server counts as one link. It does not matter whether the
server was previously connected to the chain. When the client reaches the sixteenth
link, ObjectStore signals the error message err_too_many_cross_svr_links.

To access a particular database or directory in its rawfs, the server can traverse as
many as ten same-server links. When the server reaches the eleventh link,
ObjectStore signals the error message err_too_many_links.

In a chain of links, a client can return to a server that it contacted earlier in the chain.
In this situation, the server’s count of links within its rawfs begins with 1. It does not
continue the count from where it left off during the previous connection. Each time
a link sends the client to a server, the server can follow as many as ten links within
its rawfs.

These limits allow ObjectStore to catch circular links such as the following: A is a link
to B, and B is either directly or indirectly a link to A.

When links are
needed

Links within the rawfs are useful in many situations, including the following:

• You move a database. You can define a link so that programmers need not modify
applications that use the moved database.

• You want to store all databases in one place but allow applications to refer to the
databases in different ways.

• You want to set up applications so they always refer to one location, and that
location is a link to the actual database.
190 Managing ObjectStore

Chapter 4: Utilities
Removing a link To remove a link, use the osrm utility. The syntax is osrm linkname.

See osrm on page 213.

API See os_dbutil::make_link() on page 183 in the C++ A P I Reference.

Examples
In the following example, link_to_db in canard’s rawfs points to real_db in web-
foot’s rawfs:

osln web-foot::/real_db canard::/link_to_db

In the next example, link_to_db points to real_db, and both databases are in the
same rawfs:

osln web-foot::/real_db web-foot::/link_to_db
Release 6.3 191

osload
The osload utilitycreates an ObjectStore C++ database or group of databases using
as input the ASCII files generated by the osdump utility. The resulting databases are
equivalent to the ones from which the ASCII files were produced.

You use the osload utility supplied by the ObjectStore installation to create the
source files for an osload application that is tailored specifically to load databases
you have dumped with the osdump utility.

Syntax
The syntax for osload is

osload [options]

Options -cwd | -current_dir

Tells osload to recreate databases in the current working directory rather than in
their original location.

-d | -debug level

Sets debugging level to the specified value level if debugging information is
available. The range is 1–6. The default is that debugging information is not
displayed.

-dir | -source_dir pathname

Specifies the directory from which to read the input files such as db_table.dmp.

-e | -emit pathname

Tells osload to generate the source code for a loader executable for the application
schema specified by pathname.

-pr | -process processes

Specifies the number of processes available for multiprocessing. The default is 1.

-rc -recluster size_in_bytes

Specifies the maximum reclustering size to a given integral value in bytes. By
default, the original cluster size is retained.

-wdir |-workdir location

Specifies the location to use for temporary work storage.

Description
For given ASCII input, the databases created by the osload utility have the same file
names as the databases from which the ASCII was generated (as stored in db_
table.dmp).

-cwd option The -cwd option forces osload to ignore paths from db_table.dmp and create the
databases in the current working directory.
192 Managing ObjectStore

Chapter 4: Utilities
If you do not set the -cwd option, the databases have the same path names as stored
in db_table.dmp. If files with the given paths already exist (for example, because the
dumped databases are still in their original locations), the osload utility aborts. This
prevents you from overwriting your original databases.

To load a database or group of databases from a set of osdump-generated ASCII files,
generate the source code for a loader application by running osload with the -emit
option against the application schema, build the loader application, and then run the
loader application against the ASCII files.

On UNIX, use the make utility and the generated makefile makefile.unx. On
Windows, use nmake and the generated makefile makefile.w32. The makefiles are
generated along with the loader source code when you run osload with the -emit
option

Upgrading a Database
For a description of how to use osdump and osload to migrate databases from
Release 5.1 format to Release 6.1 format, see Upgrading a C++ Database on page 54.
Release 6.3 193

osls
The osls utility lists the contents of the specified directory.

Syntax
osls [-dlRsu] pathname ...

Argument pathname ...

Specifies one or more rawfs or native file directories for which you want to list the
contents.

Options -d

Lists the information about the directory itself, rather than the contents. This
option operates on rawfs directories only.

-l

Displays information about directory contents in long format, including the size
in bytes.

-R

Recursively lists the contents of the specified directory.

-s

Causes the size to be displayed in 1 KB blocks. This option operates on rawfs
directories only.

-u

Lists the user name of the owner of the contained databases. This option operates
on rawfs directories only.

Description
When a path name includes links, ObjectStore identifies the path name as the path
name to which the symbolic link chain points. This is true even if an alternative name
was specified at creation.

The osls utility ignores trailing and multiple slashes in path names. It accepts a
combination of rawfs path names and file path names. When you specify a local
directory, you cannot specify a remote file-server host in the path name of the local
directory. The osls utility passes the operation to a local native utility. If you specify
a remote file-server host name, ObjectStore informs you that you specified an illegal
path name.

Wildcards This utility can perform wildcard processing using regular expression wildcards *,
?, { }, and [].

UNIX On UNIX, when you are operating on a rawfs database, you must enclose the
wildcard in quotation marks (" ") or precede it with a backslash (\) to keep the shell
from interpreting the wildcard as a shell wildcard.

API See os_dbutil::list_directory() on page 183 in the C++ A P I Reference.
194 Managing ObjectStore

Chapter 4: Utilities
osmkdir
The osmkdir utility creates a directory in the rawfs.

Syntax
osmkdir [-p] [-m octal_mode] directory

Argument directory

Specifies a rawfs directory path name.

Options -m octal_mode

Indicates that the new directory has the permission mode as specified by octal_
mode. Specify the protection mode that you want the directory to have. The default
mode is 0700.

-p

Specifies that ObjectStore should create any missing directories that are needed to
make the specified directory path exist.

Description
Use osmkdir to create a rawfs directory. You also can use osmkdir to create a
nonrawfs directory. When you create a nonrawfs directory, you cannot specify a
remote file-server host in the path name of the nonrawfs directory. The osmkdir
utility passes the operation to a local native utility. If you specify a remote file-server
host name, ObjectStore informs you that you specified an illegal path name. If you
specify the -p option, it works if the native utility supports that feature.

API See os_dbutil::mkdir() on page 184 in the C++ A P I Reference.
Release 6.3 195

osmv
The osmv utility moves a database, directory, or link.

Syntax
The osmv utility has two forms that apply to rawfs databases and a third form that
applies to file databases.

For rawfs:

osmv [-fi] path1 path2

osmv [-fi] path1... pathn dir

For file databases:

osmv [-fi] path1 path2

Arguments path1
path1 ... pathn

Specifies the path of a file database or a rawfs database, link, or directory that you
want to move.

path2

Specifies the new path for the file database or rawfs database, link, or directory. If
path2 is a link to a directory, ObjectStore places path1 in the pointed-to directory.

dir

Specifies a rawfs directory into which you want to move the specified rawfs
databases, links, or directories.

Options -f

Forces execution. Errors are not reported.

-i

Specifies interactive mode. ObjectStore prompts you to confirm for each specified
database that you really want to move it.

Description
The osmv utility moves rawfs databases, directories, and links within a rawfs or from
one rawfs to another. It also moves file databases within the file system. A side effect
of osmv is to rename a file or directory.

As shown in the Syntax section, there are three forms of the command line for the
osmv utility.

In the first form, if path1 and path2 are rawfs databases or links, osmv moves
(changes the name of) path1 to path2. If path2 already exists, the utility removes it,
then moves path1 to path2. If path1 is a rawfs directory, then path2 must not
already exist. osmv moves (changes the name of) the path1 directory to the path2
directory.
196 Managing ObjectStore

Chapter 4: Utilities
In the second form, osmv moves one or more databases, links, or directories into the
last directory in the list. The utility maintains the original names of the moved
entities. The directory into which you are moving items must already exist and you
must have write permission for that directory.

In the third form, osmv moves (changes the name of) file database path1 to file
database path2.

Procedure When moving rawfs databases to another server, the osmv utility moves an item by
doing the following:

1 Removes the destination, if it exists

2 Copies the source to the destination

3 Removes the source

This allows for consistent databases in the event of a server crash. If the server
crashes during the osmv operation, there might not be a destination database, but
there would always be a source database. When moving rawfs paths on the same
server, ObjectStore directly renames the item.

External
pointers and
references

After you move a database, you need to use the osaffiliate utility to fix external
pointers and references. See osaffiliate on page 135.

Native move
commands

While you can use native move commands to move ObjectStore file databases, you
forfeit the database consistency protection that osmv provides. If the server crashes
before propagating all changes to the database, the server cannot find the changes at
recovery time and the database is corrupted.

When you specify a file database, you can specify a host in the path name of the file
database.

Wildcards osmv can perform wildcard processing using regular expression wildcards *, ?, { },
and [].

UNIX On UNIX, when operating on a rawfs database, you must enclose the wildcard in
quotation marks (" ") or precede it with a backslash (\) to keep the shell from
interpreting the wildcard as a shell wildcard.

API See os_dbutil::rename() on page 189 in the C++ A P I Reference.
Release 6.3 197

osprop
osprop is an ObjectStore/Single utility that performs a server checkpoint.

Note If you are not using ObjectStore / Single, you must us the ossvrchkpt utility to
perform a checkpoint; see ossvrchkpt on page 241.

Syntax
osprop [-f] server_log_name ...

Argument server_log_name

Specifies the name of a server log file with unpropagated data.

Option -f

 Instructs osprop to ignore errors.

Description
The osprop utility ensures that committed data in the server logs is propagated to
the affected databases. osprop is meaningful only when it is run as an
ObjectStore / Single application.

osprop performs a function similar to ossvrchkpt. The difference is that
ossvrchkpt propagates what it can, immediately. osprop propagates everything,
guaranteed, and deletes the log when it is finished.

It is not usually necessary to run this utility because an ObjectStore / Single
application that terminates normally conducts propagation and removes the log.

After osprop successfully propagates data in a log, it removes the log. Running
osprop twice on the same server log is permissible.

API Class: objectstore
Function: propagate_log()

Examples
The first example iteratively propagates committed data in the specified log files to
the actual databases. Note that this is only meaningful if osprop is executed in an
environment in which the ObjectStore / Single version of libos is used.

osprop log1 log2 ...

The next example propagates committed data in the specified log file if the file exists
and is a valid log. Otherwise, the file is ignored.

osprop -f log3
198 Managing ObjectStore

Chapter 4: Utilities
osrecovr
The osrecovr utility copies (rolls forward) database modifications from archive log
files created by osarchiv to the affected databases. See also Overview of the
Backup/Restore Facility on page 48.

Syntax
osrecovr [options] [-f backup/log_file...]
[pathname_translation ...]

Argument pathname_translation ...

Specifies a pair of path names. The first path name in the pair indicates the source
of the database as recorded in the archive log or backup image. The second path
name indicates the target; that is, the path name for the database after it is
recovered.

You can specify zero, one, or more path name translations. Each path name can be
a directory or a single database. However, you cannot specify a directory as the
source and a database as the target.

If you do not specify at least one pathname_translation, all databases in the
archive logs or backup images you specified are restored in their original
locations.

Options -c

Directs the osrecovr utility to apply each archive log snapshot and each backup
image in its own transaction. The default is for all changes to be applied in a single
transaction.

-D date

Specifies a date in the current locale — for example, mm/dd/yy in the United States.
If the current locale is not known, executing the osrecovr utility with no options
or arguments will display the usage message for the -D option with the correct
date format. The -D option causes the osrecovr utility to roll forward all database
changes committed before or on the specified date. The default is to roll forward
to the last snapshot taken.

-f backup/log_file...

Specifies an archive log file or a backup image from which to recover committed
database changes made since the last backup.

You can specify the -f option zero, one, or more times. The osrecovr utility
processes the files in the order in which you specify them.

If you do not specify the -f option, you must specify the -F option.

You can mix specifications of -f and -F. The osrecovr utility processes them in
the order in which you specify them.

Specifying a directory signals an error.
Release 6.3 199

-F recover_file

Specifies the name of a file that contains a list of archive files or backup images
from which to recover specified databases. If you specify a hyphen (-) as the
recover file name, osrecovr reads from standard input.

The list contains one file path name per line. Leading and trailing white space is
ignored.

If you specify the -F option, you can also specify -f with additional file names on
the command line. You can mix specifications of -f and -F. osrecovr processes
them in the order in which you specify them.

-n

Normally, if a directory is specified as the source of a recovery operation, all
databases in the directory and its subdirectories are recovered. Including the -n
option limits the recovery operation to databases contained in the named
directory.

-r time

Specifies a recover-to time in the HH:MM:SS format. The osrecovr utility rolls
forward all database changes committed before or at this time. The default is to
roll forward to the last snapshot taken.

-s size

Optional. Specifies the size a chunk of data should be when restoring the target
database. size is a number optionally appended with k or m to indicate kilobytes
or megabytes. For example, -s 1024k and -s 1m both specify a maximum buffer
size of 1 MB. If no unit is specified, k is presumed. The default value and
minimum value is 512 KB. The maximum value is 1024 KB.

-t

Displays a list of databases contained in specified archive files.

-T seconds

Optional. Specifies the network timeout value. The value seconds is the amount
of time. By default the value is the number of seconds, but m, h, or d can be
appended to to the value to specify minutes, hours, or days, respectively. For
example, -T 60 and -T 1m both specify a timeout value of one minute. The default
timeout value is 10 hours.

Description
The osrecovr utility can apply changes up to the time of the last snapshot in the
archive log or to some earlier time that you specify.

The osrecovr utility can restore backups as well as recover data from archive logs,
both in the same invocation.

When you run the osrestore or osrecovr utility, the operation is transaction
protected. This means that if the operation fails, ObjectStore rolls databases back to
the state they were in before the operation started.
200 Managing ObjectStore

Chapter 4: Utilities
ObjectStore applications cannot access databases that are being restored until the
entire restoration process has finished.

Specify a pathname_translation when you want to restore

• One or more, but not all, databases in the backup image to their original locations

• One or more databases in the backup image to locations other than their original
locations

Restoring from
tape

When restoring data from tape, you must use the osrestore utility.

You must run the osrestore utility before the osrecovr utility if you performed
both of the following steps:

1 You used the osbackup utility to back up a database.

2 You ran the osarchiv utility and used the same incremental backup record that
you used for the osbackup utility.

Tradeoffs When Recovering in Several Transactions
You can specify the -c option to recover data in several transactions instead of one
transaction. While this gives you flexibility, there is a tradeoff between the ability to
roll back databases and the space needed in the log to record all modifications to
databases being recovered.

For example, if you specify -c when you initiate osrecovr, ObjectStore recovers
each snapshot in its own transaction. If the operation fails because of media failure
while it is applying the last snapshot, ObjectStore rolls the databases back to the state
they were in as of the last successfully applied snapshot.

However, suppose that each snapshot is 100 MB. This requires 100 MB of log space.
If you ensure that the database does not exist when the recover operation starts, and
if you apply all snapshots in a single transaction, all recovered data bypasses the log
and goes directly to the database. Now if the operation fails, ObjectStore rolls all
changes back, including the database creation.

The fundamental tradeoff is between the ability to roll back to a previous state and
the resources needed to log the changes so that rollback is possible. In cases in which
the size of the databases being recovered exceeds the size of the space available (or
desirable) for logging, it is preferable

• To use a single transaction for the recovery operation

• Not to restore over existing databases

Examples
The following example lists archive contents:

% osrecovr -f /vancouver1/archives/1999011216.aaa -t
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
Release 6.3 201

%

This next example recovers from a single archive:

% osrecovr -f /vancouver1/archives/1999011216.aaa
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 17:28:22 1999
Recovered to time Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:57 1999
Recovered to time Tue Jan 12 16:26:11 1999
Restoring 452 sectors to database
"vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Tue Jan 12 16:26:41 1999
Recovered to time Tue Jan 12 16:27:13 1999
Recovered to time Tue Jan 12 16:27:43 1999
Recovered to time Tue Jan 12 16:28:14 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

The next example illustrates how to recover back to a specific place. It restores all
databases to their location and state as of 16:25:27 on January 12, 1999.

% osrecovr -f /vancouver1/archives/1999011216.aaa -r 16:25:27
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:27 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).

Recovering from multiple archive files:

% cat ./archive_list
/vancouver1/archives/1999011216.aaa
/vancouver1/archives/1999011216.aab
/vancouver1/archives/1999011216.aac

% osrecovr -t -F ./archive_list
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/1999011216.aaa).

% osrecovr -F ./archive_list
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 17:27:01 1999
Recovered to time Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:57 1999
Recovered to time Tue Jan 12 16:26:11 1999
Restoring 452 sectors to database
"vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Tue Jan 12 16:26:41 1999
Recovered to time Tue Jan 12 16:27:13 1999
Recovered to time Tue Jan 12 16:27:43 1999
Recovered to time Tue Jan 12 16:28:14 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
Auto switching to volume #2 (/vancouver1/archives/1999011216.aab).

Recovering from volume #2 (/vancouver1/archives/1999011216.aab)...
Recovered to time Tue Jan 12 16:28:21 1999
Recovered to time Tue Jan 12 16:28:35 1999
Recovered to time Tue Jan 12 16:28:37 1999
Recovered to time Tue Jan 12 16:28:38 1999
Recovered to time Tue Jan 12 16:28:40 1999
Recovered to time Tue Jan 12 16:28:41 1999
202 Managing ObjectStore

Chapter 4: Utilities
Recovered to time Tue Jan 12 16:28:49 1999
Recovered to time Tue Jan 12 16:28:55 1999
Recovered to time Tue Jan 12 16:29:01 1999
Recovered to time Tue Jan 12 16:29:06 1999
Recovered to time Tue Jan 12 16:29:12 1999
Recovered to time Tue Jan 12 16:29:17 1999
Recovered to time Tue Jan 12 16:29:23 1999
Recovered to time Tue Jan 12 16:29:28 1999
Recovered to time Tue Jan 12 16:29:34 1999
Recovered to time Tue Jan 12 16:29:39 1999
Recovered to time Tue Jan 12 16:29:43 1999
Recovered to time Tue Jan 12 16:29:44 1999
Recovered to time Tue Jan 12 16:29:49 1999
Recovered to time Tue Jan 12 16:29:55 1999
Recovered to time Tue Jan 12 16:30:01 1999
Closing volume #2 (/vancouver1/archives/1999011216.aab).
Auto switching to volume #3 (/vancouver1/archives/1999011216.aac).

Recovering from volume #3 (/vancouver1/archives/1999011216.aac)...
Recovered to time Tue Jan 12 16:31:04 1999
Recovered to time Tue Jan 12 16:31:06 1999
Closing volume #3 (/vancouver1/archives/1999011216.aac).
%

Recovering to a date and time:

% osrecovr -F ./archive_list -D 1/30/99 -r 16:27:43
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 16:27:43 1999
Recovered to time Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:57 1999
Recovered to time Tue Jan 12 16:26:11 1999
Restoring 452 sectors to database
"vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Tue Jan 12 16:26:41 1999
Recovered to time Tue Jan 12 16:27:13 1999
Recovered to time Tue Jan 12 16:27:43 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

Recovering to a time today:

% osrecovr -F ./archive_list -r 16:27:43
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 16:27:43 1999
Recovered to time Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:57 1999
Recovered to time Tue Jan 12 16:26:11 1999
Restoring 452 sectors to database
"vancouver:/vancouver1/dbdir/foo.db"
Recovered to time Tue Jan 12 16:26:41 1999
Recovered to time Tue Jan 12 16:27:13 1999
Recovered to time Tue Jan 12 16:27:43 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

The next example illustrates recovering a single database. It makes
vancouver::/bar.db equal to vancouver::/foo.db as of 16:27:43 today.

% osrecovr -F ./archive_list -r 16:27:43 vancouver::/foo.db \
vancouver::/bar.db
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Tue Jan 12 16:27:43 1999
Release 6.3 203

Recovered to time Tue Jan 12 16:25:27 1999
Recovered to time Tue Jan 12 16:25:57 1999
Recovered to time Tue Jan 12 16:26:11 1999
Recovered to time Tue Jan 12 16:26:41 1999
Recovered to time Tue Jan 12 16:27:13 1999
Recovered to time Tue Jan 12 16:27:43 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).

% osls vancouver::/
bar.db
dbdir/
foo.db
%

% cat ./archive_list
/vancouver1/archives/1999011216.aaa
/vancouver1/archives/1999011216.aab
/vancouver1/archives/1999011216.aac

% osrecovr -t -F ./archive_list
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
vancouver::/foo.db
vancouver::/dbdir/bar.db
vancouver::/dbdir/foo.db
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

Examples of
recovery
failures

Nonexistent database:

% osrecovr -f /vancouver1/archives/1999011216.aaa -r 16:25:27 \
vancouver::/asdla.db vancouver::/as.db
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
Recover failed: Database vancouver::/asdla.db does not exist in this
backup image
%

Day not in the archives:

% osrecovr -F ./archive_list -D 1/30/99
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Mon Jan 11 17:29:08 1999
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

Day/year not in archives:

% osrecovr -F ./archive_list -D 1/30/98
Recovering from volume #1 (/vancouver1/archives/1999011216.aaa)...
Target time: Sun Jan 11 17:29:51 1998
Closing volume #1 (/vancouver1/archives/1999011216.aaa).
%

204 Managing ObjectStore

Chapter 4: Utilities
osreplic
The osreplic utility replicates and maintains multiple copies of a database.

Syntax
osreplic [options] -a archive_record_file src_path1 dest_path1
[src_path2 dest_path2 ...]

Arguments src_path1

Specifies the directory path or database name of the database or databases you
want to replicate.

dest_path1

Specifies the directory path or database name of the replica database or databases.

Options -a archive_record_file

Required. Specifies the archive record file. If the file does not exist, it is created.

-B size

Optional. Controls the amount of transient workspace available to the source
server.

size is a number optionally appended with k or m to indicate kilobytes or
megabytes, respectively. If no unit is specified, m is presumed. For example, -B
1024k, -B 1m, and -B 1 each specify a maximum buffer size of 1 MB. The default
value is 1 MB and the maximum value is 2 MB.

-c

 Optional. Provides a clean-up handler if you use Control-C to exit the utility.

-C

Optional. Enables the interactive command-loop feature. This feature is disabled
by default. See Commands on page 206 for the commands available in interactive
mode.

-i interval

Optional. Sets the interval between snapshots. The default is 600 seconds. A copy
is made immediately after osreplic is initiated, then every interval thereafter.

Intervals are specified with integer values in seconds. For example, -i 60
specifies an interval of 60 seconds.

-I input_file

Optional. Source and destination databases and directories can be specified with
a separate input file as well as on the command line. Each line in the input file
should consist of a source path followed by a target path. If a directory is specified,
its contents are added to the source set.

-o output_file

Optional. Redirects output to output_file.
Release 6.3 205

-p

Optional. Sets permissions on the replica to match those of the master (rawfs
only).

-P

Optional. Specifies that osreplic will use data compression.

-r

Optional. Enables recursive processing of rawfs directories.

-R size

Optional. Specifies the size a chunk of data should be when copying from the
source database. size is a number optionally appended with k or m to indicate
kilobytes or megabytes. For example, -R 1024k and -R 1m both specify a
maximum buffer size of 1 MB. If no unit is specified, k is presumed. The default
value and minimum value is 256 KB. The maximum value is 102400 KB.

-s size

Optional. Specifies the size a chunk of data should be when updating the target
database. size is a number optionally appended with k or m to indicate kilobytes
or megabytes. For example, -s 1024k and -s 1m both specify a maximum buffer
size of 1 MB. If no unit is specified, k is presumed. The default value and
minimum value is 512 KB. The maximum value is 1024 KB.

-T seconds

Optional. Specifies the network timeout value. The value seconds is the amount
of time. By default the value is the number of seconds, but m, h, or d can be
appended to to the value to specify minutes, hours, or days, respectively. For
example, -T 60 and -T 1m both specify a timeout value of one minute. The default
timeout value is 10 hours.

-v

Optional. Enables verbose output.

-x

Optional. Prohibits clients from using the replica until osreplic terminates.

Commands
You can execute the following commands when you use osreplic in interactive
mode. The utility processes the commands between snapshots.

i interval

Interval — Changes the interval between snapshots. Specify an integer for
interval. You can append the letter m, h, or d to indicate minutes, hours, or days.
For example, i 60 and i 1m both specify an interval of one minute. When
interval is 0, osreplic takes a single snapshot and terminates.

You can specify i without an integer to display the current interval.
206 Managing ObjectStore

Chapter 4: Utilities
s

Statistics— Display replication statistics..

q

Quit — Terminate osreplic after completing the current replication transaction.

Description
The ObjectStore replicator produces a continuously updated copy (or replica) of one
or more user databases. The utility works by coordinating the actions of a source
ObjectStore server running an archive logger and of a target ObjectStore server. It
provides a read-only (MVCC) copy of a database that is updated dynamically from
the master database. ObjectStore rawfs databases and rawfs directories can be
replicated, as well as ObjectStore file databases. Native file system directories cannot
be replicated.

When you start the replicator, you specify a set of sources and destinations for
replicated databases on the command line or with a separate input file by using the
-I option. The master/replica pair is specified by path name with the src_path and
dest_path arguments, including the target host, if needed. The list of databases
cannot be changed after the replicator is started.

src_path and dest_path can be a directory path or a database name. You can also
use UNC path names (on Windows platforms), server relative path names, or local
path names. However, you cannot use UNC path names as destinations.

You must also specify an archive_record_file with the -a option. The osreplic
utility uses this information to determine those clusters and segments within a
database that have been modified since the last replication. This file is identical to the
archive record file for osarchiv. At specified intervals, the replicator takes a
snapshot of the databases and sends the changed data to the target host so that the
data is applied to the replica. All committed user data is replicated.

When a transaction commits, its modifications are not replicated until the next
snapshot. As with the osarchiv utility, the -i option can be used to adjust the trade-
off between keeping the replica more up to date and minimizing the volume of data
transmitted. For more information, see Tradeoffs for Obtaining the Results You
Need on page 141.

The -R and -s options can be used to improve performance over wide area networks
with wide bandwidth but long latency. Increasing the size of the chunks of data will
reduce the number of chunks that need to sent across the network.

Owner, group, and mode permissions can also be copied for rawfs databases.
However, neither rawfs directory permissions nor segment-level permissions are
copied. Additionally, no file database permissions are copied. Operations such as
osrm are not propagated to the replica. If a failover occurs while osreplic is
updating a database, osreplic will use the archive record file and continue
replicating the data from where the last snapshot left off.

API See os_replicator on page 315 in the C++ A P I Reference.
Release 6.3 207

osrestore
The osrestore utility copies databases from backup storage locations to your disk
or rawfs. Backups must have been created with the osbackup utility. See also
Overview of the Backup/Restore Facility on page 48.

Syntax
osrestore [options] -f backup_file [-f backup_file]... [pathname_
translation]...

Argument pathname_translation...

Specifies a pair of path names separated by a space. The first path name in the pair
indicates the source of the database as recorded in the backup image. The second
path name indicates the target; that is, the path name for the database after it is
restored.

You can specify zero, one, or more path name translations. Each path name can be
a directory or a single database. However, you cannot specify a directory as the
source and a database as the target.

If you do not specify at least one pathname_translation, all databases in the
backup image are restored in their original locations.

Options -a

Optional. Aborts the restore operation if the utility cannot open the restore device.
This raises an exception that indicates the problem.

By default, if osrestore fails to open the device, it displays a message and waits
for you to correct the problem.

The utility will fail to open the restore device if, for example, no tape is loaded.

-b blocking_factor

Optional. Specifies a blocking factor to use for tape input and output. This option
applies only when you are restoring data from a tape. The blocking factor is in
units of 512-byte blocks. The default on UNIX is 126 blocks. The maximum
blocking factor is 512 blocks.

-c

 Optional. Provides a clean-up handler if you use Control-C to exit the utility.

-f backup_file

Required. Specifies a file or tape device that contains a backup image from which
to restore databases. You can specify the -f option one or more times.

On UNIX systems, you can specify -f - (hyphen) to indicate stdin.

-I input_file

Optional. In addition to specifying the database translation pair on the command
line, you can use this option to specify the paths of the source and target files in
input_file, a separate input file. Each line in the input file must consist of one
208 Managing ObjectStore

Chapter 4: Utilities
path name. The first line should indicate the source of the database as recorded in
the backup image. The next line should indicate the target path — that is, the path
name for the database after it is restored.

The -I option provides an alternative to listing database translation pairs on the
command line and is useful when you want to list more pairs than can be
accomodated on the command line . For more information, see the description of
the pathname_translation argument to osrestore.

-n

Optional. Normally, if a directory is specified as a source for osrestore, all
databases in the directory and its subdirectories are restored. Including the -n
option limits the operation to databases in the named directory.

-0 (zero)

Optional. Restores the database image specified with the -f flag, then exits. There
is no prompt for additional volumes.

-o output_file

Optional. Redirects output to output_file.

-p

Optional. The -p (permissions) option causes osrestore to restore database
permissions for the rawfs stored in the archive log file for the database being
restored.

-s size

Optional. Specifies the size a chunk of data should be when restoring the target
database. size is a number optionally appended with k or m to indicate kilobytes
or megabytes. For example, -s 1024k and -s 1m both specify a maximum buffer
size of 1 MB. If no unit is specified, k is presumed. The default value and
minimum value is 512 KB. The maximum value is 1024 KB.

-S exec_command_name

Optional. Specifies the path of a command to be executed when the osrestore
utility reaches the end of the media. This command should mount the next
volume before returning. The exit status from this command must be 0 or the
restore operation aborts.

-t

Optional. Displays a list of databases in the backup image.

-T seconds

Optional. Specifies the network timeout value. The value seconds is the amount
of time. By default the value is the number of seconds, but m, h, or d can be
appended to to the value to specify minutes, hours, or days, respectively. For
example, -T 60 and -T 1m both specify a timeout value of one minute. The default
timeout value is 10 hours.
Release 6.3 209

Description
ObjectStore applications cannot access databases that are being restored until the
entire restoration process has finished.

Specify a pathname_translation when you want to restore

• One or more, but not all, databases in the backup image to their original locations

• One or more databases in the backup image to locations other than their original
locations

Restore
procedure

To restore databases, begin with a level 0 backup image. The osrestore utility
prompts for incremental backup images you might want to apply after this. Not all
incremental backups need to be applied. To determine which incremental backups
to apply, list the backup levels in chronological order, starting with the level 0
backup. For example, suppose you performed the following backups:

• Level 0 backup on Monday

• Level 5 on Tuesday

• Level 6 on Wednesday

• Level 2 on Thursday

• Level 4 on Friday

Your list would look like this: 0, 5, 6, 2, 4.

Scanning the list from right to left, find the lowest incremental backup level greater
than 0, in this case, the level 2 backup made on Thursday. To restore databases to
their state as of the backup on Friday, apply the level 0 backup and the incremental
backups made at levels 2 and 4, in that order.

Block size The block size must be 512 bytes or less. The osrestore utility cannot work when
the block size is greater than 512 bytes.

Comparing
databases

You might want to have two copies of the same database for verification purposes: a
restored version and the original version. Following is a sample command line for
doing this. In this example, backup.img contains foo::/db. The path name
translation does the job in one step.

osrestore -f backup.img foo::/db foo::/restore.db

Windows to
UNIX path
name
translation
example

You must specify a path name translation when you restore or recover data on an
architecture that is different from the architecture on which you are restoring the
data. An example is a Windows to UNIX path name translation. The backup image
being restored is /tmp/my.img. The interaction is on a UNIX system. You need not
do anything special when you make the backup on the Windows system.

In the first interaction, the command line specifies the -t option, which instructs the
osrestore utility to list the databases in the specified backup image. Nothing is
actually restored. The only database in the backup image is mckinley:e:\r4tsd_
data\arch.0. This is a Windows database, and the following example shows that
the osrestore utility on a UNIX system translates it to mckinley:e:/r4tsd_
210 Managing ObjectStore

Chapter 4: Utilities
data/arch.0. The utility automatically translates backslashes (\) to forward slashes
(/).

% osrestore -f /tmp/my.img -t
Recovering from volume #1 (/tmp/my.img)...
mckinley:e:/r4tsd_data/arch.0
Closing volume #1 (/tmp/my.img).
%

In the second interaction, the command line specifies the path name translation
mckinley:e:/r4tsd_data/ /recovery. This instructs the osrestore utility to copy
all files in the backup image in the mckinley:e:/r4tsd_data/ directory to the
/recovery directory on the local machine. In this example, this is only arch.0.

% osrestore -f /tmp/my.img mckinley:e:/r4tsd_data/ /recovery
Recovering from volume #1 (/tmp/my.img)...
Restoring 3175 sectors to database "vancouver:/recovery/arch.0"
Recovered to time Fri Mar 3 14:07:24 1999

Do you wish to restore from any additional incremental backups?
(yes/no):
no
Closing volume #1 (/tmp/my.img).
%

Examples
The following examples illustrate some uses of osrestore. Although it is not shown,
osrestore prompts you to indicate whether you want to restore from incremental
backups. The examples are UNIX examples; however, they would be the same on
any platform, except for the file name format.

The following example displays a list of databases in the backup.img backup image:

% osrestore -t -f /backup.img
::eudyp:/test/
::eudyp:/test: data1.odb data2.odb data3.odb
::cleopat:/results/
::cleopat:/results: r1.odb r2.odb r3.odb

The following example indicates that the backup image contains six file databases.
Three are in the /test directory; they were backed up on host eudyp. Three are in
the /results directory; they were backed up on host cleopat.

This example shows how to copy backups to new servers. It restores all databases on
server eudyp to server kellen, and all databases on server cleopat to server eudyp:

% osrestore -f backup.img eudyp:/ kellen:/ cleopat:/ eudyp:/
restoring "::eudyp:/test/data1.odb" to "::kellen:/test/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::kellen:/test/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::kellen:/test/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::eudyp:/results/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::eudyp:/results/r2.odb"
restoring "::cleopat:/results/r3.odb" to "::eudyp:/results/r3.odb"

The next example shows how to change servers and directories. It restores all
databases in the /test directory on server eudyp into the /test-copy directory on
server kellen:

% osrestore -f backup.img eudyp:/test kellen:/test-copy
Release 6.3 211

restoring "::eudyp:/test/data1.odb" to
"::kellen:/test-copy/data1.odb"
restoring "::eudyp:/test/data2.odb" to
"::kellen:/test-copy/data2.odb"
restoring "::eudyp:/test/data3.odb" to
"::kellen:/test-copy/data3.odb"

The next example shows how to restore a single database. It restores the database
eudyp:/test/data1.odb to /tmp:

% osrestore -f backup.img eudyp:/test/data1.odb eudyp:/tmp
restoring "::eudyp:/test/data1.odb" to "::eudyp:/tmp/data1.odb"

The next example illustrates restoring to a source, with one exception. It restores
everything in the /test directory on server eudyp to its original location, except
data1.odb. This database gets restored in the /example directory on server
cleopat. In this example, the order of the path name translations is important.
Specify specific path names before you specify directories that include those path
names.

% osrestore -f backup.img eudyp:/test/data1.odb \
cleopat: /example eudyp:/test eudyp:/test
restoring "::eudyp:/test/data1.odb" to "::cleopat:/example/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::eudyp:/test/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::eudyp:/test/data3.odb"

The following example illustrates restoring to the source. It restores the entire
backup image to its original location.

% osrestore -f backup.img
restoring "::eudyp:/test/data1.odb" to "::eudyp:/test/data1.odb"
restoring "::eudyp:/test/data2.odb" to "::eudyp:/test/data2.odb"
restoring "::eudyp:/test/data3.odb" to "::eudyp:/test/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::cleopat:/results/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::cleopat:/results/r2.odb"
restoring "::cleopat:/results/r3.odb" to "::cleopat:/results/r3.odb"

The following illustrates restoring everything to a local directory. It restores the
entire backup image into the /examples directory on the local host (twinkie).

% osrestore -f back.img eudyp:/test \ /examples cleopat:/results
/examples
restoring "::eudyp:/test/data1.odb" to
"::twinkie:/examples/data1.odb"
restoring "::eudyp:/test/data2.odb" to
"::twinkie:/examples/data2.odb"
restoring "::eudyp:/test/data3.odb" to
"::twinkie:/examples/data3.odb"
restoring "::cleopat:/results/r1.odb" to "::twinkie:/examples/r1.odb"
restoring "::cleopat:/results/r2.odb" to "::twinkie:/examples/r2.odb"
restoring "::cleopat:/results/r3.odb" to "::twinkie:/examples/r3.odb"
212 Managing ObjectStore

Chapter 4: Utilities
osrm
The osrm utility removes databases and rawfs links from servers.

Syntax
osrm options pathname...

Note that you cannot concatenate options with the osrm utility — that is, osrm -r
-f is acceptable, but osrm -rf is not.

Argument pathname...

Specifies the file or rawfs database or directory, or rawfs link, that you want to
remove. You can specify one or more, and you can specify both file and rawfs
databases and directories and rawfs links in the same operation. You must specify
the -r option if you want to remove a rawfs directory.

Options -f

Forces execution of the utility and does not display an error message if the
specified database is not found or cannot be removed. This option is required
when you want to remove nondatabase files from the native file system.

-i

Specifies interactive mode. ObjectStore prompts you to confirm for each specified
database that you really want to remove it.

-r

Recursively removes all databases in the specified directory.

Description
To remove a database, you must have write permission to its directory, but you need
not have write access to the database itself.

If you specify more than one database to be removed and for some reason
ObjectStore cannot remove at least one of the databases, ObjectStore does not remove
any of the databases.

If a database is open when you remove it with the osrm utility, ObjectStore does not
actually remove it until it is closed. Transactions can update the removed database
until the database is closed.

For file databases, the osrm utility calls the native remove utility.

Wildcards The osrm utility can perform wildcard processing using regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX systems, when you are operating on a rawfs database, you must enclose
the wildcard in quotation marks (" ") or precede it with a backslash (\) to keep the
shell from interpreting the wildcard as a shell wildcard.

API See os_dbutil::remove() on page 189 in the C++ A P I Reference.
Release 6.3 213

osrmdir
The osrmdir utility removes a directory from the rawfs.

Syntax
osrmdir directory

Argument directory

Specifies the path of the directory that you want to remove from the rawfs.

Description
If you want to remove a directory from the rawfs, the directory must be empty. Also,
you must have write permission for the parent directory. You do not need write
permission for the directory you are removing.

You also can use osrmdir to remove a local directory. When you specify a local
directory, you cannot specify a remote file-server host in the path name of the local
directory. The osrmdir utility passes the operation to a local native utility. If you
specify a remote file-server host name, ObjectStore informs you that you specified an
illegal path name.

Wildcards The osrmdir utility can perform wildcard processing using regular expression
wildcards *, ?, { }, and [].

UNIX On UNIX, you must enclose the wildcard with quotation marks (" ") or precede it
with a backslash (\) to keep the shell from misinterpreting the asterisk as a shell
wildcard.

API See os_dbutil::rmdir() on page 189 in the C++ A P I Reference.
214 Managing ObjectStore

Chapter 4: Utilities
osscheq
The osscheq utility compares two schemas.

Syntax
osscheq [-quiet] db1 db2

Arguments db1 db2

Specifies the paths of the two databases you want to compare. Each database can
contain an application schema, a compilation schema, or a database schema. If the
database contains a database schema, it can be local or remote.

Options -layout_only

Specifies that you want to compare the databases only on the basis of the layouts
of their persistent objects.

-quiet

Returns a value of 0 if the databases are compatible and a nonzero value if the
databases are not compatible. When you do not specify this option, the utility
displays messages explaining why the schemas are different. There is no other
output.

Description
The osscheq utility is useful when you suspect that a change to a schema causes it
to be incompatible with the other schemas in an application. It is best to detect an
incompatibility as early as possible. When schemas are not compatible, execution of
the application fails because of a schema validation error.

Comparison
technique

The comparison technique depends on the types of schemas being compared. When
osscheq compares compilation, library, application, or component schemas,
ObjectStore uses the technique used by the schema generator to build the schemas.
When one of the schemas being compared by osscheq is a database schema, the
comparison technique is the same as that used to validate an application schema
when the application accesses a database.
Release 6.3 215

Examples
Suppose the database test1 contains the following definition for C:

class C {
 int del ;
 int mod ;
} ;

Database test2 defines C as follows:

class C {
 int add ;
 char* mod ;
} ;

Invoke the osscheq utility as follows:

osscheq test1 test2

The result is the following output:

The following class definitions in test1 and test2 were inconsistent:
C (C.del was deleted, the type of C.mod changed (from int to char*),
and C.add was added)

Schema checking done by the schema generator is a stricter form of checking than
that used to validate an application against a database. The latter form of checking is
the minimal checking required to ensure that the application and the database use
the same layout for all shared classes.
216 Managing ObjectStore

Chapter 4: Utilities
osserver
The osserver utility starts the server. Starting the server varies from platform to
platform. See Chapter 7, Managing ObjectStore on UNIX, on page 299, or Chapter 8,
Managing ObjectStore on Windows, on page 317, for information about starting the
server on the respective platforms.

Note Server error messages are routed to %OS_TMPDIR%\OSSERVER.TXT (Windows) or
/tmp/oss_out (UNIX); for more information, see “Finding Files Containing
ObjectStore Messages” in Chapter 7, Managing ObjectStore on UNIX, on page 299,
or Chapter 8, Managing ObjectStore on Windows, on page 317.

Syntax
osserver options

Options Ordinarily, you use server parameters to control the way the server functions.
However, you can also specify options when you execute the osserver utility.

-c

Performs a checkpoint by forcing all data to be propagated from the log to the
database. The server does not start after this checkpoint.

-con or
-console

(Windows only) Runs the server as a console-mode application. You cannot use
this option as a Start Parameter for a Service.

-d int

Starts the server in debug mode. Specify an integer from 1 through 9. The larger
the number, the more information ObjectStore provides. You also can specify the
-F or -con option so that ObjectStore displays the information on the screen.

ObjectStore copies debug output to the standard server output file as well as
standard output.

-F

(All platforms except Windows) Runs the server as a foreground process.
ObjectStore displays the information on the screen. This reverses the normal
behavior, in which the server runs as a background process.

When it is run without -F, osserver returns 0 from a successful startup of the
background daemon; otherwise it returns 1.

-hostname logical_hostname

Specifies a logical host name. If the server is started with the -hostname option on
the command line and logical_hostname does not specify the local host, the
server does not listen to local network ports, only IP ports. The logical host name
must be defined in the appropriate network directory, such as DNS.

If you are using a cluster operating system, each osserver process must be started
with the -hostname option so that each osserver process knows its logical host
Release 6.3 217

name. When the cluster operating system moves the osserver process to another
cluster node, it also moves the logical host name to the new node; see Cluster-
Managed Failover on page 288.

-i

If you have a rawfs, this option initializes the rawfs and the server log file if it is
in the rawfs, with a confirmation prompt. In the absence of a rawfs, this option
initializes the server log file, with a confirmation prompt. Note that the server
does not start after this initialization.

Caution Use this option carefully. Initializing a log file that contains unpropagated data
will prevent that information from being propagated to the databases and can
result in a corrupted and unusable database. Using -i to initialize the rawfs will
also delete any databases in the rawfs.

-I

This option is the same as the -i option, but without the confirmation prompt.
That is, if you have a rawfs, this option initializes the rawfs and the server log file
if it is in the rawfs. In the absence of a rawfs, this option initializes the server log
file. Note that the server does not start after this initialization.

Caution Use this option carefully. Initializing a log file that contains unpropagated data
will prevent that information from being propagated to the databases and can
result in a corrupted and unusable database. Using -I to initialize the rawfs will
also delete any databases in the rawfs.

-M

“Mend” the rawfs file system by deleting any databases that are so badly
corrupted that they would prevent the server from starting up.

Caution Use this option carefully. Contact Technical Support if you think you need to use
it.

-p pathname

(UNIX only.) Specifies a file containing server parameter settings that override the
default settings. If you do not specify this option, ObjectStore uses the default
parameter file $OS_ROOTDIR/etc/host_server_parameters, where host is the
name specified with the -hostname or -server_name option, or is the name of the
host machine on which this osserver process is running.

-r registry_location

(Windows only.) Specifies the Windows registry location relative to HKEY_LOCAL_
MACHINE\SOFTWARE where the server should look for server parameters. If the -r
option were followed by the string my_location, the server would look in the
following location:

HKEY_LOCAL_MACHINE\SOFTWARE\my_location\Server

By default, the registry location for ObjectStore is:

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore 6.0
218 Managing ObjectStore

Chapter 4: Utilities
For information about using the -r option, see Changing the Registry Location for
ObjectStore (Windows Only) on page 325.

-ReallocateLog

Reallocates (that is, deletes and recreates) the server transaction log file. The
server does not start after this reallocation.

Caution Use this option carefully. Reallocating a log file that contains unpropagated data
will prevent that information from being propagated to the databases and can
result in a corrupted and unusable database. Call Technical Support for
assistance.

-server_name logical_server_name

Specifies a logical server name. The -server_name option tells the osserver
process its logical server name. Use this option when running four osserver
processes with ObjectStore-managed failover; see Four osserver Processes, Two
Logical Servers on page 287. The logical server name must be defined for clients
in a locator file, as described in SERVER Declaration (ObjectStore-Managed
Failover Only) on page 294.

-upgradeRAWFS

Use this option when enabling or disabling ObjectStore-managed failover. When
enabling failover, run osserver with this option to add a heartbeat either to the
heartbeat file or to a rawfs partition. If you want to reconfigure ObjectStore
without failover and the heartbeat is stored in a rawfs partition, you must run
osserver with this option to remove the heartbeat.

For more information, see Restarting the Server (ObjectStore-Managed Failover
Only) on page 290 and Removing Failover (ObjectStore-Managed Failover Only)
on page 293.

-v

Displays server parameter values at startup.

Description
The osserver utility starts an ObjectStore server. After starting, the server displays
the message Server started on the system (host) console to let you know that it is
ready to accept requests from clients on the network.

Initializing the Transaction Log
When using -i, -I, or -ReallocateLog to initialize the transaction log, be sure to
move all data out of the log before initializing it; see ossvrchkpt on page 241.

When you specify -i, ObjectStore responds with the following:

You have asked for initialization which will create a new transaction
log, deleting any old log that might exist, thus destroying any
recovery data in the old log. This might leave some file databases in
a broken state. Are you sure that you want to create a new log?

When you specify -I, this message does not appear.
Release 6.3 219

When you initialize the transaction log, anything in the log is lost. The server resizes
the log to the values specified by the Log Data Segment Initial Size and Log
Record Segment Initial Size server parameters. This action frees space for use
by other files.

Initializing the rawfs
If you have a rawfs, specifying the -i or -I option with osserver initializes the
rawfs and also the transaction log if it is in the rawfs. Be sure to back up all data in
the rawfs before initializing it; see osbackup on page 143.

When you specify -i, ObjectStore responds with the following:

The entire ObjectStore file system on this host is about to be
initialized, thus destroying any data currently in it. Unless you have
a backup of the ObjectStore file system, it will be impossible to
recover the old contents once the initialization is started. Are you
sure that you want to reinitialize the ObjectStore file system?

When you specify -I, this message does not appear.

Note that if you run osserver with -i or -I and you do not have a rawfs, osserver
initializes only the transaction log.

Debug Mode
Running the server with the -d option (debug mode) will impact the server’s
performance but has no other effect on clients. You should run the server in debug
mode only when you are experiencing a problem, especially when you plan to
contact Technical Support about a server problem. In most cases, specify -d 9 so you
can obtain all possible debug information.

When you no longer need the debug output, shut down the server and restart it
without the debug option or run ossvrdebug 0 to turn off debug mode. For more
information, see ossvrdebug on page 244.

Platform Information
For platform-specific information about the osserver utility, see the following:

• UNIX: Starting the Server on page 302

• Windows: Starting the Server on page 319
220 Managing ObjectStore

Chapter 4: Utilities
ossetasp
The ossetasp utility patches an executable so that it looks for its application schema
in a database that you specify.

Syntax
ossetasp {-p executable_file | path_of_executable db_path}

Arguments path_of_executable

Specifies the path of an executable. On Windows systems, this can also be the path
name of a DLL. On UNIX systems, path_of_executable can be the path name of
a shared library.

db_path

Specifies the path of an application schema database. ObjectStore patches the
specified executable so it uses this application schema.

Option -p executable_file

Instructs ossetasp to display the path name of the specified executable’s
application schema database.

Description
When the schema generator generates an application schema, ObjectStore stores the
actual string given as the -asdb argument to ossg (or the -final_asdb argument, if
specified). When the application starts, it uses that string to find the application
schema database.

When you move or copy an ObjectStore application to a machine that is not running
a server, leave the application schema database on the server host. Normally, the
application schema database must be local to the server.

After you copy or move an application to another machine, you must patch the
executable to enable it to find the application schema database. Run the ossetasp
utility with the absolute path name of the application schema database. Be sure to
specify the name of the server host.

Instead of patching the executable, you can use one of the following environment
variables:

• OS_SCHEMA_PATH

• The platform-dependent variables PATH, LD_LIBRARY_PATH, LD_LIBRARYN32_
PATH, LIBPATH, or SHLIB_PATH

• OS_LIBDIR

A locator file allows a database and its application schema to be on a machine other
than the server host. See Chapter 5, Using Locator Files to Set Up Server-Remote
Databases, on page 265.
Release 6.3 221

Windows On Windows systems, you can perform the ossetasp utility on any EXE or DLL that
contains a schema (that is, that has a schema object file produced by ossg linked into
it).

API See objectstore::get_application_schema_pathname() on page 64 and
objectstore::set_application_schema_pathname() on page 83 in the C++ A P I
Reference.
222 Managing ObjectStore

Chapter 4: Utilities
ossetrsp
The ossetrsp utility specifies a new path name for the schema associated with a
particular database.

Syntax
ossetrsp {-p | schema_db_path} db_path

Arguments schema_db_path

Specifies a new path name for the schema database used by the database specified
by db_path.

db_path

Specifies the path name of a database whose schema database path name you
want to either change or display.

Option -p db_path

Displays the path name of the schema database used by the database specified by
db_path, if db_path is a database that stores its schema remotely. If it is not,
ObjectStore displays a message informing you that db_path is not a database
whose schema is stored in another database.

Description
A database can store its schema in a separate schema database. The schema database
contains all schema and relocation metadata. The main database contains everything
else.

When needed If you move the schema database, you must execute ossetrsp or use os_
database::set_schema_database() to inform ObjectStore of the schema
database’s new path name.

If you copy the schema database with an operating system command or an
ObjectStore utility, you can execute ossetrsp or use os_database::set_schema_
database() to inform ObjectStore of the schema database’s new path name.

You cannot associate an entirely new schema database with the main database. You
can only change the path name of the original schema database by moving or
copying the original schema database.

API See os_database::get_schema_database() on page 160 and os_database::set_
schema_database() on page 169 in the C++ A P I Reference.
Release 6.3 223

ossevol
The ossevol utility modifies a database and its schema so that it matches a revised
application schema. It handles many common cases of schema evolution. For more
complicated evolutions, including the cases ruled out in this section, see Chapter 7,
Advanced Schema Evolution, in the Advanced C++ A P I User Guide.

Use osbackup
first

Running the ossevol utility changes the physical structure of your database.
Consequently, you should back up your database before you run the ossevol utility
and work on a copy of the database.

You can restart ossevol if it is interrupted (by a system crash, for example) and it
will resume, using a checkpoint stored in the work database.

Syntax
ossevol workdb new_schema.adb evolvedb ... options

Arguments workdb

Specifies the name of a scratch file that ossevol uses as a workspace; you can
delete this file after ossevol has finished successfully.

new_schema.adb

Specifies the name of the revised and regenerated application schema database.

evolvedb

Specifies the name of the copy of the database to be evolved, which ossevol
modifies to become the evolved database. The names of multiple affiliated
databases that share the same schema can be specified here.

 Options Numeric values can be in decimal or hexadecimal format. Hexadecimal values must
be prefixed by the characters 0x.

-address_space_release_interval interval

Controls the frequency of address-space releases, in units of bytes. Specify a
smaller value for more frequent releases, a larger value for less frequent. The
default value is displayed when you run ossevol with no arguments.

This option is useful when you want to prevent schema evolution from running
out of address space while executing transformer functions.

-classes_to_be_removed class_name ...

Specifies the names of the classes to be removed. Separate class names with a
space.

-dll_schema pathname ...

Specifies the paths of component schema databases to be used in addition to the
new application schema. Use spaces between multiple path names.

-drop_obsolete_indexes { yes | no }

Specifies whether obsolete indexes encountered in the course of the evolution
should be dropped. When this option is set to no, the ossevol utility stops with
224 Managing ObjectStore

Chapter 4: Utilities
an error if it encounters an obsolete index. The default is no, obsolete indexes are
not dropped.

-explanation_level n

Specifies the level of debugging information output by ossevol. The argument n
must be an integer between 0 and 4, which have the following meanings:

- 0 — Do not output debugging information (default).

- 1 — Output phase-level information for each cluster, segment, and database
that is evolved.

- 2 — Output information about all types in the database.

- 3 — Output information about objects with transformers.

- 4 — Output all possible debugging information.

Note that the levels of information are accumulative: each level includes all
information at the previous levels.

-malloc_size size

Specifies the malloc size in KB for the relocation map. The default is 1024. This
option is rarely used.

-maplet_size size

Specifies the maplet size in bytes of the relocation map. The default is 64. This
option is rarely used and is dangerous.

-max_bytes_wasted_to_avoid_page_boundary size

Specifies that you want schema evolution to avoid placing objects across page
boundaries in the evolved database. This applies to objects that the utility moves
because they have changed or because other objects have changed. When schema
evolution avoids a page boundary, the utility inserts a free region and leaves some
bytes on the page unused.

Replace size with the maximum number of bytes that it is okay to leave unused
on a page. When the utility would leave more than size bytes free in order to
avoid allocating an object across a page boundary, it does not avoid the page
boundary. You can specify a value of 0 through 4095 for size. Avalue of 0 disables
this feature. The default is that schema evolution does not avoid placing objects
across page boundaries.

Note: In the context of this option, all pages are server pages, which are always 4K
in size. It does not matter what platform the server is running on.

-maximum_cluster_size max_size_bytes

This specifies that clusters larger than the size represented by max_size_bytes
will be split into multiple clusters. The value of max_size_bytes is rounded up
to the next multiple of 64 KB. The default is to split any cluster that exceeds 1600
MB.

Note that some ObjectStore collections manage an internal cluster that will not be
split because the internal clusters maintain data structures that cannot be split
Release 6.3 225

across multiple clusters. Examples of collections that maintain internal clusters
are os_set, os_Set, os_bag, os_Bag, os_Dictionary, and indexes.

-memory size

Specifies the maximum memory size in MB to use for the pointer relocation map.
The default is half the main memory or half the virtual memory, whichever is
smaller.

-prefetch size

Specifies the maximum size in KB of data to prefetch. The default is 1024 and
provides good performance on most hardware.

-resolve_ambiguous_void_pointers { yes | no }

Resolves ambiguous void pointers to the outermost enclosing collocated object
(yes). A void pointer is ambiguous if schema evolution cannot determine
whether it points to an object or to the first data member within the object. When
this option is set to no, the ossevol utility stops with an error if it encounters an
ambiguous void* pointer. The default (no) is not to resolve ambiguous void
pointers.

-secondary_psr_size size

Specifies the size in MB of the secondary sessions’ persistent storage region (PSR).
The default is 16. Increase this over the default in the unlikely event that you run
out of address space (for example, if you have an extremely large schema).

-task_list filename

Specifies that the ossevol utility should produce a task list and place it in the file
specified by filename. Use a hyphen (-) for stdout. When you specify this
option, ObjectStore does not perform schema evolution.

The task list consists of pseudofunction definitions that indicate the way the
migrated instances of each modified class would be initialized. This allows you to
verify the results of a schema change before you migrate the data.

-threads number_threads

Specifies the number of threads to use. The default is 1.5 times the number of
CPUs in the system (rounded up). The default provides good performance on
most hardware if there is no other significant load on the system.

You may need to decrease the number of threads when running on a system with
many processors but a small persistent storage region (PSR) size. Using too many
threads can cause the PSR size for the main thread to be too small, causing address
space exhaustion. It is acceptable to restart an interrupted schema evolution while
specifying a different number of threads. You can increase the address space
available to the main thread by decreasing the number of threads, by decreasing
the address_space_release_interval, or by setting the environment variable
OS_AS_SIZE to a larger number.

Description
226 Managing ObjectStore

Chapter 4: Utilities
Changes can
include

You can use the ossevol utility to evolve the following changes:

• Adding or deleting the first or last virtual member function

• Reordering data members

Changes
cannot include

You cannot use the ossevol utility to evolve changes that include

• User-defined transformer functions

• Any exception-handling code not handled by ossevol command-line options

• A pointer-to-member that points to a member of a virtual base class

• Untranslatable pointer handlers

Changes might
include

You might be able to use the ossevol utility to evolve the following changes. In each
item, the information after the first sentence indicates reasons that the ossevol
utility might not be able to perform the evolution.

• Deleting obsolete classes or instances. Deleting an object might require
modification of data belonging to another object, such as a counter.

• Adding or deleting base classes. When adding base classes, you might want some
data members to be initialized with a value other than 0. When deleting base
classes, you might want another effect.

• Adding or deleting a data member (also indexable data members). When adding
a data member, you might want it to be initialized to something other than 0.

• Changing the type of a class member. Depending on the type you are changing to,
there might be a requirement for some transformations that cannot be done
automatically.

Changes not
requiring
schema
evolution

These changes do not require schema evolution:

• Adding a new class. However, if you add a nested class on Windows platforms
and the alignment of the enclosing class is smaller than the alignment of the
nested class, schema evolution is required.

• Changing member access (private, protected, or public).

• Changing an integer data member to or from signed or unsigned.

• Changing a data member to const from non-const, and vice versa.

• Adding or deleting static data members.

Except on Windows, the following two changes do not require schema evolution. On
Windows, these two changes require schema evolution in some cases. You receive a
schema validation message when you access the database with the new schema. This
indicates that schema evolution is required.

• Adding or deleting nonvirtual member functions

• Adding or deleting virtual member functions (other than the first or last)

Changes
requiring
transformer
functions

These changes require application-specific transformer functions:

• Renaming a data member

• Initializing instances of a new data member from data members of existing
instances
Release 6.3 227

• Making a nonindexable data member indexable, and vice versa

• Adding a data member that is a C++ reference or a const

• Moving data members to or from a derived or base class

• Reinitializing user-defined structures containing values that are addresses of
evolved instances

Schema
protection

If you are developing an application and will run this utility on a protected schema
database, ensure that the correct key is specified for the environment variables OS_
SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH. If the correct key is not specified for
these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

If you deploy an application in which your end users will need to use the ossevol
utility on databases protected by a schema key, you must supply them with an
application that uses the ObjectStore schema key API to set the correct schema key
and then os_schema_evolution::evolve(). End users need not know anything
about the key.

For more information about protecting a database with schema keys, see Restricting
Access with Schema Keys in the C++ A P I User Guide.

Schema
evolution API

For complete information about the schema evolution API, see os_schema_
evolution on page 331 in the C++ A P I Reference and in Chapter 7, Advanced
Schema Evolution in the Advanced C++ A P I User Guide. For information about using
the ossevol utility on an ObjectStore Java database while an application is
attempting to access objects stored in the database, see the Java API User Guide,
Chapter 6 (“Storing, Retrieving, and Updating Objects”), the section entitled
“Caution about Retaining Unexported Objects”.

Very large
databases

See Advanced C++ A P I User Guide, Evolving or Compacting Very Large Databases.
228 Managing ObjectStore

Chapter 4: Utilities
ossg
The ossg utility is the ObjectStore schema generator. See Building C++ Interface
Applications for complete information about how to use ossg and for a variety of
examples.

Syntax
The syntax for the schema generator utility, ossg, varies according to the kind of
schema being generated.

Application or component:

ossg [compiler_options] [neutralizer_options] [-cpp_fixup]
[-E] [-final_asdb final_app_schema_db] [{-mrlcp | -mrscp}]
[-no_default_includes] [-no_weak_symbols]
[-rtdp {minimal | derived | full | maximal}]
[-store_member_functions] [-weak_symbols]
{-assf app_schema_source_file | -asof app_schema_object_file.obj}
-asdb app_schema.adb schema_source_file [lib_schema.ldb ...]

Library:

ossg [compiler_options] [neutralizer_options] [-cpp_fixup]
[-mrscp] [-no_default_includes] [-store_member_functions]
-lsdb lib_schema.ldb schema_source_file

Compilation:

ossg [compiler_options] [neutralizer_options] [-cpp_fixup]
[-mrscp] [-no_default_includes] [-store_member_functions]
-csdb comp_schema.cdb schema_source_file

Argument schema_source_file

Specifies the C++ source file that designates all the types you want to include in
the schema. It should include all classes that the application uses in a persistent
context.

This argument is almost always required; there is no default. The schema source
file is not required when you use a compilation schema to generate an application
schema.

Also, you can omit the schema source file if you are generating an application
schema and you specify one or more library schemas that contain all persistent
types that your application uses.
Release 6.3 229

Options compiler_options

Specifies any options that would be passed to the compiler if you were compiling
a schema source file instead of generating schema from it. You should include any
preprocessor options, such as include file paths and macro definitions, as well as
compiler options that might affect object layout, such as packing options (for
example, /Zp4 for Visual C++).

If you specify the /I, -I, /D, or -D option, do not include a space between the
option and the argument. For example, on Windows the following is correct:

ossg /I%OS_ROOTDIR%\include ...

On UNIX, do not specify the -o option on the ossg command line.

On Windows, do not specify /Tp on the ossg command line.

neutralizer_options

Include any of the options described in Neutralization Options on page 235. These
options allow you to neutralize a schema for a heterogeneous application. You can
include them in any order.

-cpp_fixup

Allows preprocessor output to contain spaces inside C++ tokens. Specify this
option if your preprocessor inserts a space between consecutive characters that
form C++ tokens. For example, if your preprocessor changes :: to : :, you can
specify this option so that the schema generator allows the inserted space and
correctly reads the preprocessor output.

It is possible to generate an application schema from a compilation schema and
library schemas. In this case, you do not need this option because there is no
source code input to the schema generator, which means that the preprocessor is
not involved.

If this option is not specified, the default is that ossg does not allow a space in a
C++ token such as :: or .*.

-E

Causes ossg to preprocess the schema source file and send the preprocessed
output to standard output. This option is useful for debugging ossg parsing
problems because it allows you to see the results of any preprocessing. It is also
useful when reporting ossg problems to Technical Support representatives
because it allows the problem to be reproduced by Technical Support without the
need to package your application’s include files.

When you specify the -E option, you cannot specify schema databases on the
same command line. You can specify only the schema source file and
preprocessor switches.

-final_asdb final_app_schema_db

Specifies a location for the application schema database that is different from the
location you specify with the -asdb option. The schema generator writes the
location you specify with the -final_asdb option into the application schema
230 Managing ObjectStore

Chapter 4: Utilities
source file (application schema object file for Visual C++). Use this option when
you cannot specify the desired location with the -asdb option. The -asdb option
is still required. The location it specifies is where the schema generator places the
application schema.

This option is useful when you plan to store the application schema database as a
derived object in a ClearCase Versioned Object. The schema generator cannot
place the application schema database directly in a ClearCase VOB. If you specify
the -final_asdb option with the desired location, you avoid the need to run the
ossetasp utility, which patches an executable so that it looks for its application
schema in a database that you specify.

After you run ossg with the -final_asdb option, remember to move the
application schema to the database you specify with -final_asdb.

You must specify an absolute path name with -final_asdb.

If this option is not specified, the default is that the schema generator writes the
path name that you specify with -asdb in the application schema source file
(object file for Visual C++).

{-mrlcp or -make_reachable_library_classes_persistent}

Causes every class in the application schema that is reachable from a persistently
marked class to be persistently allocatable and accessible.

This option is supplied for compatibility purposes only. The use of the -mrlcp
option is discouraged. Specify -mrscp instead.

When you specify the -mrlcp option, you cannot neutralize the schema for use
with a heterogeneous application. If you are building a heterogeneous
application, you must either mark every persistent class in the schema source file
or specify the -mrscp option.

If you do not mark any types in the schema source file and you specify -mrlcp
when you run ossg, the application schema does not include any types. You must
mark at least one type for there to be any reachable types.

If this option is not specified, the default is that only marked classes are
persistently allocatable and accessible.

See also Determining the Types in a Schema in Building C++ Interface Applications.

{-mrscp or -make_reachable_source_classes_persistent}

Causes every class that is both defined in the schema source file and reachable
from a persistently marked class to be persistently allocatable and accessible.

The difference between -mrscp and -mrlcp is that when you specify -mrscp, it
applies to the schema when ossg is translating from source to schema. This allows
the schema generator to recognize those types you plan to allocate persistently.
The -mrlcp option applies to the application schema after the merging of
constituent schemas.
Release 6.3 231

The benefit of specifying the -mrscp option is that it allows you to perform a
persistent new for a type that you did not explicitly mark in the schema source file.
The drawback is greater execution time and executable size overhead.

If you do not mark any types in the schema source file and you specify -mrscp
when you run ossg, then the application or compilation schema does not include
any types. You must mark at least one type for there to be any reachable types.

If this option is not specified, the default is that only marked classes are
persistently allocatable and accessible.

See also Determining the Types in a Schema in Building C++ Interface Applications.

{-no_default_includes or -I-}

When you specify this option, ossg does not automatically specify any include
directories to the C++ preprocessor. However, the preprocessor can have default
include directories built into it and ossg does check these built-in directories.
Typically, the preprocessor uses built-in include paths to find standard include
files such as stdio.h. Except for these built-in directories, when you specify this
option, you must explicitly specify directories that contain included files.

For example, on some UNIX systems, when you do not specify this option, the
C++ preprocessor looks for include files in the /usr/include directory.

Note that if you want the schema generator to pass the ObjectStore include
directory to the preprocessor as a directory for finding included files, you must
always specify it. For example:

UNIX: -I$OS_ROOTDIR/include

Windows: /I$(OS_ROOTDIR)\include

Specifying -I- is the same as specifying -no_default_includes.

If this option is not specified, the default is that the preprocessor checks default
directories for included files.

-no_weak_symbols

Disables mechanisms that suppress notification about missing vtbls. This option
allows you to check whether any vtbl symbol referenced is undefined.

If you specify -rtdp maximal -no_weak_symbols, the linker provides messages
about what is missing. You can use this information to determine the additional
classes you need to mark. These missing symbols are only a hint about what you
might consider marking. They might also be the result of a link line error.

This default option specifies that the schema generator notify you about missing
vtbls. To change this behavior, specify the -weak_symbols option.

{-rtdp or -runtime_dispatch} {minimal | derived | full | maximal}

Specifies the set of classes for which the schema generator makes vtbls available.

minimal specifies marked classes, classes embedded in marked classes, and base
classes of marked classes.
232 Managing ObjectStore

Chapter 4: Utilities
derived specifies the minimal set plus classes that derive from marked classes
and classes embedded in the derived classes.

full specifies the derived set plus the transitive closure over base classes, derived
classes, and classes that are the targets of pointers or references. The full
specification does not include nested classes or enclosing classes unless they meet
one of the previous criteria.

maximal specifies the full set plus nested types.

If this option is not specified, the default is derived.

-suncc_550

Use this option if you are using the Forte compiler on Solaris sol2c5 or sol64
platforms and encounter compiler errors relating to that compiler’s use of the _
global, _hidden, and _symbolic language extension keywords.

-store_member_functions or -smf

Causes ossg to create an instance of os_member_function for each member
function in each class in the schema source file. It then puts these instances in the
list of class members, which includes member types and member variables.

This option is useful when you intend to use the Metaobject Protocol (MOP) to
inspect the member functions. If you are not planning to inspect member
functions, you should not specify this option because it wastes disk space.

When you use this option, additions and deletions of member functions are
schema changes and affect validation.

When you generate an application schema, you might specify a library or
compilation schema. If you want to capture the member functions from the library
or compilation schema, you must have specified the -store_member_functions
option when you generated the library or compilation schema. You must also
specify this option when you generate the application schema.

If this option is not specified, the default is that ossg generates a schema that
includes member types and member variables, but not member functions.

-weak_symbols

Enables mechanisms that suppress notification about missing vtbls. This option
overrides the default behavior described at -no_weak_symbols.

UNIX -assf app_schema_source_file

Windows -asof app_schema_object_file.obj

Specifies the name of the application schema source file or application schema
object file to be produced by ossg. On UNIX platforms, use the -assf option; the
schema generator will produce a source file that you must compile. On Windows,
use the -asof option; the schema generator will produce the object file directly.

This option is required when generating an application schema. There is no
default.
Release 6.3 233

-asdb app_schema.adb

Specifies the name of the application schema database to be produced by ossg. If
the schema database exists and is compatible with the type information in the
input files, the database is not modified.

This path name must be local to a host running an ObjectStore server.

The path name should have the extension .adb. If you want to specify an existing
application schema database with ossg, the application schema must have .adb
as its extension.

This option is required when generating an application schema. There is no
default.

-csdb comp_schema.cdb

Specifies the path of the compilation schema database to be generated by ossg.
ObjectStore Technical Support suggests that the path name end in .cdb.

This path name must be local to a host running an ObjectStore server.

This option is required when generating a compilation schema. There is no
default.

-lsdb lib_schema.ldb

Specifies the path of the library schema database to be generated by ossg. The
path name must end in .ldb.

This path name must be local to a host running an ObjectStore server.

This option is required when generating a library schema. There is no default.

lib_schema.ldb ...

Specifies the path of a library schema database. The name must end in .ldb. The
library schema database is one that you previously created with ossg.

The schema generator reads schema information from the library schema
database specified and modifies the application schema database to include the
library schema information. You can specify zero or more library schema
databases.

If this option is not specified, the default is that library schemas are not included.
234 Managing ObjectStore

Chapter 4: Utilities
Neutralization Options
-arch set

The schema that is generated or updated is neutralized to be compatible with the
architectures in the specified set. Applications running on these architectures can
access a database that has the schema.

This option is required when you are neutralizing schema. There is no default.
You can specify one of the following values of set:

- all32 — All 32-bit architectures

- all64 — All 64-bit architectures

- One of the versioned architecture set supported by ossg; see Versioned
Architecture Sets in Chapter 5 of Building C++ Interface Applications.

- Forced-order architecture set — for use when you must consider allocation
order when generating schema for applications that use virtual base classes.
For more information, see Neutralizing the Allocation Order of Virtual Base
Classes in Chapter 5 of Building C++ Interface Applications.

- A user-defined set specified by the OS_USER_ARCH_SET environment variable;
see OS_USER_ARCH_SET.

You can use ossg’s -showsets option to list the platforms supported by any of the
ObjectStore-defined architecture sets.

Note When neutralizing schema, you might have to consider allocation order when
generating schema for applications that use virtual base classes. For more
information, see Neutralizing the Allocation Order of Virtual Base Classes.

-ignore_vbo

Suppress any warnings about differences in the allocation order of virtual base
classes. For more information, see Neutralizing the Allocation Order of Virtual
Base Classes in Chapter 5 of Building C++ Interface Applications.

-nout filename or -neutral_info_output filename

Indicates the name of the file to which neutralization instructions are directed.

If this option is not specified, the default is that the schema generator sends output
to stderr.

-nor[eorg]

Prevents the schema generator from instructing you to reorganize your code as
part of neutralization.

This is useful for minimizing changes outside your header file, working with
unfamiliar classes, or simply padding formats.

When you include -noreorg, your application might not make the best use of its
space. In fact, it is seldom possible to neutralize a schema without reorganizing
classes.

When you use virtual base classes, it is very unlikely that you can neutralize your
schema when you include this option.
Release 6.3 235

If this option is not specified, the default is that the schema generator provides
reorganization instructions.

{{-pad_maximal or -padm} | {-pad_consistent or -padc}}

Indicates the type of padding requested.

-pad_maximal or -padm indicates that maximal padding should be done for any
ObjectStore-supported architecture. This means all padding, even padding that
the various compilers would add implicitly.

-pad_consistent or -padc indicates that padding should be done only if
required to generate a consistent layout for the specified architectures.

If this option is not specified, the default is -padc.

-ptn name size or -portable_type_name name size

Specifies that a type, name, has a given size, in bytes, on all architectures in the
architecture set specified with -arch. Usually, name is conditionally defined in a
typedef and it must be an integer type.

The schema generator does not flatten portable type names that are used as
template type actuals. This yields identical class names across platforms. For
example, consider the following:

 #ifdef WIN32
 typedef __int64 some_8byte_integer;
 #else
 typedef long long some_8byte_integer;
 #endif

 template<class T> class foo {};

 OS_MARK_SCHEMA_TYPE(foo<some_8byte_integer>);

This installs foo<some_8byte_integer>, which all platforms can access, into the
database schema.

-schema_options option_file or -sopt option_file

Specifies a file in which you list compiler options being used on platforms other
than the current platform. The options in this file usually override the default
layout of objects, so it is important for the schema generator to take them into
account. See Listing Nondefault Object Layout Compiler Options in Chapter 5 of
Building C++ Interface Applications for details about the content of the option file.

Optional. There is no default.

{{-show_difference or -showd} | {-show_whole or -showw}}

Indicates the description level of the schema neutralization instructions.

If this option is not specified, the default is -show_whole.

-showsets

Lists all architecture sets that can be specified as arguments to the -arch option.
Included in the listing are the names of all platforms that are members of each set.

{-wchar_t2 | wchar_t4}
236 Managing ObjectStore

Chapter 4: Utilities
Specifies the size of wchar_t to be either 2 or 4 bytes.

This option is required if a schema includes wchar_ts.
Release 6.3 237

ossize
The ossize utility displays the size of the specified database and the sizes of its
segments and clusters.

Syntax
ossize [options] pathname

Argument pathname

Specifies the file or rawfs database whose size you want to display.

Options -a

Displays the details of all internal database structures.

-A

Displays access control information.

-c

Displays the type contents for each segment. Includes the counting of free spaces.
Compare the -0 option.

-C

Displays the type contents for the entire database. Includes the counting of free
spaces.

-f

Displays a report on the fragmentation of the database specified by pathname.
Sizes are reported in kilobytes. For more information about the -f option, see
Database fragmentation on page 239.

-L transaction_log_name

For use with ObjectStore / Single only. When this option is specified, the named
file is used for the transaction log file. If a file with the name transaction_log_
name already exists, it must be a properly formed transaction log. By default,
ossize uses a temporary file.

-n segment_number

Displays information only about the segment specified as segment_number.
segment_number is a data segment number such as those displayed by the -a
(/INFO) option. This option is useful with the -o (/DEBUG) and -c (/SEGMENT)
options because it reduces the amount of output.

-o (the letter)

Displays a complete table of every object in the segment, showing its offset and
size. The data in this table can be useful in debugging. Do not confuse this with
the -0 (zero) option, described later in this list.

-sn

Displays the type summaries by the number of instances of each type.
238 Managing ObjectStore

Chapter 4: Utilities
-ss

Displays the type summaries by the space used by the instances of each type. (This
is the default.)

-st

Displays the type summaries alphabetically by type name.

-0 (zero)

Causes ossize to display the type contents for each segment, including the
internal segment 0. Compare with the -c option.

Description
The ossize utility does not distinguish persistently allocated pointers (such as
new(db) thing* or new(db) thing*[100]) as separate types. They are displayed
together.

The ossize utility displays the comment for each segment that has a comment with
a nonzero length. See os_segment::set_comment() in the C++ A P I Reference.

Schema
protection

If you are developing an application and will be running this utility on a protected
schema database, ensure that the correct key is specified for the environment
variables OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH. If the correct key is not
specified for these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

Database
fragmentation

When the ossize utility is invoked with the -f option, it produces a statistical report
on the fragmentation for three types of physical data structure within a database:

• Clusters, which refer to the disk space that holds the data (as opposed to metadata)
for a cluster.

• Metadata table directories, which point to metadata table leaves in clusters that are
large enough to need more than one leaf per table.

• Metadata table leaves, which contain per-page metadata such as free space, tags
(object type information), and PRMs (pointer reference maps).

Of the three types, clusters are the most likely to suffer fragmentation.

For each type of physical data structure, ossize displays statistical information for
those data structures. If any of the data structures is fragmented (that is, if at least
one of them is not contained entirely within a single contiguous range of disk
sectors), the report includes additional information for the fragments. Note that the
report ignores any physical data structures that are not fragmented when computing
this additional information. For example, the average number of fragments per
cluster is not biased downward by the clusters that have only one fragment; it is
really the average number of fragments per fragmented cluster.

The statistical information includes the minimum and maximum values
encountered, the average value, and an estimate of the median value. The median is
Release 6.3 239

a number such that half of the values are lower and the other half are higher. The
median is not computed exactly but is usually within 20% of the true median.
Because these distributions tend to be very skewed, with more small values than
large values, the median is often much smaller than the average.

For an example report displayed by ossize -f, see the Examples section, below. For
more information about database fragmentation, see Managing Database
Fragmentation on page 44.

API See os_dbutil::ossize() on page 185 in the C++ A P I Reference.

Examples
Rawfs database $ ossize readers.db

Name: /h/handcuff/2/ebailey/release/library/ug2/readers.db
Size: 57344 bytes (56 Kbytes)
Created: Fri Feb 5 16:23:17 1999

There is 1 root:
Name: readers Type: Reader

Affiliated databases:
/h/handcuff/2/ebailey/release/library/ug2/books.db

The schema is local.

There is 1 segment:

Data segment 2:
Size: 512 bytes (1 Kbytes)
Segment 2 has 1 cluster:
Cluster 0 size: 512 bytes (1 Kbytes)

-f example The -f option causes ossize to report fragmentation statistics for the physical
structure of the specified database. For example:

Database has 43 clusters, of which 15 (34%) are fragmented.
Cluster size min 0.5K max 2992K average 305.5K estimated median 8K
Fragments per cluster min 3 max 3944 average 1039 estimated median 23
Fragment size min 0.5K max 72K average 1K estimated median 0.5K

Database has 4 metadata table directories, of which 0 (0%) are
fragmented.
Directory size min 0.5K max 0.5K average 0.5K estimated median 0.5K

Database has 173 metadata table leaves, of which 0 (0%) are fragmented.
Leaf size min 0.5K max 6.5K average 2.5K estimated median 0.5K

This database contains many small clusters (median cluster size is 8K) as well as
some larger clusters (maximum cluster size is almost 3 MB). Some clusters are
extremely fragmented, with most fragments being only 0.5KB (the smallest possible
size) and one cluster having 3,944 fragments.
240 Managing ObjectStore

Chapter 4: Utilities
ossvrchkpt
The ossvrchkpt utility performs a checkpoint for a specified server host. It ensures
that all data is copied from the transaction log of the server host to the database or
databases that were changed.

Note If you are using ObjectStore / Single, you must us the osprop utility to perform a
checkpoint; see osprop on page 198.

Syntax
ossvrchkpt hostname

Argument hostname

Specifies the name of the host of the server whose log you want to propagate.

Description
This command does not return until the propagation is complete. It can return the
following values:

Run this utility when you want to

• Ensure that a server is restarted as quickly as possible

• Use operating system file commands such as copy or move on a file database

• Reinstall or upgrade ObjectStore

API See os_dbutil::svr_checkpoint() on page 191 in the C++ A P I Reference.

Example
ossvrchkpt hostess

In this example, data in the server transaction log on the host called hostess is
copied to the databases that were modified.

Value Meaning

0 Success.

1 There is an error when passing the command to the server.

2 The server is unable to complete the checkpoint.
Release 6.3 241

ossvrclntkill
The ossvrclntkill utility disconnects a client thread on the server running on the
specified host. This disconnects the client from the server and releases the client
locks.

Syntax
There are two forms of the ossvrclntkill utility. The second form is supported for
compatibility with earlier releases.

ossvrclntkill hostname [-h client_host] [-p client_pid]
 [-n client_name] [-a]

ossvrclntkill hostname client_pid

Argument hostname

Specifies the name of the host of the server that is connected to the client process
being disconnected.

Options -h client_host

Specifies the name of the host of the client being disconnected, as determined with
ossvrstat.

-p client_pid

Specifies an unsigned number that is the process ID of the client process being
disconnected.

-n client_name

Specifies the name of the client process being disconnected. This name is set by
objectstore::set_client_name().

-a

Specifies that all clients matching the specified criteria should be disconnected.

Description
Run the ossvrclntkill utility on the servers connected to the client that you want
to kill. This utility returns an exit code of

• 0 when the utility succeeded

• 1 when it failed

You can use ossvrstat to determine the client_host and client_pid.

Use the ossvrclntkill utility when a client that no longer exists is still attached to
the server. This can happen because of network failure or because the client process
terminates abnormally. In most cases, the operating system disconnects the client
from the servers gracefully, but some operating systems are not completely
dependable in this regard.

You must specify one or more of -h, -p, or -n. The -a option deletes all matching
clients; otherwise, a unique match is required.
242 Managing ObjectStore

Chapter 4: Utilities
If the server’s authentication is set to something other than NONE (authentication is
SYS by default), the following rule applies:

Any user can disconnect clients that the user owns. If the -a option is used (kill all
clients matching the given search pattern), the user must own all matching
processes; otherwise, authentication fails and no clients are killed.

Otherwise, no authentication is required.

API See os_dbutil::svr_client_kill() on page 191 in the C++ A P I Reference.

Example
ossvrclntkill hostess -h cupcake -a

In this example, all clients on cupcake that are attached to the server on hostess are
disconnected.
Release 6.3 243

ossvrdebug
The ossvrdebug utility turns on debug output from an ObjectStore server.

Syntax
ossvrdebug hostname n

Options hostname

Server host to be debugged.

n

Number that specifies the trace level of the server. Specify an integer from 0
through 9. The larger the number, the more information ObjectStore provides.
Specifying 0 turns the debug trace level off.

Description
The ossvrdebug utility sets the server debug trace level of the server. Using this
command is equivalent to starting the server with the -d n command-line option.
After the server receives the message from ossvrdebug to enable debugging, it sends
trace output to /tmp/oss_out (UNIX) and %OS_TMPDIR%\OSSERVER.TXT
(Windows).

API See os_dbutil::svr_debug() on page 192 in the C++ A P I Reference.

Example
ossvrdebug kellen 5

This example sets the server debug trace level of the server kellen to 5.
244 Managing ObjectStore

Chapter 4: Utilities
ossvrping
The ossvrping utility reports whether a server is running on the specified host.

Syntax
ossvrping [-v] [hostname]

Argument hostname

Specifies the name of the host on which you want to know whether a server is
running.

Option -v

Indicates that you want more information when a server is not running on the
specified host.

Exit codes The ossvrping utility has the following exit codes:

For information about failover servers, see Failover on page 285.

Description
If you are having problems with a server, first run ossvrping to see if the server is
running.

If you do not specify a host, the default is the local host.

API See os_dbutil::svr_ping() on page 193 in the C++ A P I Reference.

Example
ossvrping elvis
The ObjectStore Server on host elvis is alive.

Exit code Meaning

0 Server is running and is not a failover server.

1 No server is running.

2 No such host.

3 Internal error; report problem to Technical Support.

4 Server is running as the failover secondary server.

5 Server is running as the failover primary server.
Release 6.3 245

ossvrshtd
The ossvrshtd utility shuts down the server running on the specified host.
Shutdown occurs regardless of whether clients are connected to the server.

Syntax
ossvrshtd [-f] hostname

Argument hostname

Specifies the name of the host of the server that you want to shut down.

Option -f

Specifies that shutdown should occur without user confirmation. If you do not
specify this option, ObjectStore prompts you to confirm that you really want to
shut down the server.

Description
Before shutting down the server, run the ossvrstat utility to determine whether
there are clients using the server. If there are, notify them to exit. Note that
ossvrshtd initiates the shutdown process; it does not wait for shutdown to complete
before returning.

Clearing the log Shutting down the server automatically propagates everything in the transaction
log.

If any clients are connected to a nonfailover server when you shut it down, the next
time those clients try to contact the server, they receive the err_broken_server_
connection exception. The client can call os_server::reconnect() to try to
reconnect. If clients are connected to a failover server when you shut it down, they
will reconnect and retry automatically, as directed by the locator file. For more
information, see Locator File: FAILOVER_SERVER Declaration on page 291.

When needed ObjectStore needs to be shut down when you

• Boot or halt the host

• Modify server password or parameters

• Reallocate the server transaction log

• Add a partition to the rawfs

UNIX If the server’s authentication is set to NONE (authorization is SYS by default), you must
be the user ID that owns the running server process, or the superuser, to run this
utility.

If the server’s authentication is set to something other than NONE, ossvrshtd must be
run as root.

Cluster
operating
system

You cannot use the ossvrshtd utility to shut down a server that is running on a node
of the Sun Clusters operating system. The cluster operating system will regard the
attempt to shutdown the server with the ossvrshtd utility as a server failure and
246 Managing ObjectStore

Chapter 4: Utilities
immediately start the server up again. If you want to take the server down for
maintenance, you need to tell the cluster operating system to disable the resource by
using the Sun Management Center GUI or by running the stop_osserver script that
we supply in the EXLNossvr package.

Windows On Windows, you can shut down the server by using the Service Control Manager.
Click the Services icon in the Control Panel or issue the command net stop
"ObjectStore Server R6.0".

Starting a server For instructions for starting a server, see the chapter in this book for your platform.

API See os_dbutil::svr_shutdown() on page 193 in the C++ A P I Reference.

Example
ossvrshtd hostess
Are you sure that you wish to shut down the server
on host hostess (yes/no) [no]: yes
Release 6.3 247

ossvrstat
The ossvrstat utility displays settings of server parameters, server use meters, and
information for each client connected to the server running on the specified host.

Syntax
ossvrstat hostname [options]

Argument hostname

Specifies the name of the host of the server for which you want information.

Options -meters

Displays performance meters for the specified server.

-clients

Displays the state of each client connected to the specified server and shows those
clients, if any, that are contending for locks.

-databases

Displays information about databases that were opened by each client connected
to this server. For more information about this option, see Open Databases
Information on page 252.

-parameters

Displays server parameter values. The following parameters are not displayed if
they are not enabled: Allow NFS Locks, Allow Remote Database Access, and
Host Access List.

-rusage

UNIX only: displays server process information.

-log

Displays information about the server transaction log on the specified server. For
more information about this option, see Server Transaction Log Information on
page 253.

Description
Specifying both -meters and -clients displays the use meters for all clients, as well
as the information described above.

ObjectStore identifies each client by host name and then displays the program name
(if there is one) with the process ID on the client host. Program names are set with
objectstore::set_client_name(). When there is no program name, ObjectStore
displays default_client_name.

API See os_dbutil::svr_stat() on page 193 in the C++ A P I Reference.

Numbers are
relative

The table on the next few pages describes the ossvrstat meters. The utility supplies
high and low numbers for each. However, the numbers are entirely relative to your
248 Managing ObjectStore

Chapter 4: Utilities
application. For high and low to have meaning, run ossvrstat to determine a
baseline.

Default
invocation

If you invoke the ossvrstat utility without any options, it displays performance
meters, client information, and server parameters for the specified server.

The following table describes the performance meters that ossvrstat displays.

Meter Description

Current log size Number of sectors in the transaction log. This meter appears in the middle of
the list of server parameters because it is most useful when you are
determining the way to adjust other server parameters.

Messages received Number of messages the server has received from clients. A message can be
a request for an action such as opening a database, fetching a database page,
updating a database, committing a transaction, aborting a transaction,
closing a database, and other related actions. The number indicates how
often clients are communicating with the server. When the number is low,
the demand on the server is less.

Callback messages
sent

Number of callback messages the server sent to clients. A callback message
is the message a server sends to clientA when clientB requests data on a
page that is cached by clientA. When this number is high, it means that an
application is often modifying data that other clients want to read or modify.
This might indicate that the program is poorly designed.

Callback sectors Number of 512-byte sectors that have been called back in callback messages.
This is not necessarily the same as the number of sectors for which pages
actually have been shared or released. Also, the server might send many
callback messages but they might not be for a large number of sectors.
Usually, callbacks are for pages (4 KB or 8KB on most machines). Sometimes
the server calls back larger chunks.

Succeeded sectors Number of sectors for which the server sent a callback message and the
client that had the page(s) cached (clientA) either shared the page(s) with
clientB or relinquished the page(s) to clientB. If Callback sectors is
comparable to Succeeded sectors, you know that clients are not waiting
too long. If Succeeded sectors is much smaller, more clients are being
locked out of data they need.

KB read Number of kilobytes of data that the server sent to clients to read. Monitor
this statistic to help determine whether you need to enlarge client cache files.
Compare kilobytes read for a given client with the number of commits and
the size of the client cache file.

KB written Number of kilobytes of modified data that the clients sent to the server.
Written data is data involved in a commit. It must be buffered, and it is
logged if it cannot go directly to a database because it is not being written
past the current end of a cluster. When analysis is concerned with the
number of transactions per second, the number of kilobytes written is an
important factor.

Commits Number of committed transactions that the server knows about. If a client
does not modify data during a transaction, the client might not inform the
server that a transaction was committed. You can use this number to
estimate the number of transactions per second.
Release 6.3 249

Readonly commits Number of committed transactions that the server determined not to have
involved any data changes. Typically, the client does not inform the server
about such commits, so this number should be low. An example of this is
when the client releases ownership needed by another client. In this case, the
client sometimes performs a commit, even on a read-only transaction. Read-
only commits are like simple aborts; the cost is near zero.

Aborts Number of aborted transactions that the server knows about. If the client has
not sent any messages to the server, the client can abort a transaction
without informing the server. Most applications abort transactions only
because of lock conflicts. In this case, you can use this number to determine
the number of conflicts.

Two-phase
transactions

Number of committed transactions that involved changes to databases on
more than one server. Typically, one server is involved in a commit. A two-
phase commit requires additional overhead, so it is useful to know how
often it is happening.

Lock timeouts Number of times all clients fail to obtain a lock because a lock timeout time
is set on the client and the lock needed was not released before the lock
timeout elapsed.

Lock waits Number of times all clients had to wait to obtain a lock on a page because a
lock by another client was already in place. The utility also provides the
average time that a client waits for a lock. This appears in parentheses next
to Lock waits. ObjectStore divides the total time waiting for locks by the
number of lock waits.

Deadlocks Number of times the server chose a client to be a deadlock victim and
notified it that it had to abort a particular transaction so that other clients
could complete their transactions. If you specify -clients when you run
ossvrstat, the utility displays information about those clients that are
waiting for locks and those clients that currently have those locks.

Message buffer waits Number of times a message from a client to the server must wait to use a
message buffer. The N Message Buffers server parameter specifies the
number of message buffers that the server uses to communicate with clients.
If the number of Message buffer waits is high, consider increasing the
value specified for N Message Buffers. See N Message Buffers.

Notifies sent Number of notification messages the server sent to all cache managers for
delivery to clients on that cache manager’s host. When the values for
Notifies sent and Notifies received are both 0, ObjectStore does not
print information for these two meters.

Notifies received Number of notification messages the server received from all clients. The
server sends these messages to the cache manager on the host of the client
that the message is for. When the values for Notifies sent and Notifies
received are both 0, ObjectStore does not print information for these two
meters.

Log records Number of records written to a log record segment of the transaction log.
Each committed transaction writes a record to the log. This is a throughput
number. Space in the log is continually reused.

Meter Description
250 Managing ObjectStore

Chapter 4: Utilities
Record segment
switches

Number of times the server switches from writing commit records in one log
record segment to writing commit records in the other log record segment.

To switch segments, the server must ensure that all changes that are
recorded in the log record segment that is being switched to have been
propagated to the databases. When the server needs to switch log record
segments, if everything is not propagated, the server forces the propagations
to happen quickly.

Too large a number here indicates that the log record segments are not big
enough. You can improve performance by increasing the log record segment
initial size. See Log Record Segment Initial Size.

Flush data Number of flushes to disk of data that was in the data segment of the
transaction log. A flush ensures that the data is on the disk. It does not free
the space the data occupies in the log. ObjectStore determines when to flush
data.

Flush records Number of flushes to disk of records that were in a log record segment of the
transaction log. A flush ensures that the changes are on the disk. It does not
free the space the records occupy in the log. ObjectStore determines when to
flush records.

KB data Number of kilobytes of data that the server wrote to the data segment of the
transaction log. When this number is high, it means one of the following:

• The client is returning a lot of data to the server before transactions
commit. Data returned before commit always goes directly to the database
or the log data segment.

• More data is being returned at commit than fits in the log record buffer
and, therefore, the server wrote it to the log data segment.

This is a throughput number. Space in the log is continually reused.

KB records Number of kilobytes of records that the server wrote to a log record segment
of the transaction log. Each committed transaction writes a record to the log.
This is a throughput number. Space in the log is reused continually.

KB propagated Number of kilobytes of committed data that was propagated from the
transaction log to the database it belongs in. The server performs
propagation in small chunks that do not interfere with client activity.
Propagation can include writing to databases, flushing data and records that
are in the log and, sometimes, reading from the log data segment. After
propagation, the space that the propagated data and records occupied in the
log becomes available for new log entries.

The number of kilobytes propagated can be smaller than the number of
kilobytes written if the same data is written multiple times. ObjectStore
propagates the last modification and discards earlier modifications.

Meter Description
Release 6.3 251

Open Databases Information
Specifying the -databases option displays information about databases open by
each client for the specified server. The information is displayed in the following
format:

• First column is the ObjectStore release of the database: Release 5.x or blank.

• Second column is open mode (WRite, ReaD, or MVcc) and elapsed time since this
client opened this database.

• Third column is cache state (CW if any pages cached for write, CR if any pages
cached for read).

• Fourth column is lock state (WL if any write locks held, RL if any read locks held).

• Fifth column is transaction state (TW if written in current transaction, TR if read in
current transaction, T if there is a current transaction but it has not touched this
database as far as the server knows, blank if the server is not aware of any
transaction) followed by C if there is an MVCC conflict.

KB direct Number of kilobytes of uncommitted data that the server stored directly in
databases. A high number here is good because it means that the data did
not have the overhead of going through the log.

An efficient database-loading application should show a value of KB direct
much higher than the values of KB data, KB records, and KB propagated.

The server stores uncommitted data in the database when an application
tries to write data past the end of the database cluster in which it needs to be
stored.

Propagations Number of times the server propagated data from the log to databases. The
server moves small chunks of data each time it performs propagation. Note
that this meter increments multiple times per propagation.

If the number of propagations per second is high, the server is probably
forced to propagate for one or more of the following reasons:

• The server needs to switch log record segments but has not finished
propagating changes in the next segment. In this case, increase the log
record segment size. See Log Record Segment Initial Size.

• The log data segment is full. Check KB data to see if that is high in relation
to the size of the log data segment. If it is, increase the log data segment
size. See Log Data Segment Initial Size.

• The setting for the server parameter Propagation Buffer Size or Max
Data Propagation Threshold might not be high enough. Check KB
written to see if this number, when looked at as kilobytes per second, is
high in relation to the parameters. If it is, increase the settings for the
parameters if this is appropriate for the amount of physical memory on the
server.

For information about specifying the amount of data moved in one
propagation, see Max Data Propagation Per Propagate.

Meter Description
252 Managing ObjectStore

Chapter 4: Utilities
• Sixth column is AIO thread number for the database (blank for rawfs).

• Finally, the database pathname.

For an example of output when ossvrstat is invoked with the -databases option,
see -databases option on page 256.

Server Transaction Log Information
Specifying the -log option displays information about the server transaction log for
the specified server. The information displayed consists of the following:

• The size of the transaction log and its components

• Metering information collected over various intervals of time

• Any databases for which propagation has been delayed due to MVCC access or
backup and the amount of time since they were last allowed to be propagated

• Server parameters relevant to the transaction log and the values of related or
derived parameters of the log itself

• AIO thread number for the transaction log, if any

Examples
Here is the output from ossvrstat when invoked without any options:

ossvrstat manacles
ObjectStore Release 6.1 Database Server
Client/Server protocol version 1.70

Allow Remote Database Access: Yes
Remote Database Grow Reserve: 16MB
Allow Shared Communications: Yes
Authentication Required: SYS, DES, Name Password
Cache Manager Ping Time: 300 seconds
Cache Manager Ping Time In Transaction: 300 seconds
DB Expiration Time: 300 seconds
Deadlock Victim: Work
Direct To Segment Threshold: 128 sectors (64KB)
Current Log Size: 92192 sectors (46096KB)
Log Data Segment Growth Increment: 2048 sectors (1MB)
Log Data Segment Initial Size: 81920 sectors (40MB)
Log Record Segment Buffer Size: 1024 sectors (512KB)
Log Record Segment Growth Increment: 512 sectors (256KB)
Log Record Segment Initial Size: 10240 sectors (5MB)
Max AIO Threads: 3
Max Connect Memory Usage: unlimited
Max Data Propagation Per Propagate: 512 sectors (256KB)
Max Data Propagation Threshold: 81920 sectors (40MB)
Max Memory Usage: unlimited
Max Two Phase Delay: 30 seconds
Message Buffer Size: 512 sectors (256KB)
N Message Buffers: 4
Notification Retry Time: 60 seconds
Preferred Network Receive Buffer Size: 16384 bytes
Preferred Network Send Buffer Size: 16384 bytes
Propagation Sleep Time: 60 seconds
Propagation Buffer Size: 81920 sectors (40MB)
Release 6.3 253

RPC timeout: 60 seconds

Server Machine Usage:
 User time: 1.3 secs
 System time: 3.0 secs
 Max. Res. Set Size: 944
 Page Reclaims: 0
 Page Faults: 69
 Swaps: 0
 Block Input Operations: 2
 Block Output Operations: 526
 Signals Received: 744
 Voluntary Context Switches: 17894
 Involuntary Context Switches: 1237

Server Meters:
Total since server start up:
 Client Meters:
 280 messages received 0 callback messages sent
 0 callback sectors 0 succeeded sectors
 204 KB read 2752 KB written
 13 commits 0 readonly commits
 45 aborts 0 two phase transactions
 0 lock timeouts 0 lock waits
 0 deadlocks 0 message buffer waits
 Log Meters:
 62 log records 14 record segment switches
 116 flush data 103 flush records
 0 KB data 51 KB records
 13 KB propagated 1762 KB direct
 130 propagations

Total over past 60 minute(s):
 Client Meters:
 67 messages received 0 callback messages sent
 0 callback sectors 0 succeeded sectors
 31 KB read 744 KB written
 4 commits 0 readonly commits
 11 aborts 0 two phase transactions
 0 lock timeouts 0 lock waits
 0 deadlocks 0 message buffer waits
 Log Meters:
 16 log records 4 record segment switches
 32 flush data 28 flush records
 0 KB data 14 KB records
 4 KB propagated 436 KB direct
 40 propagations

Total over past 10 minute(s):
 Client Meters:
 14 messages received 0 callback messages sent
 0 callback 0 succeeded sectors
 0 KB read 186 KB written
 1 commits 0 readonly commits
 3 aborts 0 two phase transactions
 0 lock timeouts 0 lock waits
 0 deadlocks 0 message buffer waits
 Log Meters:
 4 log records 1 record segment switches
 8 flush data 7 flush records
254 Managing ObjectStore

Chapter 4: Utilities
 0 KB data 3 KB records
 1 KB propagated 109 KB direct
 10 propagations

Total over past 1 minute(s):
 Client Meters:
 0 messages received 0 callback messages sent
 0 callback sectors 0 succeeded sectors
 0 KB read 0 KB written
 0 commits 0 readonly commits
 0 aborts 0 two phase transactions
 0 lock timeouts 0 lock waits
 0 deadlocks 0 message buffer waits
 Log Meters:
 0 log records 1 record segment switches
 2 flush data 2 flush records
 0 KB data 0 KB records
 0 KB propagated 0 KB direct
 0 propagations

No active clients

Server machine
usage

On UNIX systems, the ossvrstat output under the Server Machine Usage heading
is provided by the getrusage utility. The output varies according to the platform on
which the server is running. For information about what the output categories mean,
see the manual page for getrusage on the server machine.

On non-UNIX platforms, the server fills in zeros for these output categories, which
indicates that the measurement is not available on that platform.

Active clients When there are active clients, the ossvrstat utility also displays a message such as
the following:

Client connections awaiting a client message:
Client #3 (atiq/26896/(unknown))
 priority=0x8000, duration=4652 seconds, work=0, no
 transaction on server
Client #5 (nanook/1346/(unknown)) priority=0x8000,
 duration=2 seconds, work=2, transaction in progress
Client #7 (yukiko/14916/(unknown)) priority=0x8000,
 duration=136 seconds, work=0, no transaction on server

This is a list of the clients that have initiated a connection to the server. In the
previous example, the server is waiting for the next message from each client. Next
to the client number, the information in parentheses indicates the

• Host name of the client machine.

• Process ID of the client process on the client machine.

• Name of the client process. If you did not use the API to give the client process a
name, ObjectStore displays (unknown).

The other information provided is as follows:

• priority – A hexadecimal number that indicates the priority assigned to this
transaction with the os_transaction::set_transaction_priority() function.
ObjectStore uses this to determine the victim if there is a deadlock. The transaction
with the lower number is the victim.
Release 6.3 255

• duration – The number of seconds since the last successful commit by the client.

• work – The amount of work done by the client, as measured by remote procedure
calls to the server during the current transaction. Each message to the server
counts as one work unit.

• comment – Indicates whether a transaction is in progress.

-databases
option

Here is the output from ossvrstat when invoked with the -databases option:

ossvrstat -databases tucker
ObjectStore Release 6.1 Database Server
Client/Server protocol version 1.70

Client Open Databases: (1 active client(s))
 Client #4 (tucker/1152/K:\rtee\coll.exe/RTEE - main session)
 WR 2s CW WL TW 1 tucker:K:\temp\rtee\rteeArchive0006.db
 WR 1s CW WL TW 2 tucker:K:\temp\rtee\rteeArchive0007.db
 WR 1s CW WL TW 3 tucker:K:\temp\rtee\rteeArchive0008.db
 WR 1s CW WL TW 1 tucker:K:\temp\rtee\rteeArchive0009.db
 WR 24s CW WL TW 3 tucker:K:\temp\rtee\rteeMain.db
 RD 24s CR RL TR 1 tucker:K:\RTEE\os\rtee\test\example.adb
 RD 24s CR RL TR 2 tucker:L:\build\debug\bin\os_coll.adb

Client connections awaiting a client message:
Client #4 (tucker/1152/K:\rtee\coll.exe/RTEE - main session)
 priority=0x8000, duration=27 seconds, work=2545, transaction
 in progress

For information about the format and type of information displayed by the
-databases option, see Open Databases Information on page 252. The following
decodes the information displayed for the 5th database (rteeMain.db) in the sample
output:

Note that the MVCC conflict column, which appears just before the AIO thread
number, is blank in this example because there are no MVCC clients.

WR 24s CW WL TW 3 tucker:K:\temp\rtee\rteeMain.db

AIO thread number

Transaction wrote to this database
Transaction has a write lock in this database
Client has database pages cached for writing
Client opened database 24 seconds ago

Database is open for writing
256 Managing ObjectStore

Chapter 4: Utilities
ostest
The ostest utility indicates whether a path name meets a specified condition.

Syntax
ostest [options] pathname

Argument pathname

The path name of a database or directory.

Options -d

pathname is a rawfs directory.

-f

pathname is a rawfs database.

-p

pathname is a file path name.

-r

I (requestor) have read access to pathname.

-s

pathname is a database with a nonzero size.

-w

I (requestor) have write access to pathname.

Exit codes The ostest utility has an exit code of 0 when the condition specified by the option
is true and nonzero when the condition is false.

Description
You must specify one, and only one, option with the ostest utility.

UNIX only When you invoke ostest on a UNIX system and specify a file database as the
argument, you cannot specify a remote file-server host in the path name of the file
database. The ostest utility passes the operation to a local native utility. If you
specify a remote file-server host name, ObjectStore informs you that you specified an
illegal path name.

The ostest utility cannot be used on Windows to test for a file database.

API See os_dbutil::stat() on page 191 in the C++ A P I Reference.
Release 6.3 257

osverifydb
The osverifydb utility verifies all pointers and references in a database including
internally managed ObjectStore segments. Note that, as used here, the term references
refers to soft pointers and ObjectStore references.

Syntax
osverifydb [options] pathname

Argument pathname

Specifies a file or rawfs database whose pointers you want to verify.

Options -end_cluster cluster_number

When used with the -start_cluster option, this option specifies the range of
clusters to verify within a segment. This option must also be used with the
-segment_n option.

-end_offset integer

When used with the -start_offset option, this option specifies the range of
offset addresses (in bytes) to verify within a cluster. If this option is not specified,
the default is to verify up to the end of the cluster.

The -end_offset option must also be used with the -segment_n option and with
the -start_cluster and -end_cluster options. Also, the values specified by the
-start_cluster and -end_cluster options must equal the same cluster
number.

-F

The -F option (uppercase) enables osverifydb to operate in “fast mode”.

The -F option cannot be be coupled with the following osverifydb options:

- -ignore_references

- -illegal_pointer_action

- -o

- -v

- -whohas

-ignore_references

Suppresses verification of references. For more information about using this
option, see Verifying references on page 260.

-illegal_pointer_action { null | ask }

If the -illegal_pointer_action option is used with the null argument,
osverifydb sets illegal pointers to null. If used with the ask argument,
osverifydb prompts the user for a reference value. If the user responds to the
prompt by pressing the Return key, osverifydb skips this illegal pointer. If you
do not specify the -illegal_pointer_action option, osverifydb flags the
illegal pointer as an error without taking any action.
258 Managing ObjectStore

Chapter 4: Utilities
-L transaction_log_name

For use with ObjectStore / Single only. When this option is specified, the named
file is used for the transaction log file. If a file with the name transaction_log_
name already exists, it must be a properly formed transaction log. By default,
osverifydb uses a temporary file.

-nocoll

Suppresses integrity checks that ensure that the ObjectStore collections in the
database are valid. ObjectStore Technical Support recommends that you use this
option only on databases that do not contain collections.

-no_internal_segments

Skips verifying internally managed segments.

-o

Displays each object in the database using the Metaobject Protocol (MOP).

-segment_n segment_number

Verifies only the segment specified by segment_number. By default, osverifydb
verifies all segments in the database, including internal segment 0.

-start_cluster cluster_number

When used with the -end_cluster option, this option specifies the range of
clusters to verify within a segment. This option must also be used with the
-segment_n option.

-start_offset integer

When used with the -end_offset option, this option specifies the range of offset
addresses (in bytes) to verify within a cluster. If this option is not specified, the
default is to start verifying at the beginning of the cluster.

This option must also be used with the -segment_n option and with the -start_
cluster and -end_cluster options. Also, the values specified by the -start_
cluster and -end_cluster options must equal the same cluster number.

-v

Displays the value for each pointer.

-whohas pointer

Lists objects that point to the object indicated by pointer. The pointer argument
can take the form either of an ObjectStore reference in dump format or of the
following:

segment:cluster:offset

where segment, cluster, and offset specify the object’s segment number,
cluster number, and offset into the cluster.

Values can be in decimal or hexadecimal format. Hexadecimal values must be
prefixed by the characters 0x.
Release 6.3 259

Exit codes The osverifydb utility returns 0 if no errors were found; otherwise, it returns a
nonzero value.

Description
Verification means this:

• There are no transient pointers.

• Persistent pointers point to valid (not deleted) storage.

• The declared type for a pointer as determined from the schema matches the actual
type of the object pointed to.

• References are consistent.

When osverifydb detects an invalid pointer, it indicates the location and the value
of the pointer. Whenever possible, it displays a symbolic path to the bad pointer,
starting with the outermost enclosing object.

The osverifydb utility runs integrity checks to ensure that the ObjectStore
collections in the database are valid. You can suppress verification of collections by
specifying the -nocoll option when you run osverifydb.

Verifying
references

Before a reference can be verified, must be resolved to an address. The process of
resolving addresses consumes address space, and, in some cases, may cause the
osverifydb utility to run out of address space. If the utility fails because it requires
more address space than is available, you should use the OS_AS_SIZE environment
variable; for more information, see OS_AS_SIZE.

As a last resort, you can also use the -ignore_references option to turn off
reference verification. Note that you should not normally use this option unless you
have already tried to verify the database and verification failed because osverifydb
ran out of address space.

How often How often you should verify database pointers and references depends on how
often your data changes. Verifying databases before backups is a good practice, but
verification can be time consuming. You might want to verify databases every
evening.

Verifying
indexes and
index entries

If the OS_COLL_DEBUG_INDEX environment variable is set, osverifydb will check the
consistency of the type of all indexes on each collection with the type of each member
of that collection. For more information, see OS_COLL_DEBUG_INDEX.

Fast mode The fast mode for osverifydb uses techniques optimized for performance purposes.
Run osverifydb with the -F option to specify fast mode. If you set the environment
variable OS_OSVERIFYDB_FAST to true (non-zero), osverifydb will run in fast mode
by default.

You can use the environment variable OS_OSVERIFYDB_BUFFER_SIZE to specify the
maximum size of the transient buffer used to optimize locality of reference by
osverifydb in fast mode. The default size is 512 MB.

The fast mode for osverifydb is not compatible with the following options:

• -ignore_references
260 Managing ObjectStore

Chapter 4: Utilities
• -illegal_pointer_action

• -o

• -v

• -whohas

Schema
protection

If you are developing an application and will need to run this utility on a protected
schema database, ensure that the correct key is specified for the environment
variables OS_SCHEMA_KEY_LOW and OS_SCHEMA_KEY_HIGH. If the correct key is not
specified for these variables, the utility fails. ObjectStore signals

err_schema_key _CT_invalid_schema_key,
"<err-0025-0151> The schema is protected and the key provided did not
match the one in the schema."

API See os_dbutil::osverifydb() on page 186 and os_dbutil::osverifydb_one_
segment() on page 187 in the C++ A P I Reference.

Examples
osverifydb -illegal_pointer_action null vtest1.db

The null argument causes osverifydb to null all illegal pointers.

osverifydb -illegal_pointer_action ask vtest2.db

The ask argument permits selective repair; that is, it causes osverifydb to prompt
for an alternative value for the illegal pointer. Following is sample output from
osverifydb in such a circumstance:

The object at
<d|red:E:\test\test.db|2|0|545000|10000>(type "SomeColor"),
contains a pointer at <d|red:E:\test\test.db|2|0|545194|10000>
()My_AlarmMessage.m_pValue) incorrectly pointing yo
<d|red:E:\test\test.db|2|0|57afc0|10000>

Bad pointer
error format

osverifydb outputs information about bad pointer errors in the following format:

< format | db_path | seg_num | obj_info | hex_offset | size >

where the different fields have the following meanings:

• format can be the letter e or d. An e specifies that the obj_info field is an export
ID; d specifies that the obj_info field is a cluster number.

• db_path is the absolute path name of a database.

• seg_num is a segment number.

• obj_info is either an export ID or a cluster number (see format, above).

• hex_offset is a byte offset in hexadecimal.

• size is optional. If present, it represents the mapping granularity in hexadecimal
— typically 10000, corresponding to a size of 64 KB.

You can then press Enter, in which case the illegal pointer is set to null, or you can
enter a valid reference string such as /daffy/home/daffy/daffy0/dbs/verifydb1
| 2 | 64 identifying an object at offset 64 in segment 2, in the database verifydb1.
The new pointer value, if valid, is used as the replacement value for the pointer in
the database.
Release 6.3 261

Caution It is very important to use the null option with caution; using it indiscriminately can
result in a corrupted database.

The following output is the result of running osverifydb on a database that contains
an object of type c1, with the bad pointers identified by the error messages.

beethoven% osverifydb /camper/van

Verifying database beethoven::/camper/van
Verifying segment 2 Size: 8192 bytes

Pointer to nonpersistent storage.
Pointer Location: 0x6010000. Contents: 0x1.
Lvalue expression for pointer: c1::m1

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
Pointer Location: 0x6010004. Contents: 0x601003c.
Declared type c2*. Actual type: c3*.
Lvalue expression for pointer: c1::m2

Pointer to deleted storage
Pointer Location: 0x6010008. Contents: 0x6010040.
Declared type c2*.
Lvalue expression for pointer: c1::m3

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
Pointer Location: 0x601000c. Contents: 0x6010028.
Declared type c2*. Actual type: c1*.
Lvalue expression for pointer: c1::m4
Lvalue expression for pointed to object: c1::ma[5]

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
Pointer Location: 0x6010010. Contents: 0x6010044.
Declared type c2*. Actual type: char*.
Lvalue expression for pointer: c1::m5
Lvalue expression for pointed to object: char[0]

Pointer to nonpersistent storage.
Pointer Location: 0x6010068. Contents: 0x1.
Lvalue expression for pointer: void*[5]
Verified 5 objects in segment

Verified 5 objects in database
beethoven%

The following is a portion of the output displayed when osverifydb is run with the
OS_COLL_DEBUG_INDEX environment variable set:

DBG: Checking indexes on collection at 0xe10b0000
DBG: Index of type "A*"
DBG: Checking with element at 0xe10b08d4 of type "A" OK
DBG: Checking with element at 0xe10b08e8 of type "A2" OK
 ("A" is a base of "A2")
DBG: Checking with element at 0xe10b08d8 of type "A" OK
DBG: Checking with element at 0xe10b08dc of type "B"
 INCONSISTENCY
262 Managing ObjectStore

Chapter 4: Utilities
osversion
The osversion utility displays the version of ObjectStore that is in use on your
machine.

Syntax
osversion

Description
API See the following in the C++ A P I Reference:

• objectstore::release_maintenance() on page 80

• objectstore::release_major() on page 80

• objectstore::release_minor() on page 80

• objectstore::release_name() on page 81

Also see the ObjectStore header file include/ostore/osreleas.hh.

Examples
The first example is for SPARCstation:

elvis% osversion
ObjectStore Release 6.1 for Solaris 2.x (SunOS 5.x) Sparc/Sun ONE Studio
7 (C++ 5.4)

The next example is for Windows.

[D\:] osversion
ObjectStore Release 6.2 for 32-bit Windows Systems, Visual Studio .NET 2002
Release 6.3 263

264 Managing ObjectStore

Chapter 5
Using Locator Files to Set Up
Server-Remote Databases

This chapter provides information on using a locator file to set up access to databases
that do not reside on the same host as a server.

The topics discussed include the following:

What Is a Server-Remote Database? 265

Description of the Locator File 267

Declaring Hosts 269

Specifying Locator Rules 269

Using Character String Patterns in Locator Files 273

Overriding the Default Locator File 277

When Multiple Servers Can Concurrently Access a Database 278

Sample Locator Files 279

NFS Limitations 282

Troubleshooting 283

What Is a Server-Remote Database?
When an ObjectStore application accesses a file database, the ObjectStore server
handling that access is required to be running on the file server host containing the
database; that is, the database must be server-local. However, you can override this
default for file databases and allow access to server-remote databases, that is, access to
databases not stored on an ObjectStore server host.

Note This discussion of server-remote databases applies only to file databases and not to
rawfs databases.

What Are the Advantages?
The advantages of server-remote databases are as follows:

• Individual ObjectStore users can create databases on a host without first ensuring
that an ObjectStore server is running there.

• Databases can be stored on dedicated file servers.
Release 6.3 265

What Is a Server-Remote Database?
What Are the Disadvantages?
The disadvantages of server-remote databases are that

• Network overhead increases.

• Performance is slower than for server-local databases.

• Network failure can cause a database to be inaccessible or to become inconsistent.

Cautions The following cautions should be observed:

• You must use NFS to access server-remote databases. When using NFS, you
cannot be sure that a write transaction actually completes. This is because NFS is
a stateless protocol. (This is a problem when you are modifying any file by means
of NFS, not just a database.)

• Using Samba or PC–NFS (or any other Windows-to-UNIX networking protocol)
to access a file database stored on a UNIX host from a Windows server is not
supported.

• During access of server-remote databases with NFS, if the file host crashes or
suffers a network outage, the ObjectStore server is likely to hang until the file host
comes back up. This can cause other clients to wait.

How Do You Allow for a Server-Remote Database?
After you set up the appropriate hardware and software to connect your systems,
there are two ObjectStore-specific steps for allowing server-remote databases:

• Provide a locator file, described next, on the host of the client that needs to access
the server-remote database:

• Set the server parameter Allow Remote Database Access to Yes for each server
with the potential to access a database that is not local.

Locator file ObjectStore clients use locator files to determine the ObjectStore server that should
handle access to specific server-remote databases. Locator files need not include
information about server-local databases.

Put the locator file in the directory $OS_ROOTDIR/etc and name it locator. If the file
known to a client host as $OS_ROOTDIR/etc/locator exists, ObjectStore uses it to
determine the server that should handle access to a server-remote database for
ObjectStore applications running on that client. It does not matter whether there is a
local ObjectStore server. If there is a locator file, ObjectStore uses it.

When you use a locator file, you can use an $OS_ROOTDIR directory that is shared by
multiple machines on a network.

You do not need a locator file if you do not have server-remote databases.

Overriding
locator file

ObjectStore clients can override this specification of a locator file and specify their
own locator files with either a client environment variable or a function call. These
are discussed in Overriding the Default Locator File on page 277.
266 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Server
parameter Allow
Remote
Database
Access

If ObjectStore determines from a locator file that a particular ObjectStore server
should handle access to a particular server-remote database, and that server has a
value of Yes for the parameter Allow Remote Database Access, the server handles
access to the database. If the server does not have a value of Yes for Allow Remote
Database Access, the exception err_file_not_local is signaled.

One server for
each database

You should assign only one ObjectStore server to a server-remote database. This
server would handle all access to the remote-server database by all applications. This
is because one server handling access to a database can prevent concurrent access by
other ObjectStore servers. This is discussed further in When Multiple Servers Can
Concurrently Access a Database on page 278.

Prototype When you have many server-remote databases, network overhead increases and
performance is slower than for local databases. If you are considering having server-
remote databases, it is prudent to set up a prototype and determine whether it meets
your needs.

Description of the Locator File
The locator file contains one or more host declarations and one or more locator rules. It
can also include comments.

Each host declaration specifies a host name or a group of host names and the host
machine type.

Each locator rule specifies

• The name of the host (file server) in which the database resides

• The path name of a database or group of databases

• The ObjectStore server that controls access to the specified database

• The way to translate the database name from its form on the file server to the form
needed by the ObjectStore server

Format Each locator file has the following format:

host-declaration-1
host-declaration-2
...
host-declaration-n
locator-rule-1
END
locator-rule-2
END
...
locator-rule-n
END

The format of the locator file also allows it to be used for implementing failover. For
more information, see Locator File: FAILOVER_SERVER Declaration on page 291.
Release 6.3 267

Description of the Locator File
Example of a Locator File
The following example file contains two host declarations, one locator rule, and one
comment:

HOST redwood unix
HOST oak pc

FILE_HOST oak
FILE_PATHNAME c:\oak1\test1\.+
SERVER_HOST redwood
REPLACE c:\oak1\test1 \suite1
REPLACE_DELIMITERS
END

#end of locator file

Host
declarations

The host declarations are the first two lines. They inform ObjectStore about the
operating systems running on the hosts referred to in the locator rules that follow.
This allows ObjectStore to execute the REPLACE_DELIMITERS command, explained
on page 272.

Locator rule The locator rule in this file indicates that the ObjectStore server on the host named
redwood controls access to any file database that meets both of these conditions:

• The database resides on the file server host named oak.

• The path name by which it is known to that file server is c:\oak1\test1\
followed by one or more characters (any characters).

The locator rule specifies that the path name by which this file database is known to
the ObjectStore server (redwood) can be obtained by

1 Replacing c:\oak1\test1 with \suite1 in the path name by which the database
is known to the file server

2 Replacing the standard delimiter used by oak’s operating system (\) with the
standard delimiter used by redwood’s operating system (/)

The END statement indicates the end of a locator rule.

Applying the
rule

If an application contains the call

os_database::open("/suite1/test1.db");

and the host of the application has oak’s directory c:\oak1\test1 mounted as
/suite1, ObjectStore translates /suite1/test1.db into a path name that is
canonical for the file server host oak; that is, c:\oak1\test1\test1.db. This
translation is the path name by which the database is known to the file server, and it
is used as input to the locator file.

The preceding rule applies in this case because the file server host has the specified
name (oak) and the input path name c:\oak1\test1\test1.db matches the pattern
in the rule: c:\oak1\test1\.+.

The rule specifies that the ObjectStore server on redwood should handle access to the
database. The rule also specifies that this database is known to redwood as
/suite1/test1.db, the result of substituting \suite1 for c:\oak1\test1 in
c:\oak1\test1\test1.db and then substituting “/” for “\”.
268 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
A database to which the locator rule does not apply is handled as if there were no
locator file; it is handled by the ObjectStore server running on the file server host
containing the database.

Comments Comments begin with # and extend to the end of the line.

Case sensitivity Case is not significant for keywords in locator files.

Declaring Hosts
A locator file begins with one or more host declarations. Each host declaration has
the form

HOST host-name-pattern {unix | pc}

where host-name-pattern is a character string pattern that specifies a set of host
names. The rules about the way character string patterns are written and used are
discussed in Using Character String Patterns in Locator Files on page 273. For
example, to specify that all hosts are UNIX systems, you would include this
statement:

HOST .* UNIX

ObjectStore uses the earliest HOST declaration whose host-name-pattern matches
a given host name. The declaration that ObjectStore uses for a given host name
determines the host’s associated standard delimiter as used by the REPLACE_
DELIMITERS translation command. See Specifying Translation Commands on
page 271.

The following is the way a host declaration determines an associated standard
delimiter:

• For the UNIX operating system, the delimiter is / (forward slash).

• For a PC, the delimiter is\ (backslash).

Specifying Locator Rules
After the host declarations, a locator file contains a sequence of one or more locator
rules. Each rule has the following form:

Syntax for
locator rules

FILE_HOST file-server-host-name-pattern
FILE_PATHNAME pathname-pattern
SERVER_HOST ObjectStore-server-host-name
[translation-command-1
 translation-command-2
...
 translation-command-n]
[access-specification]
END
Release 6.3 269

Specifying Locator Rules
When does a
rule apply to a
database?

ObjectStore applies a locator rule to a database when these conditions are both true:

• The database resides on a file server host whose name has the form specified in
the FILE_HOST statement.

• The name by which the database is known to the file server has the form specified
in the FILE_PATHNAME statement.

The first locator rule in a file that applies to a database determines

• The ObjectStore server to handle access to that database

• The path name by which that database is known to that ObjectStore server

If ObjectStore does not find a rule that applies to a database, the server running on
the host containing the database handles access to the databases. This always occurs
when there is no locator file.

Specifying FILE_HOST Statements
A FILE_HOST statement specifies the host name of a system in which a server-remote
database is stored. The statement has the form

FILE_HOST file-server-host-name-pattern

where file-server-host-name-pattern is a character string pattern for the name
of a file server. See Using Character String Patterns in Locator Files on page 273.

If a database specified in an application resides on a file server host whose name has
this form, the rule containing this statement might apply to the database (see the
FILE_PATHNAME statement that follows). If the database’s file server host has a name
that does not match file-server-host-name-pattern, the rule does not apply to
the database.

There is one special file-server-host-name-pattern:

@LOCALHOST

This value indicates the host of the ObjectStore application.

Specifying FILE_PATHNAME Statements
A FILE_PATHNAME statement specifies a path name by which a database is known to
its host. This statement has the form

FILE_PATHNAME pathname-pattern

where pathname-pattern is a character string pattern. See Using Character String
Patterns in Locator Files on page 273.

If the name by which a database is known to the file server matches pathname-
pattern, the rule containing this statement applies to the database if the database’s
file server host has a name that matches the rule’s file-server-host-name-
pattern. If the database’s name does not match the pathname-pattern, the rule
does not apply to the database.
270 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Specifying SERVER_HOST Statements
The SERVER_HOST statement specifies the name of a host running an ObjectStore
server. This statement has the form

SERVER_HOST ObjectStore-server-host-name

where ObjectStore-server-host-name is the name of a host running an
ObjectStore server. You can enclose this name in quotation marks (" "). If a locator
rule applies to a database, this statement specifies the name of the ObjectStore server
that handles access to the database.

There are two special ObjectStore-server-host-names:

• @LOCALHOST specifies the ObjectStore server running on the host of the
application.

• @INVALID_SERVER indicates that ObjectStore should signal an error if the locator
rule including it applies to a database.

Specifying Translation Commands
Each locator rule can contain an optional sequence of one or more translation
commands. If a rule applies to a database, this sequence specifies the way to translate
from the name by which a database is known to the file server containing it to the
name by which the database is known to the ObjectStore server specified by the rule.

A translation command has one of the following forms:

• REPLACE pattern substitution-string

• REPLACE_DELIMITERS

• ALL_UPPERCASE

• ALL_LOWERCASE

Execution order All REPLACE commands are executed before any other commands in the sequence of
translation commands. The first REPLACE command in the sequence applies to the
input path name. This is the path name by which a database is known to the file
server on which it resides. Each subsequent REPLACE command applies to the output
of the previous REPLACE command.

The output of the last REPLACE command is then used as input to the REPLACE_
DELIMITERS command (if there is one). The output of that is then used as the input
to the ALL_UPPERCASE or ALL_LOWERCASE command (if there is one). Supplying both
an ALL_UPPERCASE and an ALL_LOWERCASE command results in an error.

REPLACE
syntax

The REPLACE command has the form

REPLACE pattern substitution-string

It indicates that the first substring of the input path name (FILE_PATHNAME pattern)
that matches pattern should be replaced by substitution-string.

The substitution-string can be empty and is optionally enclosed in quotation
marks (""). If you want the quotation marks to be interpreted literally, use two
consecutive quotation marks, for example " "a_string_with_quotes" ".
Release 6.3 271

Specifying Locator Rules
The special variable $f (where $ is the escape character) designates the string that
matches the database host name in the current rule.

Parentheses ((and)) in pattern do not affect the pattern that is matched, but they
make it possible for a replacement string to include the input substring that matches
the parenthesized part of the character string pattern. The variable $1 in a
substitution-string refers to the substring that matches the first parenthesized
expression in pattern, $2 refers to the substring that matches the second
parenthesized expression, and so on.

You need not specify an escape character for parentheses in character string patterns.

Any string designated by a variable such as $1 appears as all lowercase in the output.

Example For example, if the string that matches file-server-host-name-pattern in the
current rule is inuk and the input string is

/kayak/usr1/foo/bar/file.db

then the translation command

REPLACE /foo/(bar)/file$.db /newdirectory/$1/$f/file.db

generates

/kayak/usr1/newdirectory/bar/inuk/file.db

The first two elements of the input string are used unchanged. The replacement
begins with the third element, /foo, and proceeds as follows:

REPLACE_
DELIMITERS

The REPLACE_DELIMITERS command indicates that each occurrence in the input of
the standard delimiter associated with the file server host should be replaced with
the standard delimiter associated with the ObjectStore server host. See Declaring
Hosts on page 269.

ALL_
UPPERCASE

The ALL_UPPERCASE command indicates that the output should be the same as the
input except that lowercase characters in the input should appear in uppercase in the
output.

ALL_
LOWERCASE

The ALL_LOWERCASE command indicates that the output should be the same as the
input except that uppercase characters in the input should appear in lowercase in the
output.

Original
Expression

Replacement
Expression

Explanation

/(bar) $1 The $1 variable matches the first
parenthesized expression, in this case, bar.

Not applicable $f The variable $f says to substitute the database
host name, in this case, inuk.

file$.db file.db Substitutes file.db for file$.db. The $ in
the original expression is required as an
escape character for the file extension
delimiter, a period (.).
272 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Specifying Read or Write Access
Each locator rule can contain an optional access specification. This specification is
one of

• READ_ONLY

• READ_WRITE

ObjectStore signals an error if the access specification does not match the access
specified in the call to os_database::open() or create().

Using Character String Patterns in Locator
Files

In some parts of locator files, you can specify a character string pattern. This allows
you to write rules that can apply to more than one specific input.

HOST
declaration
example

For example, if all machines using ObjectStore use a PC syntax for file path names, a
single HOST declaration that covers them all would be

HOST .+ pc

The alternative to using a character string pattern is to write a HOST declaration for
each PC, for example:

HOST foo pc
HOST bar pc
HOST amnesiac pc
HOST snoball pc

Specifying the character string pattern .+ is better than listing each host because you
need not modify the locator file when you add a new PC host to the network.

Directory
specification
example

For another example, suppose that there is a directory named
c:\home\place\stuff that contains many files and directories, including

c:\home\place\stuff\more\file.db
c:\home\place\stuff\less\deeper\nota.db

You want to describe all files and directories that are in the directory
c:\home\place\stuff and below. You can specify this with the character string
pattern

c:\home\place\stuff\.+

Maximum
length

The maximum length of a character string pattern is 512 characters.

There are three rules for writing character string patterns. An understanding of the
following terms is needed to apply the rules correctly.

Definitions of
terms

The target is character string input. For example, the path name an application
specifies for a database is the target.

The pattern is a character string pattern in a locator file.
Release 6.3 273

Using Character String Patterns in Locator Files
Pattern matching is the process that compares a target with a pattern.

If the target matches the pattern, the result is true. If the target does not match the
pattern, the result is false.

Rules for Writing Character String Patterns
These are the three rules for writing character string patterns.

Pattern and
target can be
the same

You can specify the pattern as the exact characters that are expected in the target.

This is the simplest kind of pattern. For example, if the only UNIX host is a machine
named dog, the simplest HOST declaration that contains a pattern that matches the
target is

HOST dog unix

When pattern matching seems to be causing problems, it often helps to simplify all
patterns according to this rule.

Use meta-
characters

You can specify metacharacters in a pattern. This allows a single pattern to match
more than one target.

The table in the next section describes the metacharacters you can specify in a
pattern. Metacharacters you can specify were chosen to avoid confusion with
characters that commonly occur in targets.

A frequently used metacharacter is the period (.), which matches any single
character. Another is the plus sign (+), which matches one or more repetitions of
what it immediately follows. For example:

.+

This matches any target that is at least one character long.

Mix exact
strings with
meta-
characters

You can build complicated patterns from simple patterns by following one with
another. For example:

dog.+

This matches any target that is at least four characters long and whose first three
characters are dog.
274 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Using Metacharacters in Patterns
The following table describes the metacharacters you can specify in a pattern.

Metacharacter Description

. A period represents any single character. A period matches a single character in the
target.

* An asterisk represents zero or more repetitions of the group to the immediate left. A
group is one of the following:

• Single character

• Period metacharacter

• Something enclosed in parentheses

• Something enclosed in brackets ([])

For example:

• a* matches " ", a, aa, aaaaaaa, and so on.

• .* matches anything, including nothing.

• (abc)* matches " ", abc, abcabc, and so on.

• [05-9]* matches " ", 0, 567, 98, and 99999960, but not 1234, and so on.

+ A plus sign represents one or more repetitions of the group to the immediate left. A
group is one of the following:

• Single character

• Period metacharacter

• Something enclosed in parentheses

• Something enclosed in brackets ([])

For example:

• a+ matches a, aa, aaaaaaa, and so on.

• .+ matches anything, except nothing.

• (abc)+ matches abc, abcabc, and so on.

• [05-9]+ matches 98, 90, 99999960005, and so on.
Release 6.3 275

Using Character String Patterns in Locator Files
[and] Brackets enclose a character class. A character class is a special kind of pattern. If any
character in the character class matches a single character in the target, the result is
true. For example, the character class [abcd] matches the target a, but not e.

Inside the brackets, the metacharacters’ meanings do not apply, with two exceptions.

When a caret (^) is the first character after the left bracket, the sense of the match is
reversed. This means that the result is false when a target matches any character in
the character class. For example, [^a] matches any single character except a. A caret
has no special meaning when it appears in a character class but is not the first
character. For example, [a^] matches either a or ^ and nothing else.

When a hyphen (-) is not the first or last character in a character class, the result is
true for everything that is in the range of the two values on either side of the hyphen.
For example, the character class [0-9] matches any single digit. If a hyphen is the
first or last character, it has no special meaning.

The exact set of characters defined when you specify a hyphen depends on the
collating sequence of the machine, so caution is advised. It is safe to assume that [0-
9] means the 10 digits on any ASCII system.

(and) An open parenthesis starts a grouping. A close parenthesis ends a grouping.
Parentheses group multiple characters so the software can treat them as a unit. This is
useful if sequences might repeat in the target, as shown in the earlier examples for
asterisk and plus. Parentheses are also especially useful in delineating a grouping
when you are doing string replacements. See the discussion of the REPLACE command
in “REPLACE syntax” on page 271.

$ A dollar sign is an escape character.

The purpose of the escape character is to provide a workaround in cases in which the
target might contain something that is a metacharacter if it appears in a pattern. For
example, if the target is +, the pattern + would not match it because the plus sign is a
metacharacter and has a special meaning in patterns. You need to escape the plus
sign in this way, $+, when you want it to match a target with the value +.

You must escape the following characters when they are not used as metacharacters:
. * + [] () $ ^ .

The backslash (\) character has no meaning as a metacharacter; you need not use an
escape character with it.

The escape character is different from the other metacharacters because you can
change it. However, it is not a good idea to do so. By default, the escape character is
the dollar sign. You can use the OS_LOCATOR_ESCAPE_CHAR environment variable to
change the escape character to something other than the dollar sign. See OS_LOCATOR_
ESCAPE_CHARACTER on page 116.

" " Quotation marks optionally start and end a pattern. For example, "(abc)" is the
same as (abc). You can use quotation marks for clarity.

To embed quotation marks in a pattern or target, specify two consecutive quotation
marks. For example, "a""a" is the three-character pattern made up of lowercase a,
quotation marks, and lowercase a.

^ When you specify a caret outside a character class, precede it with the escape
character. For example, "$^". Outside a character class, the use of the caret is
reserved unless you precede it with an escape character.

Metacharacter Description
276 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Overriding the Default Locator File
The locator file for all ObjectStore clients is

To specify a different locator file for a particular client or application, you can either
call an ObjectStore function from the application or set a client environment variable.

Calling an ObjectStore Function
The objectstore::set_locator_file() function specifies a locator file. Its
declaration is

static void set_locator_file(const char *file_name)

The file_name argument points to the name of the locator file to be used the next
time a database is opened. If you specify 0 for file_name, the application uses the
client environment variable OS_LOCATOR_FILE to determine the locator file. A
nonzero argument overrides any setting of OS_LOCATOR_FILE. If the specified file
does not exist, ObjectStore signals the err_locator_misc exception. If the first
character of the string pointed to by file_name is a white-space character or #,
ObjectStore assumes that the string is the contents of a file rather than a file name.

The objectstore::ignore_locator_file() function ensures that no locator file is
associated with the application, regardless of the setting of OS_LOCATOR_FILE or calls
to set_locator_file().

Setting a Client Environment Variable
You can set the client environment variable OS_LOCATOR_FILE to any legitimate
argument for objectstore::set_locator_file(), with the same meaning. Calls
to set_locator_file() override this environment variable.

You can also set OS_IGNORE_LOCATOR_FILE to ensure that no locator file is associated
with the application. This overrides all other settings and function calls, including
$OS_ROOTDIR/etc/locator.

UNIX $OS_ROOTDIR/etc/locator

Windows %OS_ROOTDIR%\etc\locator
Release 6.3 277

When Multiple Servers Can Concurrently Access a Database
When Multiple Servers Can Concurrently
Access a Database

When an ObjectStore server handles access to a server-remote database, the server
holds a lock on the database as long as the database is open. If the database is open
for read-only, the server holds a read lock; if the database is open for read or write,
the server holds a write lock.

Read lock When an ObjectStore server holds a read lock on a database,

• The server allows read access by other servers.

• The server prevents write access by other servers.

Write lock When an ObjectStore server holds a write lock on a database the following occurs:

• The server prevents other servers from acquiring either a read lock or a write lock
on the database.

• The server allows read access by other applications for which it is providing
services.

When ObjectStore blocks a server from acquiring a lock, it signals the err_
database_lock_conflict exception. ObjectStore does not automatically try again
to obtain the lock.

Turn off locking For servers on UNIX machines, you can turn off database-level locking by setting the
server parameter Allow NFS Locks to No.

Caution You must use extreme caution if you turn off locking. Concurrent database access by
different servers can corrupt the database. A mistake in a locator file can cause
unintentional concurrent access of this sort.

For servers on Windows machines, database-level locking is always turned on. See
Allow NFS Locks (UNIX Only) on page 79 for more information about this server
parameter.

The recommended mode of operation is as follows:

• Database-level locking is on (the default).

• Each database that is ever opened for read or write has exactly one ObjectStore
server assigned to it. This server handles access to the database by all applications
at your site. Follow this recommendation to ensure that two different clients do
not contact different servers for access to the same database.
278 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Sample Locator Files
The following locator file is used in an environment where an ObjectStore client runs
on a Windows machine. The client application is connected to an ObjectStore server
that runs on a UNIX machine, server_1. The databases are hosted on a second UNIX
machine, server_2.

HOST server_1 unix
HOST server_2 unix
FILE_HOST server_2
SERVER_HOST server_1
FILE_PATHNAME \\server_1\user_1\.*
REPLACE \\server_1\user_1\dbwork\ \disc\users\user_1\dbwork\
REPLACE_DELIMITERS
END

NFS-mounted
$OS_ROOTDIR
with same
architectures

The following is an example of a locator file for an NFS-mounted $OS_ROOTDIR. The
machine called registry has $OS_ROOTDIR mounted from towanda. The machine
called towanda has its own $OS_ROOTDIR and is running an ObjectStore server. Both
machines have the same UNIX architecture. registry:/home/registry/linda is
NFS-mounted onto towanda as /registry_linda.

In towanda’s $OS_ROOTDIR/etc directory, the towanda_server_parameters file
must be modified to have the line

Allow Remote Database Access: Yes

The locator file is in towanda’s $OS_ROOTDIR/etc directory. With this locator file,
you can build ObjectStore applications on registry.

HOST towanda unix
HOST registry unix

FILE_HOST registry
FILE_PATHNAME /home/registry/linda/.+
SERVER_HOST towanda
REPLACE /home/registry/linda /registry_linda
END

A locator file for
an application
that uses three
machines

In this scenario, there are three Windows machines. One machine, bessie, is the
ObjectStore server host. Another machine, clover, is the file server (NT) and is not
running an ObjectStore server. The remaining machine, jeep, contains the
ObjectStore client application.

Following is the locator file that is placed in the %OS_ROOTDIR%\ETC directory of the
ObjectStore client:

HOST bessie pc
HOST clover pc
FILE_HOST clover
FILE_PATHNAME \\clover\share\\my-dir.+
SERVER_HOST bessie
REPLACE \\clover\share\my-dir t:\my-dir
END

The ObjectStore server host bessie has the file server partition mounted as drive t:.
This is necessary. You cannot expect the ObjectStore server host to use UNC to access
Release 6.3 279

Sample Locator Files
the file server. The file server must be mounted using the File Manager/Explorer or
the net use command.

With this locator file, the ObjectStore client could access the database
\\clover\share\my-dir\metaschm.db in either of the following ways:

• \\clover\share\my-dir\metaschm.db

• bessie:t:\share\metaschm.db

If the ObjectStore client has \\clover\share mounted to itself as drive G:, it could
also use the following access patterns:

• g:\my-dir\metaschm.db

• metaschm.db

The last pattern works, assuming that the working directory is g:\my-dir.

Mounting $OS_
ROOTDIR and
mixing UNIX
architectures

The following example is a locator file for different UNIX architectures in which one
of the machines mounts $OS_ROOTDIR from another machine. The machine named
screamer is a machine with its own $OS_ROOTDIR but without a local server. The
machine towanda is a Sun machine with its own $OS_ROOTDIR and a server.

screamer:/home/screamer/box/linda is NFS-mounted onto towanda as
/screamer_linda.

Again, in towanda’s $OS_ROOTDIR/etc directory, the towanda_server_parameters
file must be modified to have the line

Allow Remote Database Access: Yes

The locator file is in screamer’s $OS_ROOTDIR/etc directory. With this locator file,
you can build ObjectStore applications on screamer.

#Good locator file:
HOST towanda unix
HOST screamer unix

FILE_HOST screamer
FILE_PATHNAME /home/screamer/box/linda/.+
SERVER_HOST towanda
REPLACE /home/screamer/box/linda /screamer_linda
END

Accessing
databases on
other server
hosts

The next locator file shows the way an application that is local to an ObjectStore
server can access databases on other server hosts. The application starts on server
host venus and then creates (opens) databases on disks that are local to the server
hosts mars and pluto.

HOST venus unix
HOST mars unix
HOST pluto unix

FILE_HOST mars
FILE_PATHNAME /local/directory/on/mars/.+
SERVER_HOST venus
REPLACE /local/directory/on/mars /mounted/directory/on/venus
END

FILE_HOST pluto
280 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
FILE_PATHNAME /local/directory/on/pluto/.+
SERVER_HOST venus
REPLACE /local/directory/on/pluto /mounted/directory/on/venus
END

Always using
same
ObjectStore
server

The following locator file always forces the use of the same ObjectStore server,
regardless of where the database is. In the following example, the hosts are all UNIX
systems and tokyo is the host of the server that you want all databases to use:

HOST .+ unix
FILE_HOST .+
FILE_PATHNAME .+
SERVER_HOST tokyo
END

Incorrect
REPLACE line
in locator file

Following is an example of an incorrect locator file that tries to accomplish the same
setup:

#Bad locator file: do NOT put machine: in the REPLACE line
HOST towanda unix
HOST screamer unix

FILE_HOST screamer
FILE_PATHNAME /home/screamer/box/linda/.+
SERVER_HOST towanda
REPLACE screamer:/home/screamer/box/linda /screamer_linda
END
#end of locator file

This locator file would display a message such as this:

schema2.cc line 20: error: the compilation schema database could not
be opened because: The directory was not found
re /home/screamer/box/linda/tutorial_IIA.comp_schema while
creating file database
/home/screamer/box/linda/tutorial_IIA.comp_schema (host "towanda")

Missing
matching
pattern in
locator file

Another example of an incorrect locator file is this:

#Bad locator file: Need the "/.+" after the file pathname for matching
HOST towanda unix
HOST screamer unix
FILE_HOST screamer

FILE_PATHNAME /home/screamer/box/linda
SERVER_HOST towanda
REPLACE /home/screamer/box/linda /screamer_linda
END

This locator file would display a message such as this:

"schema2.cc", line 20: error: the compilation schema database could
not be opened because:
The server refused the connection
Attempted to connect to server on local host, looking up database
"/home/screamer/box/linda/tutorial_IIA.comp_schema" on host
"screamer" failed: <err-0003-0004>Host refused connection.(err_net_
connection_refused). Possibly there is no server running on this host.
You can try the command
"/home/screamer/box/ostore/hp310/bin/ossvrping screamer" to check.
(err_server_refused_connection)
Release 6.3 281

NFS Limitations
NFS Limitations
The ObjectStore server needs to act on behalf of its client processes and so it accesses
files over the network, thereby relying on NFS. Where NFS fails, the ObjectStore
server also fails. The following table describes NFS problems that can occur when
you use locator files. These limitations are the result of known NFS problems and do
not necessarily apply when you are using other remote-file-access protocols.

Symptom Reason Workaround

Server crash. The oss_
out file contains
references to stale file
handles. This most often
occurs in conjunction
with using the
automounter.

The ObjectStore server needs to access the file handle.
When the file handle goes stale, the server loses its ability to
communicate with the database, and thus crashes. When
the ObjectStore server accesses the database, it does not
exercise the automounter. Therefore, when you use the
automounter, there is an increased chance of seeing this
problem. ObjectStore Technical Support recommends not
using the automounter. However, even hard mount points
can become stale.

None.
ObjectStore
Technical
Support
recommends
that you do
not use the
automounter.

Server crash. The oss_
out file contains
references to permission
problems.

NFS is poorly configured. You must configure NFS such
that anon=0. When an application creates or opens a
database, the server acts on behalf of the user requesting
the open or create. However, after the database is open, all
reads and writes occur as root. When root attempts to log
in to another machine, if anon=0 is not set, the root must
log in as the equivalent of noone, with no privileges. Setting
anon=0 allows root on one machine (the server machine) to
have the same privileges as root on the other machine (on
which the database resides).

Configure
NFS with
anon=0.

Server crash. The oss_
out file contains
references to missing
files.

Suppose a server has started accessing a database and
someone removes or renames the file. If the removal is
done on a machine other than the database host, NFS
maintains a copy of the database so the server can continue
to access it. However, if the removal occurs on the machine
with the database (and the machine is not the server host),
NFS does not retain a copy of the database for the server
process to continue using. Suddenly there is no database to
access, even though the server was already accessing it. It is
also impossible to determine where the server was in the
access stage.

None.

Server crash. oss_out
file contains references
to remote file system’s
being full.

There is a Sun bug that prevents state flags from being
correctly reset. Consequently, it is possible to fill a file
system, remove a file or decrease the size of a file, and have
a system flag that continues to report that the file system is
full.

Obtain a
patch from
Sun.
282 Managing ObjectStore

Chapter 5: Using Locator Files to Set Up Server-Remote Databases
Troubleshooting
If your locator file is not functioning the way you intend, first check the locator file
carefully for the following common mistakes:

• Did you reverse the SERVER_HOST and FILE_HOST arguments? The SERVER_HOST
statement specifies the name of the host of the ObjectStore server. The FILE_HOST
statement specifies the name of the host on which the database you want to access
is stored.

• Can the value specified for FILE_PATHNAME match the database name provided?
If you are only using one directory for a database, you can specify .+ to match
anything. If you are using more than one directory, you can specify something like
/dir/subdir/.+.

• Did you specify REPLACE_DELIMITERS for translation between systems that use
different delimiters?

• Did you specify any REPLACE statements accurately?

In addition to carefully proofreading the locator file, you can set the OS_DEBUG_
LOCATOR_FILE client environment variable to 1. When this variable is set,
ObjectStore sends diagnostic information on the processing of the locator file
translation to stderr.

Server hang (wait state). The server requires the lock manager to be running on the
same machine as the server. If the lock manager is not
running, the server cannot do its job. The server waits
(appears to be hung) for the lock manager to be restarted.
After the lock manager is running, the server can and will
respond.

When a
system
reboots,
ensure that
the lock
manager is
running
before the
autostart of
the server.

Server hang (wait state). The response from NFS is slow. If, for any reason, NFS is
slow to respond to requests for service, the server must
wait for those responses, just as any other client of NFS
would.

None.

Symptom Reason Workaround
Release 6.3 283

Troubleshooting
284 Managing ObjectStore

Chapter 6
High Availability of Data

ObjectStore provides a number of facilities for increased levels of reliability. In
descending order of reliability, the tools and capabilities are

• Failover

• Asynchronous replication

• osbackup (see General Backup Practices on page 50)

• osarchiv (see Archive Logging on page 51)

This chapter discusses the following topics:

Failover 285

Asynchronous Replication 297

Note ObjectStore’s support for failover allows you to perform rolling upgrades. That is,
you can perform planned upgrades without having to take the system out of service.
For more information, see the installation guide that accompanies the ObjectStore
upgrade package.

Failover
The purpose of failover is to ensure that the failure of an ObjectStore server, or the
failure of the machine on which the server is running, does not prevent service to
ObjectStore clients. When failover is in effect, the failure of the protected server is
immediately detected, and its service is picked up by another server running on its
own machine, providing clients with continued access to the database.

Hot spare
hardware

Failover automatically detects hardware or software failure and resumes service by
means of a new osserver process running on hot spare hardware. Hot spare
hardware is hardware that is already installed, powered, and working, and thus is
instantly available for service when the primary hardware is unavailable.

Transactions Transactions that have already committed are recovered from the transaction log.
Transactions in progress at the time of the failure are aborted and must be retried. If
the client application uses lexical transactions, it does not need to be modified to take
advantage of failover. The retry mechanism that is built into lexical transactions
ensures that they will be automatically retried. The only change that must be made
to the client application code is to ensure that it operates correctly when a transaction
is retried. Persistent side-effects are rolled back when the transaction is aborted in
Release 6.3 285

Failover
preparation for retry, but transient side-effects are only rolled back if the client
application explicitly arranges for that. Use the basic_undo class or avoid transient
side-effects inside a transaction. For information about the basic_undo class, see
basic_undo in Chapter 2 of C++ A P I Reference.

After a failover occurs, it is important for the administrator to fix the broken primary
machine as fast as possible in order to return to a redundant-operation state;
otherwise, the secondary machine might fail with nothing standing by to take over
for it.

Media failure Failover is not intended to address storage media failures — only failures in the
access path to storage media, such as a SCSI bus. To provide high availability in the
face of storage media failures, databases and transaction logs must be stored on a
disk system with built-in failure avoidance capability — for example, a RAID-1 (disk
mirroring) system. For large, mostly read-only databases, RAID-5 could also be
used, but RAID-5 can be slow for writes.

ObjectStore supports two types of failover:

• Built-in failover that is included with the ObjectStore product. This type of
failover is referred to in this document as ObjectStore-managed failover.

• Failover that is provided by cluster operating systems — referred to as cluster-
managed failover.

Both types of failover are described in the following sections.

ObjectStore-Managed Failover
ObjectStore provides and manages its own built-in failover system. The following
sections describe two different ways to configure ObjectStore-managed failover. For
information about enabling ObjectStore-managed failover, see Implementing
Failover on page 288.

Two osserver Processes, One Logical Server
In this configuration, the failover system consists of two osserver processes, each
running on a separate machine. But the system appears as one logical ObjectStore
server, hosting databases that are stored on a shared disk system. One osserver
process is the primary server, which is in active use during normal operations. The
other osserver process is a secondary server, which is inactive except for
monitoring the state of the primary server through ObjectStore's failover heartbeat
mechanism. If the primary server fails, the secondary server takes over. For more
information about the heartbeat mechanism, see Heartbeat Mechanism (ObjectStore-
Managed Failover Only) on page 289.

The two machines are connected to a shared disk system. The transaction log is also
stored on the shared disk system. The databases and transaction log can be stored in
rawfs or (if the operating system supports a file system that is shared between the
two machines) in files. For best performance, the transaction log should be on a
separate disk. Note, however, that this is not possible when the transaction log is
stored in rawfs.
286 Managing ObjectStore

Chapter 6: High Availability of Data
A FAILOVER_SERVER declaration in the locator file tells ObjectStore clients about the
two osserver processes, specifically the host names through which they can be
accessed. The declaration also tells ObjectStore clients about the fact that if the
primary server fails, the secondary server takes over automatically. The declaration
also tells ObjectStore clients how long to retry before timing out and reporting an
error. For more information, see Locator File: FAILOVER_SERVER Declaration on
page 291.

ObjectStore clients can be run on one or more separate machines, or they can be run
on the same pair of machines as the osserver processes if the clients have their own
failover mechanism.

Four osserver Processes, Two Logical Servers
This configuration consists of four osserver processes that appear as two logical
ObjectStore servers, hosting two sets of databases managed by two transaction logs.
The processes are organized into two failover server pairs sharing two machines. A
pair consists of a primary server process, which is in active use during normal
operations, and a secondary server process, which is on standby.

When both machines are working normally, each machine has one primary server
and one secondary server. The secondary server on each machine monitors the state
of the primary server in the pair running on the other machine, using ObjectStore's
failover heartbeat mechanism; see Heartbeat Mechanism (ObjectStore-Managed
Failover Only) on page 289. If a primary server fails, then the secondary server
running on the other machine takes over. During a failover condition, both servers
that are running on the nonfailing machine are primary, and no secondary servers
are running.

In order to use this configuration, the user must partition the dataset into two disjoint
sets of databases, with the aim of equalizing the load on the two logical ObjectStore
servers. Logical server A serves half the databases and consists of a primary server
on machine 1 and a secondary server on machine 2. Logical server B serves the other
half of the databases and consists of a primary server on machine 2 and a secondary
server on machine 1.

When both machines are working normally, the primary servers are active.
Databases on logical server A (those whose pathname starts with A: or A::) are
served by machine 1; databases on logical server B (those whose pathname starts
with B: or B::) are served by machine 2. If one machine fails, the secondary server
on the other machine becomes active and the one working machine will bear the
entire load, running one osserver process for logical server A and a second
osserver process for logical server B.

The primary servers of the two failover pairs should be on separate machines. To
ensure this, the user should not start both servers in a failover pair at exactly the
same time. The primary server should be started first and given a lead of at least 3
heartbeat intervals to allow it to become primary, before starting the secondary
server. For more information about the heartbeat interval, see Heartbeat Mechanism
(ObjectStore-Managed Failover Only) on page 289.
Release 6.3 287

Failover
If both primary servers are running on the same machine and you want to move one
of them over to a second machine, see the procedure for performing manual failback
in Problems When Starting Failover Servers on page 295.

For information about configuring ObjectStore-managed failover as two logical
servers, see Configuring More Than One Logical Server on page 293.

Cluster-Managed Failover
ObjectStore is able to work with the Sun Clusters 3.0 operating system. This
operating system (hereinafter referred to as the cluster operating system) can detect
and recover from server failure without having to use ObjectStore-managed failover.
However, cluster-managed failover does require that the ObjectStore client be able
to recover and retry when its connection to a server is broken.

Cluster-managed failover consists of a cluster of two or more machines and one or
more shared disk systems, all managed by a cluster operating system. The cluster
operating system monitors the status of osserver (and other processes). If a
monitored process fails, the cluster operating system restarts it, after substituting
good hardware for any failed hardware. The cluster operating system also allows file
sharing across the cluster without the reliability problems of NFS.

The clustered system appears as one or more logical ObjectStore servers, each
hosting its own set of databases and having its own transaction log. Each logical
ObjectStore server has its own network address which clients use to contact it. For
information about configuring more than one logical server, see Configuring More
Than One Logical Server on page 293.

ObjectStore's failover heartbeat mechanism is not used, and there are no standby
osserver processes. There is one osserver process for each logical ObjectStore
server. If that process or the machine on which it runs fails, the cluster operating
system starts a new osserver process with the same network address and disks,
either on the same machine or on a substitute machine.

After the new osserver process is started on a substitute machine and the failed
machine is ready to return to service, the cluster operating system kills the osserver
process on the substitute machine and starts a new process on the original machine.
This activity is called failback.

Clients can run on the clustered system or on another system. A client references an
osserver process by its logical host name. (When installing a cluster, you make up
a logical host name for each resource, such as an osserver process.) If there is more than
one osserver process running on the cluster, each will have its own logical host
name.

The next section describes how to set up cluster-managed failover.

Implementing Failover
You can implement failover either by editing the server parameters file and the
locator file as described in the following sections or by running the osconfig utility.
The osconfig utility will report on standard output any changes that the user must
288 Managing ObjectStore

Chapter 6: High Availability of Data
do — for example, copy files to another machine when there is no NFS network
connection to allow osconfig to perform the copy. For more information about the
osconfig utility, see osconfig on page 164. Note that osconfig cannot be used on
Windows machines.

The following sections describe what you must do to implement support for failover.
Unless explicitly stated otherwise, the information in these sections applies to both
ObjectStore-managed failover and cluster-managed failover.

Heartbeat Mechanism (ObjectStore-Managed Failover Only)
If you are using ObjectStore-managed failover, the parameter file must contain
information about the heartbeat. This information is used by ObjectStore to set up
the heartbeat mechanism so that a secondary server can monitor the state of the
primary server in the failover server pair. Note that the heartbeat mechanism is not
used by cluster-managed failover, which provides its own means for monitoring the
state of failover servers.

Failover
Heartbeat Time
parameter

The Failover Heartbeat Time parameter specifies how often a heartbeat for the
primary server is written to disk and how long it takes the secondary server to
recognize that the primary server has failed (five times the heartbeat value). This
parameter can be set to between 2 and 60 seconds. For more information, see Failover
Heartbeat Time on page 90.

Failover
Heartbeat File
parameter

ObjectStore can store the heartbeat information in a rawfs partition or in a shared
operating-system file. If it is stored in an operating-system file (that is, there is no
rawfs or rawfs partition 0 is file-based), the parameter file must include the Failover
Heartbeat File server parameter. The value specified for this parameter is the
pathname of the file where you want ObjectStore to store the heartbeat. ObjectStore
automatically creates this file when the rawfs is initialized, even if there is no actual
rawfs partition. For more information about this parameter, see Failover Heartbeat
File on page 89.

Failover Scripts (ObjectStore-Managed Failover Only)
Failover Script
parameter

If you want ObjectStore to execute a script or program when failover occurs and the
secondary server takes over from the primary server, you must set the Failover
Script server parameter, specifying the path of the script or program. For more
information about this parameter, see Failover Script on page 90.

This parameter is not required. It is applicable only when implementing ObjectStore-
managed failover.

Identifying Shared File Systems
Identical
Pathnames on
Failover Server
parameter

If databases or the transaction log are stored in files (rather than rawfs), or if the
rawfs is file-based rather than hard-disk-partition-based, you must specify the
Identical Pathnames on Failover Server server parameter in the parameter file
to inform the server of the configuration. This server parameter tells the server
where the shared file system or systems exist in pathname space. If you are using
cluster-managed failover, Identical Pathnames on Failover Server is the only
server parameter you must specify in the parameter file.
Release 6.3 289

Failover
For more information about this server parameter, see Identical Pathnames on
Failover Server on page 90.

Restarting the Server (ObjectStore-Managed Failover Only)
After setting the failover-specific server parameters, you must restart the ObjectStore
server with the -upgradeRAWFS option, as follows:

osserver -upgradeRAWFS

This option causes the server to add the heartbeat either to the file specified by the
Failover Heartbeat File parameter or to a rawfs partition.

Resource Properties (Cluster-Managed Failover Only)
The following ObjectStore-specific resource properties are relevant to configuring a
Sun Clusters 3.0 system that is running an ObjectStore server with cluster-managed
failover:

OS_ROOTDIR : string

Default: /global/opt/ODI/OS6.1.0/ostore

Specifies where ObjectStore was installed. If the value does not specify a global
file system path, it must be a node-local path in which ObjectStore has been
installed on every node on Nodelist. The value of OS_ROOTDIR must be the same
on every node.

osserver_command : string

Default: $OS_ROOTDIR/lib/osserver -hostname $HOSTNAME -p file

Specifies the command line to start the osserver process. The command line
cannot contain I/O redirection, $ substitution of variables other than OS_ROOTDIR
and HOSTNAME, or other complex syntax. $OS_ROOTDIR is substituted from the OS_
ROOTDIR resource property. $HOSTNAME is substituted from the logical host name
that was specified with register_osserver -h.

The -p option specifies a location in the global file system for the server parameter
file. Specifying this option ensures that the same server parameter file is used no
matter which node is currently running the osserver process. For information
about -p and other osserver options, see osserver on page 217.

This property is changed when setting up more than one logical server. The user
can also change it if necessary.

Environment : string

Default: <empty>

Specifies a stringarray of var=val environment settings for osserver. The
monitor process also sees these environment settings. Use this resource property
for any customization you need to do. You do not need to set the OS_ROOTDIR,
PATH, and LD_LIBRARY_PATH environment variables here.

This property is changed when setting up more than one logical server. The user
can also change it if necessary.
290 Managing ObjectStore

Chapter 6: High Availability of Data
Locator File: FAILOVER_SERVER Declaration
You must include a FAILOVER_SERVER declaration in the locator file. This declaration
tells ObjectStore clients about the failover server so that, if the server fails, the client
will try to connect with (in the case of ObjectStore-managed failover) the secondary
server or (in the case of cluster-managed failover) the restarted server. It also tells
the client how long to retry before giving up and reporting an error.

The FAILOVER_SERVER declaration uses the logical names. Client application
programs use the FAILOVER_SERVER logical names, not the ALTERNATIVE_SERVER
logical names and not the physical machine names.

Syntax To declare a failover server, you must include the FAILOVER_SERVER declaration in
the locator file that specifies information about the server. The FAILOVER_SERVER
declaration has the following syntax:

FAILOVER_SERVER logical_server_name_1
 ALTERNATIVE_SERVER logical_server_name_2
 RECONNECT_TIMEOUT integer # in seconds
 RECONNECT_RETRY_INTERVAL integer # in seconds
END

Arguments When you are using ObjectStore-managed failover, the logical_server_name_1
argument is the primary server in the failover server pair, and the logical_server_
name_2 argument specifies the secondary server of a failover server pair. Note that
logical_server_name_1 is the logical server host name that is recorded in all
database path names to databases of this failover server. Both arguments are
required.

When you are using cluster-managed failover, the logical_server_name_1 and
logical_server_name_2 arguments must both refer to the same logical server: the
logical host name of the osserver process that you registered with the cluster
operating system.

RECONNECT_TIMEOUT specifies the maximum number of seconds that a client can
attempt to reconnect to a failover server before signaling the exception err_broken_
failover_server_connection.

RECONNECT_RETRY_INTERVAL specifies how often (in seconds) the two failover
servers are pinged during the RECONNECT_TIMEOUT. The value of RECONNECT_RETRY_
INTERVAL should be less than or equal to RECONNECT_TIMEOUT. It is not useful to
specify a value for RECONNECT_TIMEOUT that is more than 10 times the value of
RECONNECT_RETRY_INTERVAL. Also, RECONNECT_RETRY_INTERVAL cannot be 0 if
RECONNECT_TIMEOUT is nonzero. The exception err_locator_syntax is signaled if
these constraints are violated.

If you are using ObjectStore-managed failover, the RECONNECT_RETRY_INTERVAL
argument should be four times the heartbeat interval. If you are using cluster-
managed failover, it should be 15 seconds for Sun Clusters 3.0. In either case,
RECONNECT_TIMEOUT should be 10 times RECONNECT_RETRY_INTERVAL.

The locator file is read the first time it is needed by the ObjectStore run time. The
locator file is not read again by the application unless the objectstore::set_
Release 6.3 291

Failover
locator_file() function is called. After the call, the locator file is reread the next
time the ObjectStore run time uses its contents.

ObjectStore-
managed
failover

When you are using ObjectStore-managed failover, the locator file provides a way of
defining pairs of ObjectStore servers that compose a failover server pair. You add a
FAILOVER_SERVER declaration to the locator file for each failover server pair. If you
have configured ObjectStore to enable clients to connect to more than one server, you
must include entries for each primary server that is a member of a failover server
pair. The declaration tells ObjectStore clients about the host names through which
the two osserver processes can be accessed. It also tells the clients that, if the
primary server in the pair fails, the secondary server will take over automatically.

Configuring for
two logical
servers

If you configure ObjectStore-managed failover so that there are two logical servers,
you must include two FAILOVER_SERVER entries in the locator file, one for each
logical ObjectStore server. You must also add four SERVER entries to the locator file;
each entry maps the logical name of an osserver process to network addresses
(machine names and port numbers).

Cluster-
managed
failover

If you are using cluster-managed failover, include the FAILOVER_SERVER declaration
in the locator file to tell the client that the server supports failover and that it should
try to reconnect when the server connection is broken. Note that the same host name
must be specified in the logical_server_name_1 and logical_server_name_2
arguments to the FAILOVER_SERVER declaration.

Note that the FAILOVER_SERVER declaration for cluster managed failover has
identical host names for the logical_server_name_1 argument and the logical_
server_name_2 argument because the cluster operating system maps the logical
ObjectStore server's network address to whatever machine is currently running the
osserver process.

Shared Disks
Failover depends on a shared, reliable disk (such as RAID 1 or RAID 10 mirrored
disks) connected to both the primary and secondary servers. The connection might
be either by a dual-ported reliable disk (for Sun machines, for example) or by the
disk, with the primary and secondary servers being on the same bus (HP systems,
for example).

Cluster-
managed
failover

When using cluster-managed failover, the shared disks can be managed by the
cluster operating system’s Global File System, which can accomodate files as well as
raw partitions. Also, each osserver process should have a direct hardware path to
its disk system from the node where that osserver is running, without I/O
operations having to pass through another node. Each logical ObjectStore server
should have its own shared disk group, separate from the disk groups used by other
logical ObjectStore servers or by other resources in the cluster. This is the only way
to get both active osserver processes to have a direct hardware path to disk when
they are running on different nodes, because the cluster operating system will only
activate one of the two I/O paths to a disk system at a time. ObjectStore will work
without such a fully redundant configuration, but performance will be lower.
292 Managing ObjectStore

Chapter 6: High Availability of Data
Restrictions
Failover alone cannot guarantee 100% fault tolerance. For example, failover is
ineffective if the shared disk should crash or if the network should fail.

Each of the ObjectStore servers that implements a failover server must have the
following on one or more disks that are shared by the two machines on which the
servers are running:

• Databases

• Transaction log

• rawfs partitions (if used)

• Failover heartbeat file (if used)

The ObjectStore servers must be running on the same software architecture.

Unless the shared disks are managed by a global file system (but not NFS), they can
only contain a rawfs. In this case, file databases cannot be used, and the transaction
log and failover heartbeat must reside in the rawfs, not in files.

Locator file
restrictions

Note the following restrictions when using the locator file:

• The locator file must be local to the client application so that NFS is not involved
in a failover situation.

• Do not add SERVER entries to pre-6.1 ObjectStore client locator files. Pre-6.1 clients
will fail when trying to read a locator file that contains SERVER entries.

Removing Failover (ObjectStore-Managed Failover Only)
To reconfigure ObjectStore without ObjectStore-managed failover, you must remove
any failover-specific server parameters from the parameter file — including

• Failover Heartbeat File

• Failover Heartbeat Time

• Failover Script

• Identical Pathnames on Failover Server

Also, if you configured ObjectStore-managed failover to store the heartbeat in a
rawfs partition, you must remove the heartbeat from the rawfs partition by running
the server with the -upgradeRAWFS option, as follows:

osserver -upgradeRAWFS

Configuring More Than One Logical Server
ObjectStore enables clients to connect to two different ObjectStore servers running
on the same machine. This situation can occur when either ObjectStore-managed or
cluster-managed failover is in effect. If a client is connected to different failover
servers on different machines and one of the servers fails, then the client can be
reconnected to a second server on the nonfailing machine, and both servers can
handle requests from the same client at the same time.
Release 6.3 293

Failover
The following sections describe entries you must add to the locator file to enable an
ObjectStore client to connect to two servers on the same machine at the same time.
The first section describes the FILE_HOST declaration, which you must include in the
locator file if you are using ObjectStore- or cluster-managed failover. The second
section describes the SERVER declaration, which you must also add to the locator file
only when using ObjectStore-managed failover.

Parameter File
To run two logical ObjectStore servers on the same machine requires two sets of
server parameters. Also, the command line for starting the osserver process must
include the -p option to tell it which set of server parameters to use. You must also
specify the -server_name or -hostname option so that each osserver process
knows its logical host name. For more information about these options for starting
an osserver process, see osserver on page 217.

SERVER Declaration (ObjectStore-Managed Failover Only)
The following information about the SERVER declaration applies only if you are using
ObjectStore-managed failover.

To enable an ObjectStore client to connect to more than one server on a machine, you
must provide information to the client that enables it to access an osserver process
by contacting its host machine at one of a set of ports. This information is specified
in the locator file, using the SERVER declaration.

SERVER
syntax

The SERVER declaration has the following syntax:

SERVER server_host_name
 HOST real_host_name
 PORT net portname
 { PORT net portname }
 . . .
 END

Arguments The server_host_name argument specifies the name of the logical server that is
being mapped to a machine and a set of ports, and the real_host_name argument
specifies the name of the machine on which the server is running.

The real_host_name argument can specify the local machine or another machine on
the network.

When choosing a name for a new server or a new machine, the user must ensure that
the name is not already in use.

You must provide at least one port specification. Use the net and portname
arguments to the PORT clause to specify a port for server-client communications, as
in the following example:

PORT IP 51025

The string server client:1 is understood in the port specification and is not
explicitly written. For additional information about the net and portname
arguments, see Modifying Port Settings on page 59.
294 Managing ObjectStore

Chapter 6: High Availability of Data
By providing more than one port specification, you enable a client to communicate
with a server across different networks.

Description The information specified by the SERVER declaration applies to databases that appear
to be on a server named server_host_name, either through a server_host_name:
or server_host_name:: prefix in the pathname or through a SERVER_HOST clause in
a FILE_HOST declaration later in the locator file; see FILE_HOST declaration on
page 295.

Note All SERVER definitions must appear first in the locator file, before any declarations of
failover servers and hosts.

FILE_HOST declaration
If you do not use explicit logical server names as host names in database pathnames
(only possible when not using rawfs), you must include FILE_HOST entries in the
locator file to tell ObjectStore clients the names of each logical ObjectStore server that
hosts each database. There must be separate FILE_HOST entries for each such server.

For more information about FILE_HOST entries, see Specifying Locator Rules on
page 269 and Specifying FILE_HOST Statements on page 270. For examples of
locator files that include FILE_HOST entries, see Sample Locator Files on page 279.

Environment Variables (ObjectStore-Managed Failover Only)
The OS_PORT_FILE environment variable for each osserver process must be set to
point to a port file that specifies unique ports. The SERVER entry in the locator file
must use the same ports (see Locator File: FAILOVER_SERVER Declaration on
page 291).

Also, the OS_SERVER_OUTPUT_LOG_NAME environment variable for each server
should be set to provide the server with a unique text output log file.

For more information about these environment variables, see OS_PORT_FILE on
page 120 amd OS_SERVER_OUTPUT_LOG_NAME on page 125.

Problems When Starting Failover Servers
As mentioned in Four osserver Processes, Two Logical Servers on page 287, when
starting the servers in a failover pair, the user should delay starting the secondary
server (by at least 3 heartbeat intervals) until after the primary server has started. If
the two are started at the same time, there is the risk that the primary servers of the
two failover pairs will both start running on the same machine, resulting in one
machine bearing the entire load. This load-balancing problem can also occur after
failover has happened and the failing machine is returned to service.

If both primary servers are running on the same machine, you can move one of the
servers over to the other machine by performing manual failback. The ObjectStore
clients will see the failback as a failover, and will retry their transactions and
continue running. (Note that failback is automatically performed by the cluster
operating system, as described in Cluster-Managed Failover on page 288.)

Here are the steps for performing manual failback:
Release 6.3 295

Failover
1 Choose which of the two failover pairs is going to experience failback.

2 Use the ossvrping utility to make sure that the secondary server for that failover
pair is alive on the second machine as a failover backup server. For more information
about ossvrping, see ossvrping on page 245.

3 Kill the primary server for that failover pair on the first machine, using the
ossvrshtd utility or the UNIX kill command. For more information about
ossvrshtd, see ossvrshtd on page 246.

4 Wait for the secondary server on the second machine to become a failover primary
server, using ossvrping to check its status.

5 Start the server on the first machine. If you used the osconfig utility, you should
use the startup script that osconfig created in the directory you specified. Using
this script will ensure that all the correct environment variables and command-
line options are provided to osserver. For more information about osconfig, see
osconfig on page 164.

6 Use the ossvrping utility to make sure the server you just started on the first
machine is alive as a failover backup server.

Performance and Independent Disk Systems
For best performance, each logical ObjectStore server should have its own disk
system, each set of databases should be on its own set of shared disks, and each
transaction log should be on its own shared disk that isn't used for anything else.
These disks can be managed as a rawfs or as one or more file system volumes. There
can be two rawfs file systems, or (if the operating system supports it) the databases
and transaction logs can reside in one or two shared file systems.

The Failover API
Client applications written in C++ can make use of failover features available in the
ObjectStore C++ API. Using this API is not required, but it allows applications to
access environment information for failover.

The C++ API includes the following functions, most of which belong to the os_
failover_server class. For complete descriptions of these functions, see the C++
A P I Reference.

• objectstore::get_locator_file()

• os_dbutil::svr_machine()

• os_server::get_host_name()

• os_server::is_failover()

• os_failover_server::get_logical_server_hostname()

• os_failover_server::get_online_server_hostname()

• os_failover_server::get_reconnect_retry_interval()

• os_failover_server::get_reconnect_timeout()

• os_failover_server::set_reconnect_timeout_and_interval()
296 Managing ObjectStore

Chapter 6: High Availability of Data
Exceptions and Error Messages for Failover
This section presents run-time exception cases that can occur with failover.

err_failover_server_refused_connection

Signaled when the initial connection to a failover server pair cannot be made.

err_broken_failover_server_connection

Signaled when neither the logical nor alternative servers comes back up in some
predetermined maximum amount of time that a client process should wait for
either server to come up on its own.

err_server_restarted

Signaled when a failover server connection is discovered to be lost and then one
of the logical or alternative servers comes back up before RECONNECT_TIMEOUT.
Lexical transactions are restarted when the exception err_server_restarted is
signaled within them.

Asynchronous Replication
ObjectStore provides the osreplic utility, which produces a continuously updated
copy (or replica) of one or more user databases. The utility works by coordinating the
actions of a source ObjectStore server running archive logger and of a target
ObjectStore server running recover, providing a read-only (MVCC) copy of a
database that is updated dynamically from the master database.

ObjectStore rawfs databases and rawfs directories can be replicated, as well as
ObjectStore file databases. Native file system directories cannot be replicated.

See osreplic on page 205 for further information.
Release 6.3 297

Asynchronous Replication
298 Managing ObjectStore

Chapter 7
Managing ObjectStore on
UNIX

This chapter provides information about managing ObjectStore on UNIX systems.
For complete information, you should consult the first six chapters in this book in
addition to this chapter.

The topics discussed in this chapter include the following:

Database and Executable Path Names 300

Setting Server Parameters 301

Starting the Server 302

Creating a Rawfs 303

Setting Cache Manager Parameters 307

When to Increase the Size of the Cache 312

ObjectStore Directory Structure 312

Finding Files Containing ObjectStore Messages 313

Identifying ObjectStore Database Files 313

Using Tapes with the osbackup Utility 313

The /tmp and /tmp/ostore Directories 314

AIX Considerations 314
Release 6.3 299

Database and Executable Path Names
Database and Executable Path Names
You specify a file database with an operating system path name. For example:

os_database::open("/usr3/fauntleroy/my_file_db")

You can also specify a relative path name.

ObjectStore treats links in the usual manner.

Automount path names are acceptable. If you are using automount, the path name
you specify cannot include the automount prefix, usually /tmp_mnt. Referring to the
file with this prefix does not cause automount to keep the file mounted and can cause
the file to appear to be deleted.

Unless you set up a database to be a server-remote database (see Chapter 5, Using
Locator Files to Set Up Server-Remote Databases, on page 265), you must store file
databases on a host that is running an ObjectStore server. ObjectStore determines the
server to use based on the NFS mountings of the client that creates the database.

Colons in file path names are interpreted as alphabetic characters if a slash character
precedes the colon in the path name. For example:

ObjectStore supports multibyte encoded path names. This includes environments
where ObjectStore applications and servers are located on different machines and
the client and server machines use different multibyte encodings.

File Name Expansion
When you specify a rawfs database name, ObjectStore commands use wildcard (*,
?, { }, and []) name expansion.

You must insert a backslash (\) as an escape character immediately before a wildcard
character so that the wild card is expanded by the ObjectStore command and not by
the shell, as in the following example osls command line:

osls sax::/charlie*

Where you specify a file database name, the shell performs wildcard expansion. This
means that it does not usually matter whether wildcards are preceded by escape
characters (backslashes). For example, the following two commands have an
identical effect:

Path Name Meaning

/usr1/moe/a:b Specifies a file named a:b in the /usr1/moe directory in
the local host’s name space.

bill:/usr2/dbs:abc Specifies a file named dbs:abc in the /usr2 directory, on
server bill, in the server’s name space.

fifi/mimi:lulu Specifies a file named mimi:lulu in the fifi directory,
relative to the working directory, in the local host’s name
space.
300 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
osls -d /oshome/bin/osse*
osls -d /oshome/bin/osse*

In the first case, the shell expands the wildcard and the expansions are all passed to
the ObjectStore osls utility; osls determines that they represent file path names and
passes them on to the shell command ls. In the second case, the shell passes the
unexpanded string to osls, which determines that it represents a file path name and
passes it to the shell command ls, which then does the expansion.

Executable Path Names
Path names for the executables for ObjectStore utilities have the following format:

$OS_ROOTDIR/bin/utility-name

ObjectStore
utilities and shell
commands

ObjectStore utilities have the prefix os, and most are analogous to shell commands.
The utilities include oschgrp, oschmod, oschown, osls, osmkdir, osrm, and osrmdir.
In most cases, you can use ObjectStore utilities and their corresponding shell
commands interchangeably on operating system files and directories containing
ObjectStore file databases. Any differences are noted in the documentation for a
particular utility.

Where the input name is a file database name, the commands pass the name on to
the corresponding system command. Those commands that modify an individual
database file in any way (oschgrp, oschmod, oschown, and osrm) attempt to verify
that the file being operated on is in fact a database by calling os_
database::lookup() on the path before operating on it. This verification is only
done, however, if neither -f (force) nor -R (recursive) is specified. If the force or
recursive flag is specified, the paths are simply passed to the shell without further
checking. This means, for example, that

osrm /foo/bar

removes /foo/bar only if it is a database, while

osrm -f /foo/bar

removes /foo/bar regardless of the type of file that it is.

Note ObjectStore utilities return a 0 to indicate success and a nonzero value to indicate
otherwise.

Setting Server Parameters
Each server parameter that you can specify is described in Chapter 2, Server
Parameters, on page 77.

All server parameters have default values. ObjectStore Technical Support
recommends that you use the default value for each parameter, which requires no
action on your part. You can, however, modify server parameters in two ways:

• You can use the osconfig utility; see osconfig on page 164.

• You can create a parameter file, as described in the next section.
Release 6.3 301

Starting the Server
After you modify a server parameter, you must shut down and restart the server
before any changes to parameters can take effect.

Creating a Parameter File
A parameter file has the following format:

Parameter file
format

• One parameter and its value can appear on a line.

• A parameter has a name, such as Deadlock Victim.

• The parameter name is followed by a colon.

• The colon is followed by the parameter’s value. According to the parameter, this
can be numeric or text.

• The colon and value are separated by tabs or spaces.

• Comment lines must contain a # as the first nonblank character.

• Case is not significant for parameter names.

• Embedded spaces are significant in parameter names.

• If the same parameter name appears twice in the parameter file, only the first
occurrence is read.

Example A parameter file can include one or more parameter specifications. The following
example provides definitions for the Log File, PartitionN, and Authentication
Required parameters:

Log File: /support2/local/ostore/sun4.r600/.log
Partition0: FILE/support2/local/ostore/sun4.r600/.part0
Authentication Required: Name Password

Search order When you start an ObjectStore server, ObjectStore looks for a parameter file in the
places shown in the following order. It uses the first parameter file that it finds.

1 File specified with the -p option to osserver

2 $OS_ROOTDIR/etc/host_server_parameters, where host is the value of the
-server_name or -hostname option to osserver, or the name of the local host

3 $OS_ROOTDIR/etc/server_parameters

OS_ROOTDIR is an environment variable set to the top-level directory in the part of
the source hierarchy containing ObjectStore files.

Starting the Server
The ObjectStore server usually starts when you boot your system. You can also start
the server with the osserver utility. Whichever way you start the server, you can
configure it with command-line options and parameter file options that the server
reads when it starts. For information about the osserver utility and its command-
line options that are available with the osserver utility, see osserver on page 217.

The path name of the server executable is $OS_ROOTDIR/lib/osserver. See the
installation instructions for setting OS_ROOTDIR.
302 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
Nonroot Server Startup
Normally, you start the server as root. However, this is not required. If you start the
server from a non-root account, ObjectStore allows access to rawfs databases but
does not allow access to file databases. You can change this behavior with the
Restricted File DB Access server parameter. See Restricted File DB Access
(UNIX Only) on page 97.

Creating a Rawfs
Maintaining a rawfs provides a fast, convenient way to manage all ObjectStore
databases at your site.

Before you can create a rawfs, you must set aside some partitions to be in the rawfs.

• For raw partitions, you might need to reorganize your disk space unless you have
a new disk.

• For a file partition, create a file. If there is anything in the file, ObjectStore
overwrites it.

When you create your rawfs, the preferred method of doing so is to use osconfig
rawfs. This utility prompts you for a path name for the partition and then initializes
it. See your installation guide for details.

ObjectStore places no restrictions on the size of a rawfs partition. The rawfs partition
size is limited only by the maximum size of a partition allowed by the operating
system.

The maximum number of partitions for a single server is 500.

Specifying the Partitions in a Rawfs
The PartitionN server parameter specifies the partitions in the rawfs. You add a
partition to the rawfs by adding a PartitionN statement to the server parameter file.
Each PartitionN statement has the following form:

PartitionN: type pathname {expandable | nonexpandable}

Where

N

Specifies a positive integer from 0 to n. PartitionN statements can appear in the
server parameter file in any order, but empty slots are not allowed. For example,
if you have four partitions, they must be numbered 0 through 3. Required.

type

Specifies whether the partition is a raw partition or a file partition. Required.

For a file partition, the value for type is FILE or UNIX, and the value of pathname
is the absolute path name of a UNIX file that is to be used as the nth partition in
the rawfs.
Release 6.3 303

Creating a Rawfs
For a raw partition, the value for type is platform-dependent (as described
below), and the value of pathname must be the raw device name (for example,
/dev/rsd0d) of a UNIX disk partition to be used as the nth partition in the rawfs.

The raw device is also known as a character special file in UNIX. Typically, each
partition is accessible both by a raw device and by a block special device. The
ObjectStore server requires the use of the raw device.

AIX On AIX, the value for type can be UNIX, FILE, PV, LV, or RAW:

- UNIX or FILE indicates the rawfs is stored in an AIX file.

- LV indicates the rawfs is stored in an AIX logical volume.

- RAW or PV indicates the rawfs is stored in an AIX physical volume (raw disk).

HP–UX On HP–UX, the value for type can be UNIX, FILE, PARTITION, or DISK:

- UNIX or FILE indicates that the rawfs is stored in an HP–UX file.

- PARTITION indicates that the rawfs is stored in an HP–UX logical volume.

- DISK indicates that the rawfs is stored on a raw device.

Linux On Linux, the value for type can be UNIX, FILE, PARTITION, or DISK:

- UNIX or FILE indicates that the rawfs is stored in a Linux file.

- PARTITION or DISK indicates that the rawfs is stored on a raw device.

SGI IRIX On SGI IRIX, the value for type can be UNIX, FILE, LV, or PARTITION:

- UNIX or FILE indicates that the rawfs is stored in an SGI IRIX file.

- LV indicates that the rawfs is stored in an SGI IRIX logical volume.

- PARTITION indicates that the rawfs is stored on a raw device.

Solaris On Solaris, the value for type can be UNIX, FILE, SLICE, or PARTITION:

- UNIX or FILE indicates that the rawfs is stored in a Solaris file.

- PARTITION or SLICE indicates that the rawfs is stored on a raw device or a
logical volume.

pathname

Specifies the path of the partition. It must begin with a slash (/). For a raw
partition, it is the device name. For a file partition, it is the absolute path name.

AIX On AIX, specify

- An absolute pathname if you specify UNIX or FILE for type

- The LV name if you specify LV for type, for example, oslv

- The PV name if you specify RAW or PV for type, for example, hdisk6

HP–UX On HP–UX, specify

- An absolute path name if you specify UNIX or FILE for type.

- The logical volume name if you specify PARTITION for type. You can use the
block special device or a raw device name. For example, /dev/vg00/lvol2 or
304 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
/dev/vg00/rlvol2, where 00 is the volume group number and 2 is the logical
volume.

- The path name for the raw device if you specify DISK for type; for example,
/dev/dsk/c207d6s0.
Release 6.3 305

Creating a Rawfs
Linux On Linux, specify

- An absolute path name if you specify UNIX or FILE for type.

- The path name of the raw device if you specify PARTITION or DISK as type; for
example, /dev/rdsk/c1t5d0s2.

SGI IRIX On SGI IRIX, specify

- An absolute path name if you specify UNIX or FILE for type.

- The path name of the raw device associated with the logical volume if you
specify LV for type; for example, /dev/rdsk/lv0.

- The path name of the raw device if you specify PARTITION as type; for
example, /dev/rdsk/dks1d457.

Solaris On Solaris, specify

- An absolute path name if you specify UNIX or FILE for type.

- The path name of the raw device if you specify PARTITION or SLICE as type;
for example, /dev/rdsk/c1t5d0s2.

{expandable | nonexpandable}

Indicates whether the partition is expandable or nonexpandable in size. By
default, raw partitions are nonexpandable and file partitions are expandable.

Modifying Partition Size
Expansion of the rawfs occurs differently, depending on whether the rawfs is in raw
partitions or file partitions, as explained in the following:

• You can expand raw partitions only by setting aside additional raw space,
adjusting the PartitionN statements as needed, and then restarting the server.

• File partitions can expand dynamically if you specify the expandable attribute in
the PartitionN statement and there is room for expansion in the file system that
contains the file.

For example, suppose the rawfs contains one raw partition (/dev/rsd4x) and three
files (/usr1/one, /usr2/two, and /usr3/three). If you want to permit only two of
the files to expand, your server parameter file might include

Partition0: UNIX /usr1/one expandable
Partition1: UNIX /usr2/two expandable
Partition2: UNIX /usr3/three nonexpandable
Partition3: PARTITION /dev/rsd4x

Increasing
partition size

To increase the size of one or more existing partitions, check the sizes of the
partitions with the appropriate operating system command. The new partition must
be no smaller than the partition it is replacing. To copy the data from an existing
small partition to a new larger one use dd(1). Then substitute each new name for the
corresponding old one in the server parameter file.

Shrinking rawfs
size

You cannot shrink the size of a rawfs by removing one of its partitions.
306 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
Adding
partitions

Use the osconfig utility to establish your rawfs. You can use the following
procedure to add partitions to the rawfs:

1 Make sure your raw partition is in place or that you created the file that will be
your file partition.

2 Use the ossvrshtd utility to shut down the server. On the cluster operating
system, use the stop_osserver script.

3 Edit the file $OS_ROOTDIR/etc/hostname_server_parameters. Add a
PartitionN for each new partition. See Specifying the Partitions in a Rawfs on
page 303.

4 If you are using failover, you must do either of the following, depending on the
type of partition you are adding:

- File-based partitions: If you are adding a file-based partition and are using either
ObjectStore-managed or cluster-managed failover, you must edit the Identical
Pathnames on Failover Server parameter to include a string that matches the
pathname of the partition. The osserver process will not start up unless you
edit the parameter. For more information about this parameter, see Identical
Pathnames on Failover Server.

- Raw-device partitions: If you are adding a raw-device partition and are using
cluster-managed failover, you must edit the cluster resource named
EXLNosserver-hostname-disks to include the raw device in its
GlobalDevicePaths property. Not adjusting the cluster resource will not
prevent the osserver from starting, but it will slow down access to the new
raw-device partition.

5 As root, restart the server with the osserver utility. On the cluster operating
system, use the start_osserver script.

The server initializes only the new partitions. The content of existing partitions
remains intact.

To reinitialize the entire rawfs, see Reconfiguring the Rawfs on page 37.

Setting Cache Manager Parameters
If a cache manager is not already running, it starts automatically when a client
application starts.

You can specify the following cache manager parameters:

• Cache Directory

• Commseg Directory

• Hard Allocation Limit

• Mount Table Pathname

• Preallocate Cache Files

• Soft Allocation Limit
Release 6.3 307

Setting Cache Manager Parameters
• Temporary Files Permission

If you modify a cache manager parameter, the parameter does not take effect until
the cache manager is shut down and restarted.
308 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
Cache Directory Parameter
Default: /tmp/ostore

The Cache Directory parameter specifies the directory in which ObjectStore places
the client cache file. This directory should not be an NFS mount point because this
can result in slower client performance and can create the potential for problems
with memory mapping over NFS. The default value is /tmp/ostore.

If the environment variable OS_CACHE_DIR is set in a client, ObjectStore uses that
directory for that client. Cache and commseg files should be in the same directory.

Make sure that this directory exists. The cache manager does not create it
automatically.

Commseg Directory Parameter
Default: /tmp/ostore

The Commseg Directory parameter specifies the directory in which ObjectStore
places the communications segment. This directory should not be an NFS mount
point because this can result in slower client performance and can create the
potential for problems with memory mapping over NFS. The default value is
/tmp/ostore.

If the environment variable OS_COMMSEG_DIR is set in a client, ObjectStore uses that
directory for that client. Cache and commseg files should be in the same directory.

Hard Allocation Limit Parameter
Default: 0

The Hard Allocation Limit parameter specifies the upper bound, in bytes, on the
amount of disk space that the cache manager can allocate for its cache files and
commseg files. If you try to exceed this limit, you receive an error message similar to
the following at ObjectStore initialization time (for example, when you call
objectstore::initialize() or open or create a database):

Cache Manager hard limit (NNNNN) exceeded by request for MMMMM bytes
of cache and/or commseg

This parameter allows you to prevent ObjectStore files from using too much disk
space.

The default value of 0 means that no limit is enforced.

Mount Table Pathname Parameter
Default: /etc/mnttab , /etc/mtab

The Mount Table Pathname parameter specifies the path of the mount table. The
mount table indicates the UNIX file systems that are mounted and where they are in
your file system. For example, if grizzly has a directory named /archive/two and
you have it mounted on your file system as /arc2, NFS uses the mount table to
translate the file name /arc2/x/y to /archive/two/x/y.
Release 6.3 309

Setting Cache Manager Parameters
HP-UX and
System V

The Mount Table Pathname parameter instructs ObjectStore to use a mount table
that is not in the default location. For HP–UX, Solaris, and System V platforms
(except SGI), the default path name is /etc/mnttab; otherwise, it is /etc/mtab.

ObjectStore Technical Support expects that few users will ever need this parameter.
It is provided for the very unlikely situation in which you have something in your
default mount table that ObjectStore cannot parse.

Preallocate Cache Files Parameter
Default: true

The Preallocate Cache Files parameter controls the preallocation of cache and
commseg files.

Note This parameter is for use with full client-server ObjectStore applications only. To
control preallocation on ObjectStore / Single applications, use the OS_PREALLOCATE_
CACHE_FILES environment variable, as described in OS_PREALLOCATE_CACHE_
FILES (UNIX Only) on page 121.

By default, ObjectStore preallocates cache files during client initialization. If the files
are large (hundreds of megabytes or more), preallocation can cause a noticeable
delay during initialization. To increase performance, set this parameter to false (0),
preventing the up-front allocation of disk blocks to cache and commseg files. Instead,
space is allocated for the files as needed. Setting this parameter to true (nonzero)
restores the default behavior.

Caution When running clients with the Preallocate Cache Files parameter set to false,
you must ensure that the file system that contains the cache and commseg files never
gets full. If the system is unable to allocate free space for the cache files, the client or
server can crash.

Soft Allocation Limit Parameter
Default: 0

The Soft Allocation Limit parameter specifies the suggested upper bound, in
bytes, on the amount of disk space that the cache manager can allocate for its cache
files and commseg files. An application is allowed to exceed this limit to run to
completion; when it finishes, the cache manager automatically deletes the cache and
commseg files if the soft limit has been exceeded. Doing so frees disk space but can
make application startup slower by forcing ObjectStore to create new cache and
commseg files.

The Soft Allocation Limit parameter allows you to prevent ObjectStore cache
files from using too much disk space.

The default value of 0 means that no limit is enforced.
310 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
Temporary Files Permission Parameter
Default: 0660

When the Temporary Files Permission parameter is set to an octal value (for
example, 0666), the cache manager creates commseg and cache files with file
permissions equal to that value. If you do not use this parameter, the cache manager
creates new cache and commseg files with the permission 0660.

Note that the cache manager file permissions setting can also be affected by the
umask of the shell that started the cache manager. For this reason, you should set the
umask to 0 when using the Temporary Files Permission parameter.

Cache Manager Parameter File Location
The cache manager parameter file is similar to the server parameter file in terms of
location and internal format. ObjectStore searches the following locations in the
following order and uses the first cache manager parameter file that it finds:

1 Pathname specified with the -p option to oscmgr6.

2 $OS_ROOTDIR/etc/host_cache_manager_parameters, where host is the name
of the current host as returned by the hostname program. OS_ROOTDIR is an
environment variable.

3 $OS_ROOTDIR/etc/cache_manager_parameters.

Cache Manager Parameter File Format
The cache manager parameter file has the same characteristics as the server
parameter file:

• Each line in a parameter file contains one parameter and its value.

• Parameters have text names, such as Cache Directory.

• Each parameter name is followed by a colon (:), some white space (tabs or spaces),
and a value (either numeric or text, depending on the parameter).

• Comment lines must contain a # as the first nonblank character.

• Case is not significant for parameter names. Embedded spaces, however, are
significant.

• If the same parameter name appears twice in the parameter file, only the first
occurrence is read.

Example of a Cache Manager Parameter File
A cache manager parameter file can include one or more parameter specifications.
Following is an example of a cache manager parameter file:

Cache Directory: /support2/local/ostore/tmp
Commseg Directory: /support2/local/ostore/tmp
Mount Table Pathname: /new/mount/pathname
Hard Allocation Limit: 10000000
Release 6.3 311

When to Increase the Size of the Cache
When to Increase the Size of the Cache
A larger cache size does not necessarily improve performance.

On UNIX, an ObjectStore cache is a memory-mapped file. Suppose that you have a
system in which the size of this memory-mapped file is a significant percentage of
the system’s real memory. In this situation, an application that is performing
memory mapping for a large file and subsequently doing a lot of processing that
does not involve the memory-mapped file can suffer a much poorer performance
than if the application had not memory mapped the file — that is, if the application
used straight UNIX file I/O.

The reason for this is that overall system swapping is increased by the presence of
the semiactive memory-mapped file. That is, the application is not using or reusing
the cached database pages frequently enough to benefit from a large cache file.

An example of such an application is a program that populates a database by
inserting a large number of objects into a collection. In this case, with the exception
of the actual collection object, the pages in the cache are not being reused. Such a
program benefits from having a small cache (for example, 2 MB) because the objects
are not being revisited and overall UNIX system swapping is low.

A program that would benefit from having a large cache is one that accesses a large
number of objects (pages) and then reaccesses the same objects before replacing the
objects (pages) in the cache with other objects (pages) fetched from the database. Of
course, as the cache size starts to become a larger and larger percentage of the size of
the machine’s physical memory, more and more system swapping occurs and the
performance gain of a large cache file begins to be lost.

The important issue with a large database is knowing how to properly cluster and
segment it to achieve maximum performance. Properly designing a database so that
it is clustered or segmented to achieve maximum performance is usually very
application specific.

See OS_CACHE_SIZE on page 106 for information on setting the cache size.

ObjectStore Directory Structure
The ObjectStore directory structure appears in the following illustration. You must
set OS_ROOTDIR to Toplevel.

Toplevel

lib Other Directoriesbin
312 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
Finding Files Containing ObjectStore
Messages

When an ObjectStore daemon process sends output to stdout or stderr,
ObjectStore routes the output to a corresponding file, as follows:

• Cache Manager: /tmp/osc6_out

• Server: /tmp/oss_out

If the file does not already exist, ObjectStore creates it; if the file does exist,
ObjectStore appends the new information.

ObjectStore daemons seldom send messages to these files except in debug mode or
under certain unusual error conditions. In debug mode, the ObjectStore server and
cache manager send a lot of output to these files because all of the debugging output
goes there. This information can be helpful in understanding and resolving an error.
When you report a problem involving one of these daemons to Technical Support,
find such a file, if it exists, and provide the contents.

When the daemon process is not running, you can safely delete the corresponding
file. Usually, very little is ever sent to these files, so they are unlikely to occupy much
disk space.

Identifying ObjectStore Database Files
On UNIX platforms you can edit the /etc/magic file so that the file command
recognizes ObjectStore databases and ObjectStore backup and archive files. Add the
following lines to the /etc/magic file:

0 string eXc\r\nelon\rdb\n! objectstore database
0 string ObJeCtStOrEdAtAbAsEbAcKuPiMaGe objectstore backup or archive image

Example %file my_data.db
mydata.db: objectstore database
%

Using Tapes with the osbackup Utility
When you execute the osbackup utility, you can use standard UNIX tape drives,
including quarter-inch cartridge and 8 mm cartridge drives. Some standard tape
formats and capacities are shown in the following table:

Format Capacity in Megabytes

QIC–11 30

QIC–24 60

QIC–150 150
Release 6.3 313

The /tmp and /tmp/ostore Directories
The /tmp and /tmp/ostore Directories
ObjectStore uses the /tmp directory as the default location of the oss_out server
output file and the osc6_out cache manager output file. For more information, see
Finding Files Containing ObjectStore Messages on page 313.

ObjectStore uses the /tmp/ostore directory as the default location for the following
files:

AIX Considerations
The following information provides additional considerations for ObjectStore on
AIX.

Using SCSI Tape Drives
When using tapes with the osbackup and osrestore utilities, you have several
choices for configuring SCSI tape drives as output devices on the RISC System/6000.
These choices offer tradeoffs between convenience and performance.

You must choose values for these parameters:

• Use Device Buffers as set with chdev or SMIT

• Tape size given to the osbackup command

• Block size for the device as set with chdev or SMIT

• Block size given to the osbackup command

Device buffers Writing a tape is much faster when you use device buffers. To do this, set Use
Device Buffers to yes with chdev or SMIT. When you use device buffers, you must
also specify a tape size to the osbackup command to ensure that buffered data is not

QIC–525 525

EXB–8200 2200

EXB–8500 5000

Format Capacity in Megabytes

File For Information See

Cache OS_CACHE_DIR (UNIX Only) on
page 106

Commseg OS_COMMSEG_DIR (UNIX Only) on
page 108

UNIX domain sockets Modifying Network Port Settings on
page 58
314 Managing ObjectStore

Chapter 7: Managing ObjectStore on UNIX
lost. Without a specified tape size, ObjectStore continues to write data until the end
of the tape, not leaving room for any buffered data.

This situation does not occur when Use Device Buffers is set to no, and it is not
necessary to specify a tape size to the osbackup command.

Block size In general, you get the best tape usage by using variable-size blocks. To select
variable-size blocks, you must use SMIT or chdev to set the block_size attribute to 0.

The use of variable-size blocks on QIC–120 or QIC–150 media is apparently unique
to IBM. If you write variable-size blocks on such a tape, you will not be able to read
it on another system.

You can also use fixed-size records, which can facilitate tape duplication under
certain circumstances.

To use fixed-size records, you must either set block_size in bytes in SMIT or with
chdev, or use the -b control argument to osbackup to specify the block size in 512-
byte sectors. Note that the osbackup command option overrides the SMIT setting,
unlike utilities such as tar, where the SMIT setting takes precedence.

The block size must be 512 bytes or less or the osbackup utility cannot work.

Setting Up Permissions
When you have a client and a server on two different AIX machines, export the file
systems as setuid. Also, add the switch

-root=server_host_name

to the exportfs command or to the line in the /etc/exports file. server_host_
name is the name of the host of the ObjectStore server.

Failing to perform both steps can cause permission errors.

Troubleshooting Permission Denied Error
There is an AIX bug that occurs when the number of processes allowed per user is
too low. You can list the current setting with the following command:

lsattr -E -l sys0 -a maxuproc
maxuproc 40 Maximum # of processes allowed per user True

To increase the maxuproc parameter, enter the following command:

chdev -l sys0 -a maxuproc=200
sys0 changed

When the number of processes allowed per user is too low, you might receive the
following error:

No handler for exception:
permission to access this database was denied
re /usr/lpp/ostore/lib/liboscol.ldb while looking up file database
/usr/lpp/ostore/lib
/liboscol.ldb (host "aix_server1")
gmake: *** [AIX/os_schema.C] Error 1
aix_server1> ps -efl | grep ostore
Release 6.3 315

AIX Considerations
260801 S root 19379 3967 0 60 20 12892 516 Feb
23 - 0:00
/usr/lpp/ostore/lib/cmgr3 -AIX_SRC
200801 S pbergstr 32347 41739 1 60 20 11051 88 6052824 14:01:27
pts/15 0:00
grep ostore
262801 S pbergstr 40254 3967 0 60 20 9e3 1372 14:00:31 -
0:00 /
usr/lpp/ostore/lib/osserver -AIX_SRC
aix_server1>

Uninstalling ObjectStore
If you want to remove ObjectStore from your AIX system completely, use the
following procedure:

1 Shut down the cache manager ($OS_ROOTDIR/bin/oscmshtd).

2 Shut down the server ($OS_ROOTDIR/bin/ossvrshtd -f hostname).

3 Use ossvrchkpt to ensure that all data is copied from the transaction log to the
database that was changed.

4 Check the files $OS_ROOTDIR/etc/yourhostname_server_parameters and $OS_
ROOTDIR/etc/yourhostname_cache_manager_parameters to see where your
transaction log and temporary files are going and then remove them.

5 Remove the install area (/usr/lpp/ODI by default).

6 Remove links to /usr/bin if you created them with osconfig. Do not remove
/usr/bin/oslevel.

7 Remove links to /usr/lib if you created them (/usr/lib/libos*).

8 Remove the link to $OS_ROOTDIR/include if you created it
(/usr/include/ostore).

9 Remove /etc/rc.objectstore.
316 Managing ObjectStore

Chapter 8
Managing ObjectStore on
Windows

This chapter provides information for managing ObjectStore on Windows platforms.
For complete information, you should consult the first six chapters of this book along
with this chapter.

The topics covered include the following:

Using ObjectStore Utilities 317

Specifying File Database Path Names 318

Setting Server Parameters 318

Starting the Server 319

Creating a Rawfs 320

Starting the Cache Manager 321

Finding Files Containing ObjectStore Messages 322

Accessing UNIX Databases from Windows 323

About Client/Server Communication 324

Using an ObjectStore Server on Windows to Access Remote Databases 324

Changing the Registry Location for ObjectStore (Windows Only) 325

Using ObjectStore Utilities
During installation, you use the ObjectStore setup utility (setup.exe) to configure
ObjectStore daemons and applications — the server, cache manager, and the
ObjectStore utilities.

All utility executables are stored in ObjectStore’s bin directory.

On Windows, the setup.exe program installs the server and cache manager
daemons as Windows Services. These services start automatically when the system
boots. You can use the utility program ossvrshtd to stop the server. You can also
start and stop ObjectStore services by using the Administrative Tools | Services console
for 2000 and XP which is accessed from the Control Panel.

On Windows platforms, run ObjectStore utilities in a command prompt window.
Release 6.3 317

Specifying File Database Path Names
Specifying File Database Path Names
You specify a file database with an operating system path name. For example:

os_database::open("d:\\carter\\myfiledb")

UNC path name The syntax for specifying a UNC path name is

os_database::open("\\\\servername\\sharename\\myfiledb")

In C++, you must escape the backslash (\) with another backslash.

You can also specify a relative path name.

Server-remote
databases

You usually store a file database on a host that is running an ObjectStore server.
However, you can use a locator file to allow databases that are remote from the
server. See Chapter 5, Using Locator Files to Set Up Server-Remote Databases, on
page 265.

Server names You can specify a server name when you open or create a database. The server name
identifies the server host on which the database is located. For example:

• Server on a UNIX host: elvis:/usr/barbar/employees

• Server on a Windows host: elvis:D:\usr\barbar\employees

This specifies a database, employees, in the directory \usr\barbar on the host
elvis.

This method of specifying a path name is called server-relative. The token before the
first colon names a server host and the rest of the string is parsed by that server in
the syntax used on the server host operating system. Among other things, this is
useful when no remote file protocol (such as NFS) is in use between the client and
server hosts.

ObjectStore supports multibyte encoded path names. This includes environments
where ObjectStore applications and servers are located on different machines and
the client and server machines use different multibyte encodings.

Setting Server Parameters
On Windows, ObjectStore stores the parameters used by the server and cache
manager in the Windows registry database.

ObjectStore server parameters are described in Chapter 2, Server Parameters, on
page 77.

You can change these parameters by using the ObjectStore utility setup.exe. To set
server parameters, run setup.exe, select Advanced Options, then select Server
Parameters. The ObjectStore installation guide contains additional information
about using setup.exe.

After you modify a server parameter, you must shut down and restart the server for
the parameter to take effect.
318 Managing ObjectStore

Chapter 8: Managing ObjectStore on Windows
Starting the Server
There are several ways to start the server. One way is to use the ObjectStore setup
utility, setup.exe, to configure the server to start automatically at system startup.

On Windows, you can configure the server as a service. This is the preferred method.

When starting the server as a service, you can specify any of the osserver command-
line options except -con or -console. You must specify them as Start Parameters in
the Administrative Tools | Services console for 2000 and XP.

You can also run the server as a console application. In this case, you run
OSSERVER.EXE from a command window, passing the -console option as the first
argument.

At startup, ObjectStore configures the server according to parameter options in the
registry database.

Ordinarily, you use server parameters to control the server’s behavior. However,
you can also specify the command-line options to osserver. For more information
about the osserver utility and its options, see osserver on page 217.

Troubleshooting ObjectStore on Windows
You might have a situation in which you cannot run the server and the cache
manager as services, even after defining autostart for them. You receive the
following error:

Starting process
Process could not start
error 1067: Process terminated unexpectedly

The first thing to assess is whether the server and cache manager can be started in
console mode by using the -con option of osserver. If they start properly in console
mode, the problem is likely to be a permission problem or an incorrect definition for
the ObjectStore image path in the registry.

Try the following to determine what is wrong with the ObjectStore definition of
Windows Services:

1 If you ran an earlier ObjectStore release, confirm that it was properly uninstalled
before installing the new release. This is necessary so that the image path is
properly set for the Windows Services.

2 Ensure that ObjectStore was installed using an account with Administrative
privileges.

3 To run the server and cache manager as Services, you must log on with
Administrative privileges.

4 Confirm that the OS_ROOTDIR environment variable is set and that it points to the
proper ObjectStore installation.
Release 6.3 319

Creating a Rawfs
5 Make sure that the image path for the server and cache manager is correct. To
check this, run Regedt32 from a window and follow the path

 HKEY_LOCAL_MACHINE | System | CurrentControlSet | Services
 | ObjectStore Cache Manager R6.0

Then verify that the setting for the image path is correct. Do the same for
ObjectStore Server R6.0.

6 Verify that the user account used to log in includes the log in as a service...
privilege.

If the same executables do not bring up ObjectStore properly even in console mode
(especially if the server does not start from the command line when you use the -con
option), it is not a permission problem.

If it is not a permission problem, it is very likely that the transaction log has not been
initialized. In this case, a message can be seen in the %OS_TMPDIR%\osserver.txt
output:

When a partition is not specified, the transaction log is needed.

This is usually the last message in osserver.txt or in the server startup output in
debug mode. If this is not the case, in the window from where you start the server,
enter

>set OS_DEBUG_NETWORK=1

and

>start /min osserver -con -F -v -d 10 > server.out

or

>osserver -con -F -v -d 10 > server.out

if the start command is not recognized.

After that, send the server.out file to Technical Support.

Creating a Rawfs
Maintaining a rawfs provides a fast, convenient way to manage all ObjectStore
databases at your site. See Managing the Rawfs on page 35. On Windows platforms,
you can use the following rawfs configurations:

• File partitions

• Disk partitions

• Physical disks

If you want to use ObjectStore’s high-availability features, you need to configure the
rawfs to use either disk partitions or a physical disk. In either of these configurations,
you should first create the disk partitions with a disk management utility, such as the
Windows Disk Management snap-in, before specifying them for use by the rawfs.
320 Managing ObjectStore

Chapter 8: Managing ObjectStore on Windows
The Disk Management snap-in is available from the Windows Start menu under
Administrative Tools | Computer Management.

Using setup.exe to Add Rawfs Partitions
You use the ObjectStore setup.exe utility to create and modify rawfs. Be sure to shut
down the server before you run setup.exe. After you specify server parameters,
setup.exe provides the opportunity to set up a rawfs. If you are configuring a rawfs
to use file partitions, you specify the name and size of the file partition and whether
or not it is expandable.

If you are configuring a rawfs to use disk partitions or physical disks, you select the
partitions from a list of available partitions.

Modifying Partition Size
Before you modify your rawfs configuration, back up your data by using the
osbackup utility. See osbackup on page 143.

Rawfs
expansion

Expansion of the rawfs occurs differently, depending on whether the rawfs is in raw
partitions or file partitions:

• You can expand raw partitions only by setting aside additional raw space,
adjusting the PartitionN statements as needed, and then restarting the server.

• File partitions can expand dynamically if you specify the expandable attribute in
the PartitionN statement and there is room for expansion in the file system that
contains the file.

For more information about modifying a rawfs, see Reconfiguring the Rawfs on
page 37.

Starting the Cache Manager
The cache manager is a Windows Service that is usually configured to start when the
system is booted. Alternatively, you can configure it to start automatically when it is
needed. Use the Administrative Tools | Services console for 2000 and XP to configure the
cache manager for manual startup.

To start the cache manager from your account, you must have domain user listed as
one of your privileges. If you do not, you might receive the message

Error auto starting Cache Manager. Unable to open service database.
Access is denied.

You might receive this message when you log in to your domain account rather than
logging directly into the computer name account. If this is the case, you need to ask
your system administrator to check your user privileges in that domain or configure
the cache manager for automatic startup.

If you want to start the cache manager as a console application, use the following
command:
Release 6.3 321

Finding Files Containing ObjectStore Messages
oscmgr6 -con [-d debug_level]

Finding Files Containing ObjectStore
Messages

In some cases, when an ObjectStore daemon process reports an error, ObjectStore
routes the output to a file. These files are

• Server errors: OSSERVER.TXT

• Cache manager errors: OSCMGR6.TXT

If the file does not already exist, ObjectStore creates it; if the file does exist,
ObjectStore appends the error output to it.

ObjectStore uses the path assigned to the environment variable OS_TMPDIR to
determine the directory in which to place these files. If OS_TMPDIR is not set,
ObjectStore uses the path returned by the Win32 API GetTempPath(), which is
controlled by the TMP and TEMP environment variables.

ObjectStore daemons seldom send messages to these files except in debug mode or
under certain unusual error conditions. In debug mode, the ObjectStore server and
cache manager send a lot of output to these files because all of the debugging output
goes there. This information can be helpful in understanding and resolving an error.
When you report a problem involving one of these daemons to Technical Support,
find such a file, if it exists, and provide the contents.

When the daemon process is not running, you can safely delete the corresponding
file. Usually, very little is ever sent to these files, so they are unlikely to occupy much
disk space.
322 Managing ObjectStore

Chapter 8: Managing ObjectStore on Windows
Accessing UNIX Databases from Windows
When accessing UNIX file databases over a network (such as with Intergraph
PCNFS), the ObjectStore client on Windows prompts for a name and password. See
Authentication Required on page 80.

If you want the ObjectStore client to use RPC authentication, use the Windows
REGEDT32 utility and set the following variables in the registry, where username is
your username:

HKEY_LOCAL_MACHINE\Software\Object Design Inc.\
 ObjectStore 6.0\Remote\username\UNIX.UID
HKEY_LOCAL_MACHINE\Software\Object Design Inc.\
 ObjectStore 6.0\Remote\username\UNIX.GID

Set these variables (which are strings, such as REG-SZ) to the numeric values of the
UNIX user and group IDs required. Note that you can edit these values only from a
Windows account with Administrator privileges.

Note that the registry location

HKEY_LOCAL_MACHINE\Software\Object Design Inc.\
 ObjectStore 6.0\Remote

has Administrator rights only. This is to prevent a security breach that can result if
ordinary users have write privileges to this area. If you set up the values for an
ordinary user who does not have Administrator privileges and the user tries to run
an ObjectStore program, the user must still enter a user name and password to access
the server.

To prevent this, you can change the permissions of the registry location

HKEY_LOCAL_MACHINE\Software\Object Design Inc.\
 ObjectStore 6.0\Remote

to have read-only privileges for users with non-Administrator privileges. You can
set the privileges by using the Security | Permissions dialog in the registry
editor.
Release 6.3 323

About Client/Server Communication
About Client/Server Communication
Windows clients and servers can use two network layers:

• Within a single machine, ObjectStore uses an interprocess communication
mechanism based on named shared-memory objects.

• Windows Sockets provide TCP/IP connections.

A server can and typically does serve both networks simultaneously. A client
chooses the first network available that recognizes the name of the server host.

For more information, see Network Support in Installation for Windows.

Using an ObjectStore Server on Windows to
Access Remote Databases
Netware ObjectStore can be used with the Gateway Services for NetWare (GSNW) feature.

Allow Remote Database Access
If a server is configured to allow remote databases, the server can use UNC paths to
access such databases. Using UNC paths is the preferred method because of
permissions issues surrounding the use by a service of mounted drives. Server-
relative paths such as

serverhost:\\filehost\sharename\directory\foo.odb

or locator files that redirect all UNC paths to a named server host take advantage of
this feature. In general, it is unnecessary to

• Mount file host drives on your server host

• Use REPLACE statements in locator files

Use this feature with 2000/XP as well as with NetWare file hosts.

Access Control for Remote Databases
Windows NT does not allow the server to use credentials obtained from a remote
client host on a remote file host. There are two alternatives for dealing with this issue.
They are described in the Microsoft Knowledge Base article Q132679, available on
the Microsoft TechNet CD or at the Microsoft Web site

http://www.microsoft.com

The first choice is to run the server normally, as Local System. This requires that the
user Everyone is able to access remote files on behalf of remote clients. Note that this
solution requires you to create an account for Everyone on non-Windows NT
systems.

The second choice is to run the server as another user. You can set this up by means
of the Control Panel Services applet.
324 Managing ObjectStore

Chapter 8: Managing ObjectStore on Windows
Changing the Registry Location for
ObjectStore (Windows Only)

ObjectStore uses the Windows registry for different operations, such as looking up
parameters or the UNIX user and group IDs. When you install ObjectStore, the
Windows registry location is set to the following:

HKEY_LOCAL_MACHINE\SOFTWARE\Object Design Inc.\ObjectStore 6.0

You can, however, change the registry location that you want ObjectStore to use.
Changing this location is especially useful when you have embedded ObjectStore in
an application. By specifying a different location, you can prevent another
application that also uses ObjectStore from overwriting information in the registry
location used by your application.

Server To specify a different registry location, use the -r option to the osserver utility, as
explained in osserver on page 217. This option takes a string argument that specifies
the registry location that you want osserver to use, relative to HKEY_LOCAL_
MACHINE\SOFTWARE.

To pass the -r option and its location argument to osserver, call the NT system call
CreateService() when installing your application. One of the arguments to
CreateService() is lpBinaryPathName. You can set this argument to the path of
osserver, along with the -r option and its argument. The path of osserver must be
enclosed by double quotes, and the quoted pathname must be followed by the -r
option and its argument. This embedded argument is a string that specifies the
registry location that ObjectStore is to use. Here is an example of the
lpBinaryPathName argument:

const char* lpBinaryPathName =
 "\"d:\\odi\\ostore\\bin\\osserver.exe\" -r my_application";

After calling CreateService() with this argument, if you were to navigate to the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\service_name registry key
and look at the value associated with the ImagePath key, you would find

"d:\\odi\\ostore\\bin\\osserver.exe\" -r my_application

At this point, the ObjectStore server can look in the following registry location for its
parameters:

HKEY_LOCAL_MACHINE\SYSTEM\my_application\Server

Cache Manager If you also want the ObjectStore cache manager to use a different registry location,
you can follow a similar procedure to change its location. The cache manager
(oscmgr6) also has a -r option that allows you to specify a different location. You can
use the CreateService() call to pass the option and its argument to the cache
manager. After CreateService() has been called with the argument

const char* lpBinaryPathName =
 "d:\\odi\\ostore\\bin\\oscmgr6.exe\" -r my_application

the cache manager can look in the following registry location for its parameters:

HKEY_LOCAL_MACHINE\SYSTEM\my_application\Cache Manager
Release 6.3 325

Changing the Registry Location for ObjectStore (Windows Only)
Clients On the client side, you can set the registry location programatically by calling os_
authentication::set_nt_registry_location() or by setting the OS_REMOTE_
AUTH_REGISTRY_LOCATION environment variable. , If the location were set to my_
application, clients would look in the following registry location for authentication
information:

HKEY_LOCAL_MACHINE\SYSTEM\my_application\Remote

Note that, if set_nt_registry_location() and OS_REMOTE_AUTH_REGISTRY_
LOCATION specify conflicting locations, the environment variable takes precedence.
For more information, see the following:

• os_authentication::set_nt_registry_location() in C++ A P I Reference

• OS_REMOTE_AUTH_REGISTRY_LOCATION (Windows Only) on page 122
326 Managing ObjectStore

Release 6.3
Index
A
address space

amount needed 34
assigning 103
definition 30
exhausting resources 33
guidelines for managing 33
kinds of addresses 31
limiting amount used 33
managing the pieces 34
mapping 103
memory fault 113
optimization 122
persistent storage region

default size 103
definition 31
starting address 104, 128

address-space markers 104
Admin Host List server parameter

description 78
Admin User server parameter

description 79
administrative user 78
AIX

address space defaults 103
SCSI tape drives 314
setting permissions 315

Allow NFS Locks server parameter
description 79
locator files 278

Allow Remote Database Access server parameter
description 80
locator files 267

Allow Shared Communications server parameter
description 80

applications
client process description 21
copying 221

deploying with protected schemas 124
moving 221
patching executable to find application

schema 221
running from CDROM 44

archive logging
commands 139
description 140
examples 141
options 137
overview 48
syntax 137
tradeoffs 141

archive record file 52
assigning addresses 103
asynchronous replication 297
authentication

Authentication Required server parameter 80
description 81
OS_AUTH environment variable 105
OS_REMOTE_AUTH_REGISTRY_LOCATION

environment variable 122
OS_SECURE_RPC_DOMAIN environment

variable 125
types of 81
user interface to 84

Authentication Required server parameter
description 80

automating backups 50
automounter pathnames 300
autostart cache manager debugging 72

B
backing up data

description 146
examples 147
options 143
overview 48
327

C

UNIX tapes 313
backup strategies 50
backup strategy example 51
backups for large databases 53
backups, automated 50

C
cache

See client cache
Cache Directory Parameter cache manager

parameter 309
cache manager

communication with ObjectStore processes 24
debugging 26, 72
debugging start-up problems 70
deleting cache and commseg files 155
demand on resources 30
description 22
output file

Windows 322
parameter file on UNIX 307
port number 59
shutting down 156
starting 25

UNIX 307
Windows 321

start-up lock file 107
status, displaying 157
UNIX parameters 308

Cache Manager Ping Time In Transaction server
parameter

description 85
Cache Manager Ping Time server parameter

description 85
callback messages

description 22
number sent 249
ownership 65

capacity planning 38
CDROM, running application from 44
changing server parameters

UNIX 302
Windows 318

checkpoint
osserver -c 217
ossvrchkpt 241

cl preprocessor 119
ClearCase 66

client cache
deleting 155
description 21
increasing size 34
not enough space 33
UNIX cache size and performance 312

client, ObjectStore
description 21

clients
address space 30
authentication 83
communication with ObjectStore processes 24
demand on resources 30
description 21
disconnecting from server 242
displaying information 248
locating a database 62
port number 59
starting 25
stopping 25
turning on counters 121

Cluster Growth Policy server parameter
description 85

cluster operating system
debugging server 71
failover 288
osconfig 164
osserver 217

clusters
definition 18

common directory on UNIX 312
commseg

deleting 155
description 23
UNIX default directory 108

Commseg Directory Parameter cache manager
parameter 309

compactor
oscompact utility 160

comparing schemas 215
concurrent access, how managed 64
configuring ObjectStore 164
contention management 38
copying applications 221
copying databases

database size 168
description 168
options 167
328 Managing ObjectStore

Index
pathname interpretation 168
core files, location 109
cpp preprocessor 119
CPUs 29
CreateService() system call 325

D
D6NETNSM DLL 118
D6NETTCP DLL 117
data, recovering

description 200
examples 201
options 199
syntax 199
tradeoffs 201

database affiliations, external
changing 135

Database File Growth Policy server parameter
description 86

database schemas
installation mode 114

database utilities
descriptions 132

databases
See also file databases
archive logs, recovering from 199
changing affiliations 135
changing permission modes 152
compacting 160
converting 54
copying 167
data set, operating on 42
definition 18
displaying information about open databases 252
displaying size 238
fragmentation, fragmentation 44
host name, displaying 185
large 35
management guidelines 43
metaschema 117
moving 196
moving offline and online 169
ownership, changing 154
removing 213
removing links 213
restoring from backups 208
schema-protection keys 123
server-local 62

server-remote 62
setting up server-remote 265
transaction log 27
upgrading 54
verifying pointers and references 258

databases, upgrading
ObjectStore C++ 54
ObjectStore Java interface 56

DB Expiration Time server parameter
description 87

Deadlock Victim server parameter
description 87

debugging
access violations 109
cache manager start-up 70
displaying cache manager status 157
displaying object offset and size 238
missing vtbls 127
servers 220
setting breakpoints 110

debugging environment variables 73
debugging the autostart cache manager 72
debugging the cache manager 72
debugging, server 67
decaching soft pointers 113
default segment 18
defaults

locator files 277
OS_ROOTDIR 123
preprocessor for ossg 119

defragmenting databases 44
deleting cache and commseg files 155
deleting databases 213
deleting rawfs directories 214
deleting rawfs links 213
deploying applications

that use ossevol 228
DES authentication type 82
Direct to Segment Threshold server parameter

description 88
directories

changing owners 154
changing permissions 152
creating in rawfs 195
description 312
displaying contents 194
moving 196
removing from rawfs 214
Release 6.3 329

E

disk space
displaying used and available in rawfs 172
needed by ObjectStore processes 29
organizing 38

DLLs
loaded by default 117

dump/load facility
dumped ASCII 54

dynamic link libraries
See DLLs

E
environment variables

OS_16K_PAGE 102
OS_32K_PAGE 102
OS_64K_PAGE 102
OS_8K_PAGE 102
OS_ALWAYS_CHECK_SERVER_AT_COMMIT 102
OS_AS_SIZE 103
OS_AS_START 104
OS_ASMARKERS_USELESS 104
OS_AUTH 105
OS_CACHE_DIR 106
OS_CACHE_SIZE 106
OS_CMGR_OUTPUT_LOG_NAME 107
OS_CMGR_STARTUP_LOCK 107
OS_COLL_DEBUG_INDEX 107
OS_COLLECTION_TRACE_INDEX_USAGE 108
OS_COMMSEG_DIR 108
OS_COMP_SCHEMA_CHANGE_ACTION 109
OS_CORE_DIR 109
OS_DEBUG_C0000005 109
OS_DEBUG_LOCATOR_FILE 109
OS_DEF_BREAK_ACTION 110
OS_DEF_EXCEPT_ACTION 110
OS_DEF_MESSAGE_ACTION 110
OS_DISABLE_PROPAGATE_ON_COMMIT 112
OS_DISPLAY_INSTALL_MISMATCHES 112
OS_DISSALLOW_OSSINGLE_REMOTE_

DATABASES 112
OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_

AS_RELEASE 113
OS_ENABLE_REALTIME_COUNTERS 113
OS_FORCE_HANDLE_TRANS 113
OS_HANDLE_TRANS 113
OS_IGNORE_LOCATOR_FILE 114
OS_INC_SCHEMA_INSTALLATION 114
OS_INHIBIT_TIX_HANDLE 115

OS_LANG_OVERRIDE 115
OS_LIBDIR 116
OS_LOCATOR_ESCAPE_CHARACTER 116
OS_LOCATOR_FILE 116
OS_LOG_TIX_FORMAT 117
OS_META_SCHEMA_DB 117
OS_NETWORK 117
OS_NETWORK_SERVICE 118
OS_NO_MAPPED 119
OS_NOTIFICATION_QUEUE_SIZE 119
OS_PASSWORD 120
OS_PATHNAME_ENCODING 120
OS_PORT_FILE 120
OS_PREALLOCATE_CACHE_FILES 121
OS_PRINT_CLIENT_COUNTERS 121
OS_RCVBUF_SIZE 121
OS_REMOTE_AUTH_REGISTRY_LOCATION 122
OS_RESERVE_AS 122
OS_ROOTDIR 123
OS_SCHEMA_KEY_HIGH 123
OS_SCHEMA_KEY_LOW 123
OS_SCHEMA_PATH 124
OS_SECURE_RPC_DOMAIN 125
OS_SERVER_DEBUG_FILE_MAX_LINES 125
OS_SERVER_OUTPUT_LOG_NAME 125
OS_SNDBUF_SIZE 125
OS_STDOUT_FILE 125
OS_TIX_BUFFER_SIZE 126
OS_TIX_WD 126
OS_TMPDIR 126
OS_TRACE_MISSING_VTBLS 127
OS_TURN_ON_ENGLISH_MESSAGES 127
OS_USE_MAP_FIXED 128

OS_USE_MAP_FIXED environment variable 128
OS_USER_ARCH_SET

OS_USER_ARCH_SET environment variable 128
OS_USERNAME

OS_USERNAME environment variable 128
OS_VERIFYDB_BUFFER_SIZE

OS_VERIFYDB_BUFFER_SIZE environment
variable 128

OS_VERIFYDB_FAST
OS_VERIFYDB_FAST environment variable 129

environment variables for debugging 73
err_authentication_failure exception 84
err_broken_failover_server_connection

exception 297
err_database_lock_conflict exception 79
err_failover_server_refused_connection
330 Managing ObjectStore

Index
exception 297
err_file_not_local exception 80
err_server_restarted exception 297
ESTALE Implies Database Deleted server

parameter 89
/etc/group file 150, 155
evolving schemas

See schema evolution
exceptions

default message action 110
disabling handling 115
error report buffer size 126
log file 117
unhandled 110

external database affiliations
changing 135

F
failback

cluster operating system 288
failover 285

API 296
cluster-managed 288
configuring 286
errors 297
heartbeat 289
ObjectStore-managed 286
osconfig 164
osserver 219
performance 296
pinging servers 245
removing 293
restrictions 293
rolling upgrades 166
scripts 289

Failover Heartbeat File server parameter
description 89

Failover Heartbeat Time server parameter
description 90

Failover Script server parameter
description 90

file databases
client access to 62
definition 19
storing on a nonserver host 265

file systems
automounted 300
using multiple 62

fragmentation 44

G
generating schemas

neutralization options 235
options 230
syntax 229

get_host_name()

os_server, defined by 296
get_locator_file()

objectstore, defined by 296
get_logical_server_hostname()

os_failover_server, defined by 296
get_online_server_hostname()

os_failover_server, defined by 296
get_reconnect_retry_interval()

os_failover_server, defined by 296
get_reconnect_timeout()

os_failover_server, defined by 296
group names

changing 150

H
Hard Allocation Limit Parameter cache manager

parameter 309
heartbeat mechanism 289
Host Access List server parameter

description 90

I
Identical Pathnames on Failover Server server

parameter
description 90

ignore_locator_file()
objectstore, defined by 277

incremental record file 52
index management 38
installing ObjectStore

osconfig 164
installing schemas 114
Internet services, setting 118
is_failover()

os_server, defined by 296

J
Japanese messages 115
Release 6.3 331

L

L
LANG environment variable 115
large database backups 53
links in rawfs

changing rawfs hosts 151
creating 190
moving 196
removing 213

Linux 32 bit
address space defaults 103

Linux 64 bit
address space defaults 103

listing directory content 194
locator files

character string patterns 273
cluster-managed failover 292
declaring hosts 269
format 267
introduction 266
limitations 282
metacharacters in character string patterns 275
ObjectStore-managed failover 292
OS_DEBUG_LOCATOR_FILE environment

variable 109
OS_IGNORE_LOCATOR_FILE environment

variable 114
OS_LOCATOR_ESCAPE_CHARACTER environment

variable 116
OS_LOCATOR_FILE environment variable 116
overriding the default 277
specifying rules 269

locks
client 242
description 64

Log Data Segment Growth Increment server
parameter

description 91
Log Data Segment Initial Size server parameter

description 92
effect when server starts 28

Log File server parameter
description 92

log files
current size 249
description 27
displaying information 253
initializing 219
moving data out of 241

number of records written 250
reallocating 28
server parameters 91
shrinking 28
size 28

Log Record Segment Buffer Size server
parameter

description 92
Log Record Segment Growth Increment server

parameter
description 92

Log Record Segment Initial Size server
parameter

description 93

M
-make_reachable_library_classes_persistent

option to ossg 231
-make_reachable_source_classes_persistent

option to ossg 231
mapping addresses 103
Max AIO Threads server parameter

description 93
Max Connect Memory Usage server parameter

description 93
Max Data Propagation Per Propagate server

parameter
description 93

Max Data Propagation Threshold server
parameter

description 94
Max Memory Usage server parameter

description 94
Max Two Phase Delay server parameter

description 94
memory

address space 29
fault on an address 113
increasing physical memory 34
kinds that ObjectStore uses 30
virtual memory 31

mending the rawfs file system 218
Message Buffer Size server parameter

description 95
metaschema database 117
Mount Table Pathname Parameter cache manager

parameter 309
moving applications 221
332 Managing ObjectStore

Index
moving data out of log 241
moving databases

osmv utility 196
moving databases offline and online 169
moving directories 196
moving links 196
-mrlcp option to ossg

how to use 231
-mrscp option to ossg

how to use 231
MVCC

locks and ownnership 66

N
Name Password authentication type 83
nested transactions

locks and ownership 66
network communications

disconnecting client from server 242
DLLs to be loaded 117
message buffer size 95
port settings 58
resources needed 29

NFS and locator files 282
NFS mounts

Windows to UNIX 323
NMessage Buffers server parameter

description 95
NONE authentication type 81
non-root start-up of server 97
Notification Retry Time server parameter

description 95
NT Local authentication type 82
NT Remote authentication type 83

O
ObjectStore

communication among processes 23
definition 18
process information, obtaining 26
starting processes 24
stopping processes 25
version number, displaying 263

ObjectStore client
See clients

objectstore, the class
get_locator_file() 296

OS_16K_PAGE environment variable
description 102

OS_32K_PAGE environment variable
description 102

OS_64K_PAGE environment variable
description 102

OS_8K_PAGE environment variable
description 102

OS_ALWAYS_CHECK_SERVER_AT_COMMIT
environment variable

description 103
OS_AS_SIZE environment variable

defaults 103
description 103

OS_AS_START environment variable
defaults 104
description 104, 128

OS_ASMARKERS_USELESS environment variable
description 104

OS_AUTH environment variable
description 105

OS_CACHE_DIR environment variable 106
OS_CACHE_SIZE environment variable 106
OS_CMGR_OUTPUT_LOG_NAME environment

variable 107
OS_CMGR_STARTUP_LOCK environment variable 107
OS_COLL_DEBUG_INDEX environment variable 107
OS_COLLECTION_TRACE_INDEX_USAGE environment

variable 108
OS_COMMSEG_DIR environment variable 108
OS_COMP_SCHEMA_CHANGE_ACTION environment

variable 109
OS_CORE_DIR environment variable 109
os_dbutil, the class

svr_machine() 296
OS_DEBUG_C0000005 environment variable 109
OS_DEBUG_LOCATOR_FILE environment variable 109
OS_DEF_BREAK_ACTION environment variable 110
OS_DEF_EXCEPT_ACTION environment variable 110
OS_DEF_MESSAGE_ACTION environment variable 110
OS_DEFAULT_AS_PARTION_SIZE environment

variable 111
OS_DISABLE_PROPAGATE_ON_COMMIT environment

variable 112
OS_DISALLOW_OSSINGLE_REMOTE_DATABASES

environment variable 112
OS_DISPLAY_INSTALL_MISMATCHES environment

variable 112
Release 6.3 333

O

OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_

RELEASE environment variable 113
OS_ENABLE_REALTIME_COUNTERS environment

variable 113
os_failover_server, the class 296

get_logical_server_hostname() 296
get_online_server_hostname() 296
get_reconnect_retry_interval() 296
get_reconnect_timeout() 296
set_reconnect_timeout_and_interval() 296

OS_FORCE_HANDLE_TRANS environment variable 113
OS_HANDLE_TRANS environment variable 113
OS_IGNORE_LOCATOR_FILE environment variable

description 114
example 277

OS_INC_SCHEMA_INSTALLATION environment
variable 114

OS_INHIBIT_TIX_HANDLE environment variable 115
OS_LANG_OVERRIDE environment variable 115
OS_LIBDIR environment variable 116
OS_LOCATOR_ESCAPE_CHARACTER environment

variable 116
OS_LOCATOR_FILE environment variable

description 116
example 277

OS_LOG_TIX_FORMAT environment variable 117
OS_META_SCHEMA_DB environment variable 117
OS_NETWORK environment variable 117
OS_NETWORK_SERVICE environment variable 118
OS_NO_MAPPED environment variable 119
OS_NOTIFICATION_QUEUE_SIZE environment

variable 119
OS_OSSG_CPP environment variable 119
OS_OSVERIFYDB_BUFFER_SIZE environment

variable 120
OS_OSVERIFYDB_FAST environment variable 120
OS_PASSWORD environment variable 120
OS_PATHNAME_ENCODING environment variable 120
OS_PORT_FILE environment variable

description 120
how to use 59

OS_PREALLOCATE_CACHE_FILES environment
variable

description 121
OS_PRINT_CLIENT_COUNTERS environment

variable 121
OS_RCVBUF_SIZE environment variable 121
OS_REMOTE_AUTH_REGISTRY_LOCATION

environment variable 122
OS_RESERVE_AS environment variable 122
%OS_ROOTDIR directory

shared by multiple machines 266
OS_ROOTDIR environment variable

description 123
OS_SCHEMA_KEY_HIGH environment variable

description 123
OS_SCHEMA_KEY_LOW environment variable

description 123
OS_SCHEMA_PATH environment variable 124
OS_SECURE_RPC_DOMAIN environment variable 125
os_server, the class

get_host_name() 296
is_failover() 296

OS_SERVER_DEBUG_FILE_MAX_LINES environment
variable 125

OS_SERVER_OUTPUT_LOG_NAME environment
variable 125

OS_SNDBUF_SIZE environment variable 125
OS_STDOUT_FILE environment variable 125
OS_TIX_BUFFER_SIZE environment variable 126
OS_TIX_WD environment variable 126
OS_TRACE_MISSING_VTBLS environment variable

description 127
OS_TURN_ON_ENGLISH_MESSAGES environment

variable 127
osaffiliate utility 135
osarchiv logging 51
osarchiv utility 137
osbackup utility 143
osc6_out file on UNIX 313
oschgrp utility 150
oschhost utility 151
oschmod utility 152
oschown utility 154
oscmgr6 executable

description 22
OSCMGR6.TXT file

Windows 322
oscminit executable

permissions 73
oscminit6 executable

description 22
oscmrf utility 155
oscmshtd utility 156
oscmstat utility 157
oscompact utility 160
334 Managing ObjectStore

Index
osconfig utility 164
oscopy utility 167
osdbcontrol utility 169
osdf utility 172
osdump utility 173
osexschm utility 180
osgc utility 181
osglob utility 184
oshostof utility 185
O6NETNSM DLL 118
O6NETTCP DLL 117
osjidump utility 186
osjiload utility 188
osln utility 190
osload utility 192
osls utility 194
osmkdir utility 195
osmv utility 196
osrecovr utility 199
osreplic utility 297
osrestore utility 208
osrm utility 213
osrmdir utility 214
oss_out file on UNIX 313
osscheq utility 215
osserver utility

general information 217
UNIX 302
Windows 319

OSSERVER.TXT file
Windows 322

ossetasp utility 221
ossetrsp utility 223
OSSETUP utility

Windows 318
ossevol utility 224
ossg utility

setting preprocessor 119
syntax 229

ossize utility 238
ossvrchkpt utility 241
ossvrclntkill utility 242
ossvrdebug utility 244
ossvrping utility 245
ossvrshtd utility 246
ossvrstat utility 248
ostest utility 257
osverifydb utility 258

osversion utility 263
ownership

changing 154
description 64

P
parameter files

cache manager on UNIX 311
server

UNIX 301
Windows 318

parameters, cache manager
Cache Directory Parameter 309
Commseg Directory Parameter 309
Hard Allocation Limit Parameter 309
Mount Table Pathname Parameter 309
Preallocate Cache Files 310
Soft Allocation Limit 310
Temporary Files Permission 311

PartitionN server parameter
description 95

partitions 95
pathnames

automounter 300
file databases

UNIX 300
Windows 318

file name expansion 184
server-relative 63, 318
setting for remote schemas 223
testing for specified conditions 257
translating between platforms 62

performance
address space resources 34
client counters 121
compacting databases 160
enabling counters 113
fragmentation, effects of 44
OS_RESERVE_AS environment variable 122

permission modes
changing 152

permissions
changing mode 152
database pages 22
osreplic 206
osrestore 209

persistent storage region
default size 103
Release 6.3 335

R

description 31
not enough address space 33
optimization 122
starting address 104, 128

physical memory
increasing 34
not enough 33

pinging the server 245
platforms

ports file 59
running on multiple 62

pointers
verifying 258

port settings 59
ports file format 59
Preallocate Cache Files cache manager

parameter 310
Preferred Network Receive Buffer Size server

parameter
description 95

Preferred Network Send Buffer Size server
parameter

description 95
preprocessors

ossg 119
processes

communication 23
obtaining information 26
starting 24
stopping 25

propagation
buffer size 96
description 28
interval length 96
Max Data Propagation Per Propagate server

parameter 93
Max Data Propagation Threshold server

parameter 94
number of times done 252
ossvrchkpt utility 241

Propagation Buffer Size server parameter
description 96

Propagation Sleep Time server parameter
description 96

R
rawfs

advantages and disadvantages 35

creating
UNIX 303
Windows 320

creating directories 195
creating links 190
description 19
disk space information 172
initializing 220
link hosts

changing 151
links

See links in rawfs
log file in 27
mending 218
moving databases, directories, or links 196
reconfiguring 37
removing directories 214
removing links 213
utilities for managing 36
wildcards 36

rawfs databases
client access to 62
description 19
pathname format 20

rawfs directories
creating 195
deleting 214
removing 214

rawfs link hosts
changing 151

RAWFS Partition Growth Policy server parameter
description 96

reachable types
specifying -mrlcp 231
specifying -mrscp 231

-ReallocateLog option to osserver 28
recovering data

description 200
examples 201
options 199
overview 48
syntax 199
tradeoffs 201

recovery operations
using osrestore and osrecovr 53
using system backup and osrecovr 54

references
verifying 258

registry location
336 Managing ObjectStore

Index
changing 325
OS_REMOTE_AUTH_REGISTRY_LOCATION 122
osserver 218

Remote Database Grow Reserve server parameter
description 97

remote schema pathnames 223
Removing 293
removing databases 213
removing rawfs directories 214
replicator utility

See osreplic utility
restoring data

description 210
examples 211
options 208
overview 48
pathname translation 210
syntax 208

Restricted File DB Access server parameter
description 97

rolling upgrades 166
RPC Timeout server parameter 97

S
schema evolution

deploying applications 228
options 224
ossevol utility 224

schema segment 18
schemas

comparing 215
displaying class names 180
generating 229
installation 114
OS_SCHEMA_KEY_HIGH/LOW environment

variables 123
patching executable to find application

schema 221
setting remote schema pathname 223

sectors
definition 28

segments
default 18
definition 18
displaying size 238
schema 18

server debugging 67
server parameters

Admin Host List 78
Admin User 79
Allow NFS Locks 79
Allow Remote Database Access 80
Allow Shared Communications 80
Authentication Required 80
Cache Manager Ping Time 85
Cache Manager Ping Time in Transaction 85
changing

shutting down server 246
Cluster Growth Policy 85
Database File Growth Policy 86
DB Expiration Time 87
Deadlock Victim 87
Direct to Segment Threshold 88
ESTALE Implies Database Deleted 89
Failover Heartbeat File 89
Failover Heartbeat Time 90
Failover Script 90
Host Access List 90
Identical Pathnames on Failover Server 90
Log Data Segment Growth Increment 91
Log Data Segment Initial Size 92
Log File 92
Log Record Segment Buffer Size 92
Log Record Segment Growth Increment 92
Log Record Segment Initial Size 93
Max AIO Threads 93
Max Connect Memory Usage 93
Max Data Propagation Per Propagate 93
Max Data Propagation Threshold 94
Max Memory Usage 94
Max Two Phase Delay 94
Message Buffer Size 95
NMessage Buffers 95
Notification Retry Time 95
PartitionN 95
Preferred Network Receive Buffer Size 95
Preferred Network Send Buffer Size 95
Propagation Buffer Size 96
Propagation Sleep Time 96
RAWFS Partition Growth Policy 96
Remote Database Grow Reserve 97
Restricted File DB Access 97
RPC Timeout 97
setting

UNIX 301
Windows 318

server-relative pathnames 63
Release 6.3 337

T

servers
access control 80
amount of data stored 251
communication with ObjectStore processes 24
concurrent access by other servers 278
connections, allowing 93
debugging 220
demand on resources 29
description 20
disconnecting client threads 242
displaying information 248
log file information 253
log files 27
message buffers

number of 95
size 95

moving data out of the log 241
multiple on same host 21
open databases information 252
output file

Windows 322
parameter descriptions 77
pinging 245
port number 59
reallocating the log 28
running two on same host 60
setting parameters

UNIX 301
Windows 318

setting up remote databases 265
shared memory communications 80
shutting down 246
starting

non-root 97
on all platforms 24
UNIX 302
Windows 319

stopping, when to 25
set_locator_file()

objectstore, defined by 277
set_reconnect_timeout_and_interval()

os_failover_server, defined by 296
setup.exe

creating a rawfs 321
setting server parameters 318

shrinking the log file 28
shutting down cache manager 156
shutting down server 246
SIGSEGV signals

choosing a handler 113
Soft Allocation Limit cache manager

parameter 310
soft-pointer decaching 113
Solaris 32 bit

address space defaults 103
Solaris 64 bit

address space defaults 103
stack traces

OS_DEF_BREAK_ACTION environment
variable 110

starting servers
See servers

status
cache manager 157
server 248

svr_machine()

os_dbutil, defined by 296
swap space

how ObjectStore uses it 30
increasing 34
not enough 34

symbolic links 190
SYS authentication type 82

T
tapes for UNIX backups 313
Temporary Files Permission cache manager

parameter 311
testing pathnames 257
threads

Max AIO Threads server parameter 93
/tmp/ostore directory

commseg 108
UNIX commseg location 23
UNIX use 314
client cache 106

TOP_OSTORE_DIR directory on UNIX 312
transaction log

See log files
troubleshooting

before calling support 76
cannot commit 76
cannot open application schema 74
database has fraction length 74
general strategy 67
incompatible releases 75
inconsistent releases 75
338 Managing ObjectStore

Index
invalid address 75
no networks where registered 123
process could not start on Windows 319
propagation failure 76

two-phase commit
maximum delay 94
recovery 95

U
UNC path 324
UNIX

access from Windows 323
backing up to tape 313
cache location 22
cache size, increasing 312
changing server parameters 302
commseg location 23
file name expansion 300
ObjectStore output files 313
$OS_ROOTDIR/etc/ports file 59
partition size, increasing 306
partitions

specifying in rawfs 303
pathnames 300
rawfs, creating 303
rawfs, specifying partitions in 303
setting cache manager parameters 307
setting server parameters 301
starting the server 302
/tmp/ostore directory use 314

upgrading ObjectStore C++ database 54
upgrading ObjectStore Java interface database 56
upgrading ObjectStore servers 165
users

administrative privileges 78
defining OS_ROOTDIR 57
requirements for developing ObjectStore

applications 58
requirements for running ObjectStore

applications 57
utilities

osaffiliate 135
osarchiv 137
osbackup 143
oschgrp 150
oschhost 151
oschmod 152
oschown 154

oscmrf 155
oscmshtd 156
oscmstat 157
oscompact 160
osconfig 164
oscopy 167
osdbcontrol 169
osdf 172
osdump 173
osexschm 180
osgc 181
osglob 184
oshostof 185
osjidump 186
osjiload 188
osln 190
osload 192
osls 194
osmkdir 195
osmv 196
osrecovr 199
osreplic 297
osrestore 208
osrm 213
osrmdir 214
osscheq 215
osserver

general information 217
UNIX 302
Windows 319

ossetasp 221
ossetrsp 223
ossevol 224
ossg 229
ossize 238
ossvrchkpt 241
ossvrclntkill 242
ossvrdebug 244
ossvrping 245
ossvrshtd 246
ossvrstat 248
ostest 257
osverifydb 258
osversion 263
Windows use 317

V
verifying schemas
Release 6.3 339

W

See also schemas
version number display 263
virtual file systems 66
virtual memory

definition 31
Max Connect Memory Usage server parameter 93
Max Memory Usage server parameter 94

W
Windows

access to UNIX 323
address space defaults 103
authentication 84
automatic backup 50
cache location 22
client/server communication 324
commseg location 23
DLLs to be loaded 117
file database pathnames 318
locator files 324
NT Local authentication type 82, 83
ObjectStore output files 322
%OS_ROOTDIR%\ETC\PORTS file 59
OS_TMPDIR environment variable 126
rawfs, creating 320
remote databases 324
REPLACE statement 324
schema files directory 116
starting cache manager 321
starting the server 319

Windows Sockets 324
340 Managing ObjectStore

	Managing ObjectStore
	Preface
	Overview of Managing ObjectStore
	What Is ObjectStore?
	What Is an ObjectStore Database?
	How Do Objects Get into a Database?

	What Kinds of Databases Are There?
	File Databases
	Rawfs Databases
	Rawfs partitions
	Rawfs database name format

	How ObjectStore Controls Storage
	What Does the Server Do?
	What Does the Client Application Do?
	What Does the Cache Manager Do?

	Managing Processes
	Communication Among ObjectStore Processes
	Starting ObjectStore Processes
	Stopping ObjectStore Processes
	Obtaining Process-Status Information
	Process Messages
	Displaying Status Information
	Debugging the Cache Manager
	Pinging
	Monitoring the Server

	The Server Transaction Log
	Log File Size

	Managing Computer Resources
	Managing Memory
	What Is Address Space?
	How Are the Pieces of Address Space Shared?
	Illustration of Address Space
	How Do Transactions Use Address Space?
	What Happens When Resources Are Exhausted?
	How Can You Control These Resources?
	How Much Memory Is Needed?
	Reserving Versus Mapping an Address

	Managing the Rawfs
	Utilities for Managing the Rawfs
	Reconfiguring the Rawfs

	What You Need to Know About the API
	Capacity Planning
	Data Organization
	Indexes and Contention
	Managing ObjectStore Programmatically
	Managing Servers
	Managing Clients
	Managing Cache Managers
	Managing Databases
	Managing the Rawfs
	Managing Schema

	Managing Databases
	Working with Databases and Data Sets
	Moving, Renaming, and Dumping Databases
	Managing Server-remote Databases
	Databases and Applications on CD-ROM

	Managing Database Fragmentation
	Fragmentation in the Logical Structure
	Fragmentation in the Physical Structure
	Checking for Fragmentation
	Minimizing Fragmentation
	Presizing
	Defragmenting the Physical Structure

	Overview of the Backup/Restore Facility
	Online Backup and Archive Logging
	Online Restore and Recovery

	Backup Strategies
	General Backup Practices
	Archive Logging
	Special Considerations for Large Databases
	Restore and Recovery Options

	The Dump/Load Subsystem
	Upgrading a C++ Database
	Upgrading a Java Database

	Managing Users
	Modifying Network Port Settings
	Communication Methods
	Defaults for Port Settings
	Modifying Port Settings
	Settings Format

	Running Two Servers on One Host
	Same Release (6.1 Or Later Only)
	Different Releases

	When Your Application Uses Notification

	How a Client Locates the Server for a Database
	When Accessing a File Database
	When Accessing a Rawfs Database

	Managing ObjectStore on Multiple Platforms
	Using Multiple File Systems
	Translating Path Names

	Ownership and Locks
	How Ownership and Locks are Related
	Lock Management
	Ownership Conflicts
	Locks and Nested Transactions
	Locks, Ownership, and MVCC
	API for Lock Management

	ClearCase Virtual File System (MVFS)
	Troubleshooting
	Debugging the ObjectStore Server
	Missing Transaction Log File
	Invalid Transaction Log File
	Corrupted Transaction Log File
	Sample Trace File Reading

	Debugging an ObjectStore Server on Sun Clusters
	Debugging the Cache Manager
	Debugging the Cache Manager Autostart
	Alternate Technique to Debug the Cache Manager Autostart
	Environment Variables for Debugging
	Environment Variables for Debugging Client Applications
	No Handler for Exception Error
	Before Calling Technical Support

	Server Parameters
	List of Server Parameters
	Admin Host List
	Admin User
	Allow NFS Locks (UNIX Only)
	Allow Remote Database Access
	Allow Shared Communications (UNIX Only)
	Authentication Required
	Cache Manager Ping Time
	Cache Manager Ping Time In Transaction
	Cluster Growth Policy
	Database File Growth Policy
	DB Expiration Time
	Deadlock Victim
	Direct to Segment Threshold
	ESTALE Implies Database Deleted (UNIX Only)
	Failover Heartbeat File
	Failover Heartbeat Time
	Failover Script
	Host Access List
	Identical Pathnames on Failover Server
	Log Data Segment Growth Increment
	Log Data Segment Initial Size
	Log File
	Log Record Segment Buffer Size
	Log Record Segment Growth Increment
	Log Record Segment Initial Size
	Max AIO Threads
	Max Connect Memory Usage
	Max Data Propagation Per Propagate
	Max Data Propagation Threshold
	Max Memory Usage
	Max Two Phase Delay
	Message Buffer Size
	N Message Buffers
	Notification Retry Time
	PartitionN
	Preferred Network Receive Buffer Size
	Preferred Network Send Buffer Size
	Propagation Buffer Size
	Propagation Sleep Time
	RAWFS Partition Growth Policy
	Remote Database Grow Reserve
	Restricted File DB Access (UNIX Only)
	RPC Timeout

	Environment Variables
	Specifying Values for Environment Variables
	OS_16K_PAGE
	OS_32K_PAGE
	OS_64K_PAGE
	OS_8K_PAGE
	OS_ALWAYS_CHECK_SERVER_AT_COMMIT
	OS_AS_SIZE
	OS_AS_START
	OS_ASMARKERS_USELESS
	OS_AUTH
	OS_CACHE_DIR (UNIX Only)
	OS_CACHE_SIZE
	OS_CMGR_OUTPUT_LOG_NAME
	OS_CMGR_STARTUP_LOCK (UNIX Only)
	OS_COLL_DEBUG_INDEX
	OS_COLLECTION_TRACE_INDEX_USAGE
	OS_COMMSEG_DIR (UNIX Only)
	OS_COMP_SCHEMA_CHANGE_ACTION
	OS_CORE_DIR (UNIX Only)
	OS_DEBUG_C0000005 (Windows Only)
	OS_DEBUG_LOCATOR_FILE
	OS_DEF_BREAK_ACTION (Windows Only)
	OS_DEF_EXCEPT_ACTION
	OS_DEF_MESSAGE_ACTION (Windows Only)
	OS_DEFAULT_AS_PARTITION_SIZE
	OS_DISABLE_PROPAGATE_ON_COMMIT
	OS_DISALLOW_OSSINGLE_REMOTE_DATABASES
	OS_DISPLAY_INSTALL_MISMATCHES
	OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE
	OS_ENABLE_REALTIME_COUNTERS
	OS_FORCE_HANDLE_TRANS
	OS_HANDLE_TRANS (UNIX Only)
	OS_IGNORE_LOCATOR_FILE
	OS_INC_SCHEMA_INSTALLATION
	OS_INHIBIT_TIX_HANDLE
	OS_LANG_OVERRIDE (UNIX Only)
	OS_LIBDIR
	OS_LOCATOR_ESCAPE_CHARACTER
	OS_LOCATOR_FILE
	OS_LOG_TIX_FORMAT
	OS_META_SCHEMA_DB
	OS_NETWORK (Windows Only)
	OS_NETWORK_SERVICE (UNIX Only)
	OS_NO_MAPPED (UNIX Only)
	OS_NOTIFICATION_QUEUE_SIZE
	OS_OSDUMP_APPSCHEMA_PATH
	OS_OSLOAD_APPSCHEMA_PATH
	OS_OSSG_CPP
	OS_OSVERIFYDB_BUFFER_SIZE
	OS_OSVERIFYDB_FAST
	OS_PASSWORD
	OS_PATHNAME_ENCODING
	OS_PORT_FILE
	OS_PREALLOCATE_CACHE_FILES (UNIX Only)
	OS_PRINT_CLIENT_COUNTERS
	OS_RCVBUF_SIZE
	OS_REMOTE_AUTH_REGISTRY_LOCATION (Windows Only)
	OS_RESERVE_AS (UNIX Only)
	OS_ROOTDIR
	OS_SCHEMA_KEY_HIGH
	OS_SCHEMA_KEY_LOW
	OS_SCHEMA_PATH
	OS_SECURE_RPC_DOMAIN
	OS_SERVER_DEBUG_FILE_MAX_LINES
	OS_SERVER_OUTPUT_LOG_NAME
	OS_SNDBUF_SIZE
	OS_STDOUT_FILE (Windows Only)
	OS_TIX_BUFFER_SIZE (Windows Only)
	OS_TIX_WD (UNIX Only)
	OS_TMPDIR
	OS_TRACE_MISSING_VTBLS
	OS_TURN_ON_ENGLISH_MESSAGES
	OS_USE_MAP_FIXED
	OS_USER_ARCH_SET
	OS_USERNAME
	OS_VERIFYDB_BUFFER_SIZE
	OS_VERIFYDB_FAST

	Utilities
	osaffiliate
	osarchiv
	osbackup
	oschgrp
	oschhost
	oschmod
	oschown
	oscmrf
	oscmshtd
	oscmstat
	oscompact
	Restrictions

	osconfig
	Performing ObjectStore Upgrades

	oscopy
	osdbcontrol
	Examples

	osdf
	osdump
	osexschm
	osgc
	osglob
	oshostof
	osjidump
	osjiload
	osln
	osload
	osls
	osmkdir
	osmv
	osprop
	osrecovr
	osreplic
	osrestore
	Description

	osrm
	osrmdir
	osscheq
	osserver
	Initializing the Transaction Log
	Initializing the rawfs
	Debug Mode
	Platform Information

	ossetasp
	ossetrsp
	ossevol
	ossg
	ossize
	ossvrchkpt
	ossvrclntkill
	ossvrdebug
	ossvrping
	ossvrshtd
	ossvrstat
	ostest
	osverifydb
	osversion

	Using Locator Files to Set Up Server-Remote Databases
	What Is a Server-Remote Database?
	What Are the Advantages?
	What Are the Disadvantages?
	How Do You Allow for a Server-Remote Database?

	Description of the Locator File
	Example of a Locator File

	Declaring Hosts
	Specifying Locator Rules
	Specifying FILE_HOST Statements
	Specifying FILE_PATHNAME Statements
	Specifying SERVER_HOST Statements
	Specifying Translation Commands
	Specifying Read or Write Access

	Using Character String Patterns in Locator Files
	Rules for Writing Character String Patterns
	Using Metacharacters in Patterns

	Overriding the Default Locator File
	Calling an ObjectStore Function
	Setting a Client Environment Variable

	When Multiple Servers Can Concurrently Access a Database
	Sample Locator Files
	NFS Limitations
	Troubleshooting

	High Availability of Data
	Failover
	ObjectStore-Managed Failover
	Two osserver Processes, One Logical Server
	Four osserver Processes, Two Logical Servers

	Cluster-Managed Failover
	Implementing Failover
	Heartbeat Mechanism (ObjectStore-Managed Failover Only)
	Failover Scripts (ObjectStore-Managed Failover Only)
	Identifying Shared File Systems
	Restarting the Server (ObjectStore-Managed Failover Only)
	Resource Properties (Cluster-Managed Failover Only)
	Locator File: FAILOVER_SERVER Declaration
	Shared Disks
	Restrictions

	Removing Failover (ObjectStore-Managed Failover Only)
	Configuring More Than One Logical Server
	Parameter File
	SERVER Declaration (ObjectStore-Managed Failover Only)
	FILE_HOST declaration
	Environment Variables (ObjectStore-Managed Failover Only)
	Problems When Starting Failover Servers
	Performance and Independent Disk Systems

	The Failover API
	Exceptions and Error Messages for Failover

	Asynchronous Replication

	Managing ObjectStore on UNIX
	Database and Executable Path Names
	File Name Expansion
	Executable Path Names

	Setting Server Parameters
	Creating a Parameter File

	Starting the Server
	Nonroot Server Startup

	Creating a Rawfs
	Specifying the Partitions in a Rawfs
	Modifying Partition Size

	Setting Cache Manager Parameters
	Cache Directory Parameter
	Commseg Directory Parameter
	Hard Allocation Limit Parameter
	Mount Table Pathname Parameter
	Preallocate Cache Files Parameter
	Soft Allocation Limit Parameter
	Temporary Files Permission Parameter
	Cache Manager Parameter File Location
	Cache Manager Parameter File Format
	Example of a Cache Manager Parameter File

	When to Increase the Size of the Cache
	ObjectStore Directory Structure
	Finding Files Containing ObjectStore Messages
	Identifying ObjectStore Database Files
	Using Tapes with the osbackup Utility
	The /tmp and /tmp/ostore Directories
	AIX Considerations
	Using SCSI Tape Drives
	Setting Up Permissions
	Troubleshooting Permission Denied Error
	Uninstalling ObjectStore

	Managing ObjectStore on Windows
	Using ObjectStore Utilities
	Specifying File Database Path Names
	Setting Server Parameters
	Starting the Server
	Troubleshooting ObjectStore on Windows

	Creating a Rawfs
	Using setup.exe to Add Rawfs Partitions
	Modifying Partition Size

	Starting the Cache Manager
	Finding Files Containing ObjectStore Messages
	Accessing UNIX Databases from Windows
	About Client/Server Communication
	Using an ObjectStore Server on Windows to Access Remote Databases
	Allow Remote Database Access
	Access Control for Remote Databases

	Changing the Registry Location for ObjectStore (Windows Only)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

