
ObjectStore Release Notes

Release 6.3

ObjectStore Release Notes

ObjectStore Release 6.3 for all platforms, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom,,
IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered by Progress, Progress,
Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress
OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and design), ProCare, Progress en Partners,
Progress in Progress, Progress Profiles, Progress Results, Progress Software Developers Network, ProtoSpeed, ProVision,
SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries
or affiliates in the U.S. and/or other countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen,
ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect
XQuery, DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or
one of its subsidiaries or affiliates in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or trade names contained herein
are the property of their respective owners.

ObjectStore includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright 2000-
2003 The Apache Software Foundation. All rights reserved. The names "Ant," "Xerces," and "Apache Software Foundation"
must not be used to endorse or promote products derived from the Products without prior written permission. Any product
derived from the Products may not be called "Apache", nor may "Apache" appear in their name, without prior written
permission. For written permission, please contact apache@apache.org.

September 2005

Contents

Preface . 7

Chapter 1 New and Changed Features in Release 6.3 . 11

Enhanced Schema Evolution and Database Compaction Features. 11

Databases Being Evolved or Compacted Can Contain Unions. 12

Schema Evolution and Database Compaction Allocation Option 12

New Database Compaction Options and Functions . 12

Schema Evolution of Pointer-to-Member Types . 13

Reclassification of Instances is Again Supported . 14

New Schema Evolution Functions . 14

New C++ Collections Features . 15

New Index Monitoring Tools . 15

New Address Space Marker Cursors . 15

New Order by DSCO Argument for Cursor Constructors . 16

New Constructor Overloadings for os_coll_range Class. 16

Changes to the Java Interface to ObjectStore . 16

Support for Remote Schemas. 17

OSJI Performance Improvements - Peer Objects and Peer Collections No Longer
Supported . 17

Support for Long Immediate Strings . 17

JMTL No Longer Depends On Xerces Parser . 18

Soft References Are the Default . 18

Ant Requirement for Running JMTL Examples . 18

Fast Mode for Verifying OSJI Databases is Supported . 18

Support for .NET Applications . 18

New OS_USE_MAP_FIXED Environment Variable . 19

Changed Default Propagation Buffer Size . 19

Additional Deadlock Information . 19

Changes to ossize Utility Output . 20

Modified Neutralization Option for Schema Generator 20

New os_path_to_data Function . 21

Chapter 2 Platform and Release Compatibility . 23
Release 6.3 3

Contents
4

Application Compatibility . 23

Compiler Compatibility . 25

Client, Server and Database Compatibility . 25

Platform Configuration: Solaris 32-Bit . 26

Platform Configuration: Solaris 64-Bit . 27

Platform Configuration: Windows 32-Bit Visual C++ 6 and 7. 27

Platform Configuration: Windows Visual Studio .NET 2003 28

Platform Configuration: Linux 32-Bit . 28

Platform Configuration: Linux 64-Bit . 29

Platform Configuration: HP-UX 32-Bit . 30

Platform Configuration: HP-UX 64-Bit . 30

Platform Configuration: AIX . 31

Chapter 3 Restrictions, Limitations, and Known Problems 33

Incompatibilities Between Visual C++ 6 and 7.1 . 33

Differing Support for #pragma pack(pop,N) . 33

Differing Support for Integral Extension Types . 34

Red Hat Linux 8 Address Space Limitation . 35

Address-Space Release Facility . 35

Hostname Resolution and Performance . 35

Generating Schema for Empty Abstract Classes on Solaris 35

Fixing Incorrect Vector Headers . 36

Using Environment Variables . 36

Checking and Fixing Vector Headers Programmatically. 37

Using osfixvh to Check and Fix Vector Headers . 38

CMTL Restrictions . 39

Configuring CMTL from XML on Linux Platforms . 39

Setting the commit_if_idle attribute . 39

DDML Restrictions. 39

Java Components of ObjectStore . 39

Upgrading Pre-6.0 OSJI Databases . 40

References to Objects in Destroyed Clusters, Segments, and Databases . . . 40

Not Supported on 64-Bit Platforms or AIX . 40

Running Java Browser on UNIX . 40

Use of JDK 1.5 . 40

.Use of JDK 1.4 on Solaris . 41

Use of JDK 1.4 on HP-UX . 41

Level One Integration . 41

Terminated Sessions Do Not Release All Resources . 41

Threads Are Not Being Automatically Joined to Nonglobal Sessions 41

Schema Write-Lock Conflicts Might Occur Immediately Following Schema
4 ObjectStore Release Notes

Contents
Installation . 42

Use of ossevol Utility . 42

Use of osgc and oscompact Utilities. 43

Hosted Pathname Syntax Might Require Setting of Environment Variable . . 43

Transient Segmentation Violation Errors . 43

Applets . 43

Accessing Multithreaded OSCI Libraries on Solaris . 43

Linux Users Must Use Only the Current Linux Thread Libraries 43

Following External Links with the Netscape 4.7 Browser 44

Chapter 4 New and Changed Features in Release 6.2 . 45

Support for Java Data Objects (JDO) . 45

Schema Evolution and Database Compaction . 45

JMTL Enhancements in 6.2 . 47

Database Verification Optimization . 47

Stream Specification . 47

Solaris PSR Default Changes . 48

Chapter 5 New and Changed Features in Release 6.1 Service Pack 2 49

Programmatic Support for Backup and Restore Operations. 49

New Pathname Encoding Function . 49

Changes to the Schema Evolution API . 50

New Platform Support: HP-UX and AIX. 51

Multi-process Dump and Load. 51

Performance and Metadata Checking . 51

OS_ALLOW_OUTBOUND_RELOC_SKIPPING. 52

OS_ALLOW_INBOUND_RELOC_SKIPPING. 52

OS_SKIP_INBOUND_VERIFY_TAGS_INDEX . 52

OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK . 53

ossg’s Default Front-End Parser. 53

Improved Support for Failover . 53

Replication API . 54

Defragmenting ObjectStore Databases . 54

Support for the Sun Clusters 3.0 . 55

Architecture Sets for Release 6.1 . 55

Standard Architecture Sets . 55

Versioned Architecture Sets . 55

User-Defined Architecture Sets . 56

Neutralizing Virtual Base Classes . 56

Changing the Windows Registration Location . 56

Preventing Excessive Page Faulting . 57
Release 6.3 5

Contents
6

Changes to Dump and Load . 57

Using Dump and Load to Migrate Databases . 58

Resumption of osload in the Event of Failure. 58

Easier Schema Generation for osload . 58

Simplified osload Usage . 59

Performance Improvements. 59

Note on Multi-process osdump and osload . 59

New Macro for Functions Used in Queries . 59

Optimizing Collections . 59

Compiling Single-Threaded Applications on Solaris. 60

objectstore::export() Renamed . 60

Changes to the ObjectStore Java Interface (OSJI) . 60

Changes to JMTL . 61

com.odi.jmtl.env.JVMEnviroment Class Renamed . 61

com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed 61

New JMTL Deployment Descriptor Format. 61

New Cache Pool Attributes. 62

Integration with WebLogic Server 7.0 . 62

Updated Examples Using Ant Build Files . 62

Changes to the Documentation . 62

Summary of Changes in 6.1 . 63

New C++ Classes and Functions in 6.1 . 63

New Environment Variables in 6.1 . 64

New Server Parameters in 6.1 . 64

New Options for ObjectStore Utilities in 6.1 . 64

Unsupported C++ Functions in 6.1 . 65

Unsupported Java Methods in 6.1. 65

Unsupported Options for ObjectStore Utilities in 6.1 . 65

Index . 67
6 ObjectStore Release Notes

Preface

ObjectStore® is an object-oriented database management system suited for rapid
application development and deployment in multitiered environments. It combines
the data query and management capabilities of a traditional database with the
flexibility and power of C++ and Java interfaces.

Purpose This document describes changes to ObjectStore for Release 6.3.

Audience This document is for administrators or developers responsible for the installation
and maintenance of ObjectStore. It is assumed that you are familiar with the
ObjectStore host platform and comfortable using the operating system.

Installing this
release

For information about installing Release 6.3, see one of the following:

• ObjectStore Installation for Windows

• ObjectStore Installation for UNIX

Notation Conventions
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that you can repeat the
immediately previous item. In examples, they also indicate
omissions.
Release 6.3 7

Preface
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.
8 ObjectStore Release Notes

Preface
Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 9

Preface
10 ObjectStore Release Notes

Chapter 1
New and Changed Features in
Release 6.3

ObjectStore Release 6.3 includes the following new and changed features:

• Enhanced Schema Evolution and Database Compaction Features

• New C++ Collections Features

• Changes to the Java Interface to ObjectStore

• Support for .NET Applications

• New OS_USE_MAP_FIXED Environment Variable

• Changed Default Propagation Buffer Size

• Additional Deadlock Information

• Changes to ossize Utility Output

• Modified Neutralization Option for Schema Generator

• New os_path_to_data Function

Enhanced Schema Evolution and Database
Compaction Features

The schema evolution and database compaction features have the following
additions and changes:

• Databases Being Evolved or Compacted Can Contain Unions

• Schema Evolution and Database Compaction Allocation Option

• New Database Compaction Options and Functions

• Schema Evolution of Pointer-to-Member Types

• Reclassification of Instances is Again Supported

• New Schema Evolution Functions

This release fixes some schema evolution and compaction known problems and
removes some restrictions. Specifically,

• Unions can now be in databases on which you are performing schema evolution
or compaction.
Release 6.3 11

Enhanced Schema Evolution and Database Compaction Features
• You can now perform schema evolution on a database with a remote schema.

• You can now evolve a class that contains pointer-to-member type members.

• You can now evolve a class that is the target of a pointer-to-member type. Note
that this is not supported on AIX.

• The -classes_to_be_removed argument to the ossevol utility is supported.

• You can now evolve or compact a database that contains any pages that were last
written by a client application that uses a byte or bit order that is different from
the byte or bit order of the machine doing the evolution or compaction.

Databases Being Evolved or Compacted Can Contain Unions
You can use the oscompact utility or the os_compact class to compact a database
that contains unions.

You can use the ossevol utility or the os_schema_evolution class to evolve the
schema of a database that contains union bystanders. Union bystanders are unions
that are not directly involved in schema evolution. A detailed description of what
this means is in Advanced C++ A P I User Guide, Evolving Schemas That Contain
Union Bystanders.

Schema Evolution and Database Compaction Allocation Option
New options and functions for the schema evolution and database compaction API
allow you to specify that evolution or compaction operations should try to avoid
placing small objects so they straddle page boundaries. (Small objects are smaller
than page size, which is 4K.) In normal operation with small objects, if the object will
not completely fit on a single page, ObjectStore stores part of the object on the current
page and the remainder on an adjacent page. When you use the new feature,
ObjectStore will try to move the entire object to another page, leaving some empty
space on the current page. In this way, when ObjectStore fetches a small object, it
needs to fetch only a single page rather than the two pages if the object straddled
page boundaries.

This feature allows you to find the right balance between minimizing the size of your
database and minimizing the number of pages ObjectStore must fetch and lock when
your application works on objects in your database.

Note: In the context of this feature, all pages are server pages, which are always 4K in
size. It does not matter what platform the server is running on.

The new options and functions are

• os_schema_evolution::set_avoid_page_boundary()

• os_compact::set_avoid_page_boundary()

• ossevol -max_bytes_wasted_to_avoid_page_boundary size

• oscompact -max_bytes_wasted_to_avoid_page_boundary size

New Database Compaction Options and Functions
Options The oscompact utility accepts the following new options.
12 ObjectStore Release Notes

Chapter 1: New and Changed Features in Release 6.3
• -address_space_release_interval controls the frequency of address space
releases during compaction.

• -explanation_level specifies the level of debugging information output by the
oscompact utility.

• -malloc_size specifies the malloc size for the relocation map during compaction.
The default is 1024 KB.

• -maximum_cluster_size specifies that clusters larger than a specified size will be
split into multiple clusters. The default value is 1600 MB.

• -memory specifies the maximum memory size in MB to use for the pointer
relocation map. The default is half the main memory or half the virtual memory,
whichever is smaller.

Numeric values for the oscompact utility options can be in decimal or hexadecimal
format. Hexadecimal values must be prefixed by the characters 0x

Functions The os_compact class supports the followiing new functions:

• set_address_space_release_interval()

• set_explanation_level()

• set_malloc_size()

• set_maplet_size()

• set_maximum_cluster_size()

• set_maximum_memory()

• The os_compact::augment_cluster_split_avoidance() function specifies
that during compaction any cluster containing objects of a specified class will not
be split when the cluster size exceeds set_maximum_cluster_size(). This is
useful when a cluster contains user defined data that should not be split across
clusters. To help determine when objects should not be split, see the Clustering
Techniques white paper at
http://www.progress.com/realtime/publications/index.ssp#odbms.

• The os_compact::augment_post_compact_transformers() function adds the
specified transformer binding to the set of transformer bindings to be used during
subsequent compaction. This applies to compaction initiated in the current
process. A transformer binding associates a class with a function so that the
function is executed on each instance of the class after all objects are moved.

Schema Evolution of Pointer-to-Member Types
You can evolve a schema that contains pointer-to-member types.

However, support for evolving schemas that contain pointer-to-member-
function types is restricted. When one of the following conditions is met, the
schema evolution facility copies pointer-to-member-function types to the
evolved database:

• You do not evolve the owner class, and you do not evolve the pointer-to-
member-function type so that it points to a member of a base class instead of a
member of a derived class. Likewise, you do not evolve it so that it points to a
member of a derived class instead of a member of a base class.
Release 6.3 13

Enhanced Schema Evolution and Database Compaction Features
(The owner class is the class that contains the member that is the target of the
pointer.)

• The value of the pointer-to-member-function type is null.

When you write the untranslatable pointer handler for a pointer-to-member type,
you should not call the following functions:

• os_untranslatable_pointer_handler::get_target_segment()

• os_untranslatable_pointer_handler::get_target_cluster()

• os_untranslatable_pointer_handler::get_target_offset()

These functions either do not return valid values or they fail. This is because a
pointer-to-member type does not point to an instance of the owner class. To detect if
the handler was invoked for a pointer-to-member type, call the new os_
untranslatable_pointer_handler::is_PTOM() function.

Reclassification of Instances is Again Supported
ObjectStore 6.3 supports the reclassification of instances. Although releases prior to
ObjectStore Release 6.2 supported reclassification of instances, ObjectStore 6.2 did
not. The procedure and API for reclassifying instances in 6.3 is completely different
from the procedure and API in 6.1 and older.

Reclassification of instances means that the schema evolution facility lets you
migrate an instance to a subclass of its original class. You can do this only when the
original class is not a virtual base class of the new class. Reclassifying an instance is
particularly useful when you are adding a derived class to a schema and this derived
class is a more appropriate class than the base class for existing instances.

This release introduces the objectstore::change_type() function to help
reclassify instances. For details, see the Advanced C++ A P I User Guide, Advanced
Schema Evolution, Instance Reclassification.

New Schema Evolution Functions
The os_schema_evolution::set_maximum_cluster_size() specifies the largest
size of a cluster in bytes. During schema evolution clusters larger than this are split
into multiple clusters.

The os_schema_evolution::augment_cluster_split_avoidance() function
specifies that during schema evolution any cluster containing objects of a specified
class will not be split when the cluster size exceeds set_maximum_cluster_size().
This is useful when a cluster contains user defined data that should not be split
across clusters.

Also, documentation has been added to the ObjectStore C++ A P I Reference for the
following schema evolution methods, which were part of the previous release:

• os_schema_evolution::augment_optional_classes()
• os_schema_evolution::get_enclosing_object()
• os_schema_evolution::get_evolved_schema()
• os_schema_evolution::get_evolved_schema_db_name()
14 ObjectStore Release Notes

Chapter 1: New and Changed Features in Release 6.3
• os_schema_evolution::get_explanation_level()
• os_schema_evolution::get_unevolved_schema()
• os_schema_evolution::get_path_to_member()
• os_schema_evolution::set_disable_transformer_class_checks()

New C++ Collections Features
This release includes the following new collections features:

• New Index Monitoring Tools

• New Address Space Marker Cursors

• New Order by DSCO Argument for Cursor Constructors

• New Constructor Overloadings for os_coll_range Class

New Index Monitoring Tools
To achieve optimal query performance, you need to maintain the correct set of
indexes. Consequently, it is important to know which indexes a query actually uses.
This release introduces two ways to monitor index use during query processing:

• Set the OS_COLLECTION_TRACE_INDEX_USAGE environment variable. When this
variable is set, ObjectStore writes index use information to stdout after execution
of each query. The default is that this variable is not set.

• Call the trace_index_usage() function. The signature for this function is

 os_collection::trace_index_usage(os_boolean run_trace,
 const char * file_name = 0)

Call this function with run_trace set to true to produce index usage information
as each query statement is processed. Specify a value for file_name to direct the
index usage information to a particular file. The default is to direct usage
information to stdout.

For examples of using the index monitoring tools, see the C++ Collections Guide and
Reference, Monitoring Index Use During Queries.

New Address Space Marker Cursors
The ObjectStore collections facility allows you to program loops that process the
elements of a collection one at a time. During this process, err_address_space_
full exceptions can occur when retrieving element pointers from the collection. For
managing address space while iterating over a large collection, the following set of
cursor functions are now available:

void * os_cursor::first(os_address_space_marker &);
void * os_cursor::last(os_address_space_marker &);
void * os_cursor::next(os_address_space_marker &);
void * os_cursor::previous(os_address_space_marker &);
void * os_cursor::retrieve(os_address_space_marker &);

E os_Cursor<E>::first(os_address_space_marker &);
Release 6.3 15

Changes to the Java Interface to ObjectStore
E os_Cursor<E>::last(os_address_space_marker &);
E os_Cursor<E>::next(os_address_space_marker &);
E os_Cursor<E>::previous(os_address_space_marker &);
E os_Cursor<E>::retrieve(os_address_space_marker &);

For details about how to use these cursors, see C++ Collections Guide and Reference,
Using os_address_space_marker Cursors.

New Order by DSCO Argument for Cursor Constructors
There is a new possible argument to os_cursor or os_Cursor constructors. You can
specify order_by_DSCO instead of os_cursor::order_by_address to avoid err_
address_space_full exceptions when creating the cursor. The ordering for order_
by_DSCO is in address space order unless an err_address_space_full exception is
hit at which time the sorting is done in DSCO order
(database/segment/cluster/offset order).

An order_by_DSCO cursor is useful if you dereference each collection element as you
retrieve it because the order can dramatically reduce paging overhead. When used
for this purpose, both order_by_DSCO and order_by_address visit each object,
although in different orders. An order_by_DSCO cursor is update insensitive. See
Address Order Traversal on page 68 for additional information.

New Constructor Overloadings for os_coll_range Class
The os_coll_range class has two new constructor overloadings:

os_coll_range(
 os_collection::restriction rel_op,
 os_coll_int64 value
);

os_coll_range(
 os_collection::restriction rel_op,
 os_coll_uint64 value
);

An os_coll_int64 is long long on UNIX and _int64 on Windows.

Changes to the Java Interface to ObjectStore
Release 6.3 includes the following additions and changes to the Java interface to
ObjectStore:

• Support for Remote Schemas

• OSJI Performance Improvements - Peer Objects and Peer Collections No Longer
Supported

• Support for Long Immediate Strings

• JMTL No Longer Depends On Xerces Parser

• Soft References Are the Default

• Ant Requirement for Running JMTL Examples
16 ObjectStore Release Notes

Chapter 1: New and Changed Features in Release 6.3
• Fast Mode for Verifying OSJI Databases is Supported

Support for Remote Schemas
OSJI now offers the ability to store schema information remotely. Typically, schema
information for a database is stored locally within that database. ObjectStore 6.3
provides the ability for the schema information for a database to be stored in another
database (the remote database). This is advantageous when many databases share
the same schema information. (This has long been a feature of OSCI.)

OSJI Performance Improvements - Peer Objects and Peer
Collections No Longer Supported

To improve performance, this release changes the way OSJI represents object
identity. A consequence of these changes is that peer objects and peer collections are
no longer supported. Applications that use the com.odi.coll collections classes
must change to use the com.odi.util collections classes.

Also, the com.odi.jcpp and com.odi.odmg classes have been removed in this
release of ObjectStore. If your application uses these classes, you should contact
Technical Support to resolve migration issues.

Support for Long Immediate Strings
Long immediate strings are a new way to allocate persistent Java strings.
ObjectStore uses long immediate strings only for strings that are referenced through
other objects and made persistent as a result of reachability. This feature provides
performance improvements during string allocation and contributes to smaller
databases. Performance gains are achieved by providing a direct reference to the
string data as opposed to a reference to the typical string header.

To enable a database to use long immediate strings, set the
com.odi.useLongImmediateStrings property in the Properties object that you
specify when you create a session. All databases that you create in that session will
be able to use long immediate strings. The default is that
useLongImmediateStrings is not set.

If a database is able to use long immediate strings, then it is incompatible with pre6.3
client applications. If you want an existing database to be able to use long immediate
strings, you must run the osupg630 utility on it or use the corresponding API.

When using long immediate strings

1 You cannot define external references to long intermediate strings. ObjectStore
throws com.odi.ObjectException if you try to do this.

2 Explicitly migrating a string or using a nonpersistent string as a root value causes
ObjectStore to write the header. The string is not stored in a long immediate
format.

3 Using a nonpersistent string in a Btree (any of the TreeMap types) causes
ObjectStore to write a header for that string. The string is not stored in a long
immediate format.
Release 6.3 17

Support for .NET Applications
4 Object cursors for the String type do not pick up long immediate strings.

These limitations are expected to be removed in upcoming OSJI releases.

If you want all newly created databases to have the capability to store long
immediate strings, specify the -D option when you launch Java. This setting applies
to all sessions. ObjectStore does not check whether
com.odi.useLongImmediateStrings is set.

If you want some new databases to be able to store long immediate strings, but you
want other new databases to not be able to store long immediate strings and so
maintain compatibility with pre6.3 client applications, do not specify the -D option
when you launch Java. Instead, set or do not set the
com.odi.useLongImmediateStrings property in the properties object that you
specify when you start the session in which you plan to create the database(s). All
databases created in a given session, either have the ability to store long immediate
strings, or do not have the ability to store long immediate strings.

JMTL No Longer Depends On Xerces Parser
JMTL no longer depends on the Xerces XML parser. Instead, it relies on the XML
implementation packaged with the JDK. You can use the Xerces parser, but it is no
longer packaged with the ObjectStore installation.

Soft References Are the Default
SoftReferences are now the default for OSJI rather than WeakReferences. The Java
garbage collector reclaims SoftReferences less frequently than WeakReferences.
The Java VM characteristics provide better caching performance when using
SoftReferences and avoid unnecessary garbage collection.

Ant Requirement for Running JMTL Examples
Build the JMTL examples with Ant 1.6.0, 1.6.1, or 1.6.2. Do not use Ant 1.6.3 or
higher.

Fast Mode for Verifying OSJI Databases is Supported
You can now specify the -F option (fast mode) to the osverifydb utility when
verifying an OSJI database. The fast mode for osverifydb uses techniques
optimized for performance purposes.

Support for .NET Applications
ObjectStore 6.3 for Windows platforms include "ObjectStore .NET COM Interop"
(OSNCI), which provides the ability for .NET applications to access ObjectStore
databases.
18 ObjectStore Release Notes

Chapter 1: New and Changed Features in Release 6.3
New OS_USE_MAP_FIXED Environment
Variable

This environment variable is required on Linux platforms if the OS_AS_START
environment variable has been set. It might also be necessary on Solaris platforms if
OS_AS_START has been set and the operating system reports errors when assigning
the PSR to the address range specified by OS_AS_START.

Changed Default Propagation Buffer Size
The propagation buffer is used for holding data that are to be written to the database
or to the log. If the buffer size is large enough, data written to the log can be kept in
memory until propagation to the database, thus eliminating the need to read the log.
The size of this buffer can be set with the Propagation Buffer Size server
parameter. If the server parameter is not set, the default size of the buffer is
calculated according to the machine hardware — the default value is 8% of main
memory divided by the number of processors minus 64MB per processor, but not
less than 4MB and not more than the following maximum values:

In the previous ObjectStore release, there was no maximum default value, which
caused problems on some platforms with limited address space for the heap.

For more information on the Propagation Buffer Size server parameter, see
Chapter 2: Server Parameters in Managing ObjectStore.

Additional Deadlock Information
When ObjectStore detects a deadlock situation, the message ObjectStore generates
provides new information that can help you to debug the exception. For each
conflicting client, the err_deadlock exception now displays a description of the type
of resource (for example, a write lock) that the client is waiting for. The err_
deadlock exception also displays resuources that are held by a client that conflicts
with the other deadlock clients. This is in addition to the information that the
exception already generates.

AIX5 and HP32 64 MB

Other 32-bit platforms 256 MB

All 64-bit platforms 512 MB
Release 6.3 19

Changes to ossize Utility Output
Changes to ossize Utility Output
The ossize utility runs faster in this release than in previous release. The output of
the ossize utility and the os_dbutil::ossize() function has changed in the
following ways:

• ObjectStore now counts free spaces when

- You specify -c or -C when you execute the ossize utility.

- The value of flag_segments is true for the os_size_options argument to os_
dbutil::ossize().

- The value of flag_total_database is true for the os_size_options
argument to os_dbutil::ossize().

• For the ossize utility, ObjectStore displays the result of the -o option before it
displays the results of the -c option. This is reversed in previous releases.

Likewise, for os_dbutil::ossize(), when the values for os_size_
options::flag_every_object and os_size_options::flag_segments are
both true, the output displays information about every object before it displays
information about segments. This too is reversed in previous releases.

Modified Neutralization Option for Schema
Generator

When you specify the -portable_type_name (or -ptn) neutralization option when
you run the ossg utility, the schema generator no longer flattens portable type names
that are used as template type actuals. This yields identical class names across
platforms. For example, consider the following:

#ifdef WIN32
typedef __int64 some_8byte_integer;
#else
typedef long long some_8byte_integer;
#endif

template<class T> class foo {};

OS_MARK_SCHEMA_TYPE(foo<some_8byte_integer>);

In previous releases, the schema generator installed foo<__int64> or foo<long
long> into the database schema, according to the platform. Only Windows platforms
can access foo<__int64>, and only UNIX platforms can access foo<long long>.
With Release 6.3, the schema generator installs foo<some_8byte_integer>, which
all platforms can access.
20 ObjectStore Release Notes

Chapter 1: New and Changed Features in Release 6.3
New os_path_to_data Function
New os_path_to_data Function
The os_path_to_data::outer_collocated_path() function returns a path to the
outermost base class or member located at exactly the same address as the object at
the end of the current path. The function signature is

os_path_to_data* outer_collocated_path() const;
Release 6.3 21

New os_path_to_data Function
22 ObjectStore Release Notes

Chapter 2
Platform and Release
Compatibility

This section discusses application, compiler, and database compatibility, and lists
the platforms and compilers supported by this release of ObjectStore. The Support
Matrix at (www.progress.com/realtime/techsupport/support_matrix/objectstore)
(Technical Support web site) contains an up-to-date list of all supported and
maintained platforms. Please refer to the Support Matrix if you are in any doubt
whether your compiler or operating system are supported. If your compiler is not
supported, you cannot use this release of ObjectStore. This section discusses the
following topics:

• Application Compatibility

• Compiler Compatibility

• Client, Server and Database Compatibility

• Platform Configuration: Solaris 32-Bit

• Platform Configuration: Solaris 64-Bit

• Platform Configuration: Windows 32-Bit Visual C++ 6 and 7

• Platform Configuration: Windows Visual Studio .NET 2003

• Platform Configuration: Linux 32-Bit

• Platform Configuration: Linux 64-Bit

• Platform Configuration: HP-UX 32-Bit

• Platform Configuration: HP-UX 64-Bit

• Platform Configuration: AIX

Application Compatibility
To upgrade a 6.0.x, 6.1.x, or 6.2 application to run under 6.3 (that is, you want it to
use the 6.3 run-time libraries), you must re-compile and re-link the application.

ObjectStore public header files no longer contain using statements. If your pre-6.3
application depends on these statements, you must modify your application and
recompile it with the 6.3 run-time libraries.
Release 6.3 23

Application Compatibility
Release 6.1 and
6.0

You must modify the source code of an application built with ObjectStore 6.1.x or
6.0.x if it meets any one of the following conditions:

• Your application uses classic IO streams (for example, iostream.h). You must
change your application to use standard streams (for example, iostream).

• Your application uses schema evolution APIs. You must use the new schema
evolution APIs.

Otherwise, all code that previously compiled with ObjectStore 6.1 release families
will continue to compile with 6.3.

Release 6.0 If the version of the compiler you used for 6.0.x differs from the version you are using
for 6.3, you must also do the following:

• Regenerate and recompile the schema source files (using ossg’s -assf or -asof
option), and regenerate the schema databases

• Run the osscheq utility with the -layout option to determine if the schema has
changed. If it has, migrate your ObjectStore database. For information on
migrating a database, see the ObjectStore Migration Guide at
www.progress.com/realtime/techsupport/documentation/objectstore.
The format for running the osscheq utility is as follows:

 osscheq -layout schema1 schema2

Replace schema1 with the filename of the old application schema or with the
filename of a database that was built by using the old application schema. Replace
schema2 with the filename of the new application schema. When using
component schema, you must compare each new component schema to the
corresponding old component schema or to each old database.

Note that attempting to mix and match modules of application code compiled on
different compiler versions will usually result in a compiler warning. On HP
platforms, however, the compiler may not warn if you attempt to link a module
compiled on aCC 3.63 with a module compiled on aCC 3.45. If the modules use
virtual base classes, such mixing and matching can corrupt the database. For more
information, see the ObjectStore Migration Guide at
www.progress.com/realtime/techsupport/documentation/objectstore.

IO Streams ObjectStore does not support code that is not supported by the compiler vendor.
Specifically, you cannot intermingle

• ObjectStore code, which has been compiled and tested with standard IO streams

• Your own code that relies on classic IO streams

We recommend that you use only standard IO streams in your code.

JDK 1.5 The ObjectStore Java interface (OSJI) is developed with JDK 1.4. If you are going to
develop OSJI applications with JDK 1.5, you must use the -target 1.4 compiler
switch. See Use of JDK 1.5 on page 40 for more information.
24 ObjectStore Release Notes

Chapter 2: Platform and Release Compatibility
Compiler Compatibility
If you are upgrading from Release 6.0, 6.1, or 6.2 and are using a supported compiler
that is the same as the compiler you used for the previous release, the process of
upgrading to Release 6.3 is straightforward.

If you are upgrading from a pre-6.0 release or your compiler has changed since the
previous release, please refer to the ObjectStore Migration Guide
(www.progress.com/realtime/techsupport/documentation/objectstore) that
is available on the Technical Support web site. The ObjectStore Migration Guide will
provide detailed instructions about upgrading to Release 6.3.

Client, Server and Database Compatibility
ObjectStore 6.3 servers can fulfill requests from 6.1.x, 6.2.x, and 6.3 client
applications. That is, the client application is running on a host that has the
corresponding run-time library installed. For example, a 6.1.x client is running on a
host on which the 6.1.x run-time library is installed.

ObjectStore 6.1.x and 6.2 servers cannot fulfill requests from 6.3 client applications.

ObjectStore 6.3 client applications can use 6.1.x and 6.2.x databases that are managed
by 6.3 servers if the schema of the 6.3 client application is compatible with the schema
of the code that generated the database. The schemas are compatible if at least one of
the following is true:

• The client application and the code that generated the database were compiled by
the same compiler version.

• When the code that generated the database was compiled, it was neutralized for
the machine on which the client application was compiled.

After a 6.3 client uses a 6.1.x or 6.2.x database, that database is still usable by 6.1.x
and 6.2.x clients only when those clients are running the most recent 6.1.x or 6.2.x
service pack.

JDO You can use a 6.1.x or 6.2.x database with the ObjectStore 6.3 JDO interface.
However, if you do, 6.1.x and 6.2.x client applications can no longer access that
database. Only Release 6.3 client applications can access that database.
Consequently, you must run the osjup62 utility before you use a database with JDO.
This utility marks the database to ensure that 6.1.x and 6.2.x client applications
cannot access it. The format for running the utility is

osjup62 database_name
Release 6.3 25

Platform Configuration: Solaris 32-Bit
Platform Configuration: Solaris 32-Bit
You can build and run 32-bit or 64-bit applications on 64-bit hardware, but you
cannot build or run 64-bit applications on 32-bit hardware

Note The string xx refers to the latest available revision of the patch from Sun.

If you are using ObjectStore’s built-in failover or failover as provided by the Sun
Clusters 3.0 operating system, you may be able upgrade to Release 6.3 without
having to take your system out of service by performing a rolling upgrade. For more
information, see ObjectStore Installation for UNIX.

Supported Operating Systems Solaris 8

Solaris 9

Supported Clusters Sun Cluster 3.0 5/02 for Solaris 8

Supported C++ Compilers Sun ONE Studio 8 (C++ 5.5)

Maintained C++ Compilers Sun ONE Studio 7 (C++ 5.4)

Supported Java Compilers Sun Java 2 SDK 1.4

Recommended Patches Sun Patch 108528-xx is recommended but not
required for all Solaris 8 systems running
ObjectStore for its resolution of BugID 449415.
This patch is included in the current Solaris 8
recommended patch cluster.
26 ObjectStore Release Notes

Chapter 2: Platform and Release Compatibility
Platform Configuration: Solaris 64-Bit
You can build and run 32-bit or 64-bit applications on 64-bit hardware, but you
cannot build or run 64-bit applications on 32-bit hardware

Note The string xx refers to the latest available revision of the patch from Sun.

If you are using ObjectStore’s built-in failover or failover as provided by the Sun
Clusters 3.0 operating system, you may be able upgrade to Release 6.3 without
having to take your system out of service by performing a rolling upgrade. For more
information, see ObjectStore Installation for UNIX.

Platform Configuration: Windows 32-Bit
Visual C++ 6 and 7

Visual C++ 6 and Visual C++ 7 are no longer supported. If you were using
ObjectStore on Visual C++ 6 or 7, you must recompile with Visual Studio .NET 2003,
also known as 32-Bit Visual C++ 7.1 when you migrate to ObjectStore Release 6.3.
Then run the osscheq utility to determine if schema evolution is required. For
information about running this utility, see page 24.

Supported Operating Systems Solaris 8

Solaris 9

Supported Clusters Sun Cluster 3.0 5/02 for Solaris 8

Supported C++ Compilers Sun ONE Studio 8(C++ 5.5)

Maintained C++ Compiles Sun ONE Studio 7(C++ 5.4)

Supported Java Compilers Not supported

Required Patches Solaris 8 systems require Sun Patches 108434-
xx and 108435-xx for C++ compiler use.

Solaris 9 systems require Sun Patch 111711-xx
and 111712-xx for Sun ONE Studio 7 compiler
use.

Recommended Patches Sun Patch 108528-xx is recommended but not
required for all Solaris 8 systems running
ObjectStore for its resolution of BugID 449415.
This patch is included in the current Solaris 8
recommended patch cluster.

Unsupported Components OSJI, JMTL, DDML
Release 6.3 27

Platform Configuration: Windows Visual Studio .NET 2003
Platform Configuration: Windows Visual
Studio .NET 2003

Platform Configuration: Linux 32-Bit

If you are running your application on a Linux 32-bit platform, contact technical
support for information about how to evolve your schema.

Caution: It is likely that you will corrupt your database if you try to evolve your
schema without consulting with technical support.

Schema
Evolution From
6.2.1

Padding instructions added by the ObjectStore 6.2.1 schema generator (ossg) are not
required for ObjectStore 6.3. By default, the ossg utility leaves padding instructions
in. However, if you want smaller class sizes, and the accompanying improved
performance, remove padding instructions before generating 6.3 schemas.

Schema
Evolution From
6.2 and Earlier
Releases

If you are running ObjectStore 6.2 or an earlier ObjectStore release on a Linux 32-bit
platform, contact technical support to obtain the 6.2 ossg patch. Install the patch and
run the 6.2 ossg utility on your schema. The output of the utility indicates whether
your schema contains tail padding that can be reused. If your schema contains tail
padding that can be reused, contact technical support for additional instructions. If
your schema does not contain such tail padding, install 6.3, regenerate your schema
with 6.3, and evolve your schema as needed.

Supported Operating Systems Windows 2000

Windows XP

Supported C++ Compilers Microsoft Visual Studio .NET 2003, also
known as 32-Bit Visual C++ 7.1

Hotfix required: KB888256

Supported Java Compilers Sun Java JDK 1.4

Unsupported Components OSJI, DDML, JMTL

Supported Operating Systems Red Hat Enterprise Linux 3.0 with kernel
2.4.21-4

Supported C++ Compilers gcc 3.2.3

Supported Java Compilers Sun JDK 1.4

Unsupported Components OSJI, DDML, JMTL
28 ObjectStore Release Notes

Chapter 2: Platform and Release Compatibility
Platform Configuration: Linux 64-Bit

Schema
Evolution From
6.2.1

Padding instructions added by the ObjectStore 6.2.1 schema generator (ossg) are not
required for ObjectStore 6.3. By default, the ossg utility leaves padding instructions
in. However, if you want smaller class sizes, and the accompanying improved
performance, remove padding instructions before generating 6.3 schemas.

On Linux 64-bit platforms, regenerate your schema with 6.3 and evolve the schema
if necessary. If you remove padding instructions before you regenerate the schema,
you probably need to evolve the schema. The ossg utility indicates what is required.

Schema
Evolution From
6.2 and Earlier
Installations

When using ObjectStore 6.2 or earlier releases on Linux 64-bit platforms, schemas do
not have tail padding that might be reused. You should install 6.3, regenerate your
schema with 6.3, and evolve your schema as needed.

Supported Operating Systems Red Hat Enterprise Linux 3.0 with kernel
2.4.21

Supported C++ Compilers gcc 3.2.3

Supported Java Compilers Not supported

Unsupported Components OSJI, DDML, JMTL
Release 6.3 29

Platform Configuration: HP-UX 32-Bit
Platform Configuration: HP-UX 32-Bit

Possible
Database
Incompatibility

A bug in version 3.45 of HP’s aCC compiler can cause a database incompatibility
between ObjectStore 6.3 and previous releases of ObjectStore on HP-UX. For some
applications that have schemas that contain virtual base classes, the database schema
generated by previous releases of ObjectStore is incompatible with the database
schema generated by ObjectStore 6.3.

A detailed explanation of the bug and its fix is on the HP Web site at
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_
IDX/1,1701,7866,00.html#faq-compat)

To determine whether your application will have this incompatibility, use
ObjectStore 6.3’s schema generator to regenerate your application’s schema. Then
use the osscheq utility to compare your old database schema with your 6.3 database
schema. For information about running this utility, see page 24.

If the results of the osscheq utility indicate a schema incompatibility, use the
ossevol utility to evolve your database schema. Information about the ossevol
utility is also in Managing ObjectStore.

Platform Configuration: HP-UX 64-Bit

Supported Operating Systems HP-UX 11i (11.11) 32-bit

Supported C++ Compilers aCC 3.63

Supported Java Compilers Sun JDK 1.4

Supported Operating Systems HP-UX 11i (11.11) 64-bit

Supported C++ Compilers aCC 3.63

Supported Java Compilers Not supported

Unsupported Components OSJI, JMTL, DDML
30 ObjectStore Release Notes

Chapter 2: Platform and Release Compatibility
Platform Configuration: AIX

On AIX platforms, ObjectStore 6.3 does not support evolution of schemas that
contain pointer-to-member types.

Supported Operating Systems AIX 5.2

Supported C++ Compilers Visual Age 6.0

Supported Java Compilers Not supported

Unsupported Components OSJI, JMTL, DDML
Release 6.3 31

Platform Configuration: AIX
32 ObjectStore Release Notes

Chapter 3
Restrictions, Limitations, and
Known Problems

The following sections describe restrictions, limitations, and known problems when
using Release 6.3. Where possible, they also describe workarounds for the problems.

This section is organized into the following topics:

• Incompatibilities Between Visual C++ 6 and 7.1

• Red Hat Linux 8 Address Space Limitation

• Address-Space Release Facility

• Hostname Resolution and Performance

• Generating Schema for Empty Abstract Classes on Solaris

• Fixing Incorrect Vector Headers

• CMTL Restrictions

• DDML Restrictions

• Java Components of ObjectStore

• Linux Users Must Use Only the Current Linux Thread Libraries

• Following External Links with the Netscape 4.7 Browser

Incompatibilities Between Visual C++ 6 and
7.1

Because of changes in Microsoft’s Visual C++ compiler from version 6 (vc6) to
version 7.1 (vc7.1), users who upgrade their applications from vc6 to vc7.1, or who
wish to use both versions, may see schema incompatibilities that affect schema
generation. The following sections discuss these incompatibilities and their
workarounds.

Differing Support for #pragma pack(pop,N)
Support for #pragma pack(pop,N), where N is some alignment, differs between vc6
and vc7.1. In particular, the following set of pragmas results in different alignments
between vc6 and vc7.1:
Release 6.3 33

Incompatibilities Between Visual C++ 6 and 7.1
#pragma pack(push,l1,2)
#pragma pack(push,l2,4)
#pragma pack(pop,1)

On vc6, these pragmas result in a two-byte alignment; whereas on vc7.1 they result
in a one-byte alignment. The workaround for this incompatibility is to replace the
last pragma with either of two sets of pragmas. The first set ensures one-byte
alignment that is compatible with vc7.1:

#pragma pack(pop)
#pragma pack(1)

The next set ensures two-byte alignment that is compatible with vc6:

#pragma pack(pop)
#pragma pack(2)

Differing Support for Integral Extension Types
On vc6, the integral extension types are distinct types. On vc7.1, they are treated as
typedefs for regular C++ types. Thus, the following code behaves differently on vc6
and vc7.1:

template<class T> class printer {
public:
 static void print(const char* source_name) {
 const type_info& ti = typeid(T);
 printf("in source %s, actual %s\n",ti.name());
 }
};
printer<__int16>::print("__int16");
printer<unsigned __int32>::print("unsigned __int32");

On vc6, the output is:

in source __int16, actual __int16
in source unsigned __int32, actual unsigned __int32

On vc7.1, the output is:

in source __int16, actual short
in source unsigned __int32, actual unsigned int

Furthermore, the symbol for print (or for the virtual function table, if there was one)
is different. On vc6, the template argument for __int16 would be _F; on vc7.1, it
would be F.

If you wish to share code or databases between vc6 and vc7.1 applications, you
cannot use integral extension types in any context that appears in the schema,
including template instantiations and virtual function table pointers. If you are not
sharing code between vc6 and vc7.1 applications, you can continue to use the
integral types and the “mangling” will follow the rules for the compiler version you
are using.
34 ObjectStore Release Notes

Chapter 3: Restrictions, Limitations, and Known Problems
Red Hat Linux 8 Address Space Limitation
On Red Hat Linux 8, the default setting for the vm.max_map_count kernel parameter
(65536) limits the address space to 256 MB. This can create a potential address space
limitation. You can change the value of this parameter with the following command
line:

sysctl -w vm.max_map_count= value

To display all kernel parameters, use the following command line:

sysctl -a

You can also work around the address space limitation by setting the ObjectStore
environment variable OS_8K_PAGE or OS_16K_PAGE. Setting either of these variables
has the effect of increasing the page size read by ObjectStore to 8 KB or 16 KB. In
some cases, increasing the page size might result in additional lock conflicts because
ObjectStore creates locks on a per-page basis. A page size of 8 KB or 16 KB can have
greater chances of lock conflicts than a page size of 4 KB.

Address-Space Release Facility
The ObjectStore address-space release facility is not thread safe. As a result, there is
the risk that one thread will release address space that is being used by another,
leading to unpredictable behavior and potential database corruption. To protect
against this risk, this release of CMTL disables the address-space release in software
with which it is linked. It is possible that this protective measure can impose address-
space limitations that might prevent a 32-bit CMTL application from being
successfully deployed. A more general solution to the problem will be implemented
in a future release of CMTL.

Hostname Resolution and Performance
If ObjectStore cannot resolve a hostname (because, for example, the network was
reconfigured or a database was moved to a new domain), application performance
can suffer accordingly. If you think that hostname resolution is degrading the
performance of your application, contact ObjectStore Technical Support.

Generating Schema for Empty Abstract
Classes on Solaris

The schema generator (ossg) cannot generate schema for code that contains empty
abstract classes used as virtual base classes on Solaris platforms. As a workaround,
ossg will emit instructions to add a padding member.
Release 6.3 35

Fixing Incorrect Vector Headers
Fixing Incorrect Vector Headers
In C++, vector headers contain data stored in front of a vector by the C++ run time.
Vector headers are not normally visible to user applications. Only vectors allocated
with ::operator new have vector headers; vectors embedded in objects or allocated
off the stack do not have vector headers. Also, only vectors of elements that have
nondefault destructors have vector headers.

The vector header encodes information that the C++ run time uses when the vector
is deleted to determine how to run the destructors on the elements. If the vector
header is incorrect when the vector is deleted, the C++ run time is unlikely to run the
correct number of destructors on its elements. Running an incorrect number of
destructors on the vector could (depending on the behavior of the destructors) result
in database corruption or unpredictable application behavior.

Incorrect vector headers can occur under the following conditions:

• The vector was created on an HP-UX 11.00 (64-bit) or Solaris/SPARC 2.8 (64-bit)
platform without using the normal form of the ObjectStore overloading of
::operator new. The following is an example of the normal form:

 void *p = ::operator new(
 sizeof(foo) * N, db, foo::get_os_typespec(), N);

• The vector was hetero-relocated from a different platform to an HP-UX 11.00 (64-
bit), Solaris/SPARC 2.8, or Linux gcc platform; and the page containing the vector
was committed.

Previous to Release 6.0 Service Pack 7, the ObjectStore client automatically fixed
what were assumed to be incorrect vector headers during inbound relocation of a
page only if the architecture that wrote to the page differed from the current
architecture that is reading the page. Starting with Release 6.0 Service Pack 7,
ObjectStore provides the following tools for checking if the vector headers are
incorrect and for fixing incorrect vector headers:

• Environment variables: OS_CHECK_VECTOR_HEADERS and OS_FIX_VECTOR_
HEADERS

• The following static functions:

- objectstore::set_check_vector_headers()

- objectstore::get_check_vector_headers()

- objectstore::set_fix_vector_headers()

- objectstore::get_fix_vector_headers()

• The osfixvh utility

The following sections describe how to use these tools.

Using Environment Variables
The following Boolean-valued environment variables can be used to check and fix
incorrect vector headers:
36 ObjectStore Release Notes

Chapter 3: Restrictions, Limitations, and Known Problems
OS_CHECK_VECTOR_HEADERS

OS_FIX_VECTOR_HEADERS

To enable checking or fixing of vector headers, set the appropriate variable to 1
(true). To disable checking or fixing, set the variable to 0 (false). These variables
are process-global.

By default, OS_CHECK_VECTOR_HEADERS is set to 1 and OS_FIX_VECTOR_HEADERS is
set to 0. In this case, the client checks all vector headers for correctness during
inbound relocation and raises an exception if it finds an incorrect vector header. This
behavior provides the highest degree of safety when dealing with vector headers.

If you set OS_CHECK_VECTOR_HEADERS to 0 and OS_FIX_VECTOR_HEADERS to 1, the
client silently fixes all vector headers during inbound relocation, regardless of
whether they are correct or not. If you set both OS_CHECK_VECTOR_HEADERS and OS_
FIX_VECTOR_HEADERS to 1, the client checks all vector headers for correctness during
inbound relocation, logs a message to OS_DEBUG_OUT (by default, stderr), fixes the
vector headers, and continues.

There is a performance cost when either OS_CHECK_VECTOR_HEADERS or OS_FIX_
VECTOR_HEADERS, or both, are set to 1. In the worst case, an application can
experience up to 30% loss in performance. However, this worst case is the highly
unlikely case of a database in which every object is a small 1-element vector without
any pointers or vtbls, and the application does nothing except fetch pages. The more
likely impact on the performance of an actual ObjectStore application is much less
than 30%, perhaps well below 1%.

In any case, you should set the variables at a level of safety that best meets the needs
of your configuration. For example, you might want to set OS_CHECK_VECTOR_
HEADERS to 1 and OS_FIX_VECTOR_HEADERS to 0, with OS_DEBUG_OUT set to a file, so
that your application stays up and running in the event of an incorrect vector header.
In this case, the errors would be logged to a file so that you could determine whether
your database was affected by an incorrect vector header. Alternatively, you might
decide that you do not need to find out if incorrect vector headers occurred but want
any such problems fixed without your intervention. In this case, you would set OS_
CHECK_VECTOR_HEADERS to 0 and OS_FIX_VECTOR_HEADERS to 1.

If your configuration of platforms and usage precludes the conditions in which
incorrect vector headers could occur, or if you have fixed all vector headers that were
previously incorrect and have taken steps to ensure that that such problems will not
recur, you might decide to set both OS_CHECK_VECTOR_HEADERS and OS_FIX_
VECTOR_HEADERS to 0.

Checking and Fixing Vector Headers Programmatically
You can check for and fix incorrect vector headers programmatically, using the
following functions:

static void objectstore::set_check_vector_headers(
 os_boolean value);

static os_boolean objectstore::get_check_vector_headers();

static void objectstore::set_fix_vector_headers(
Release 6.3 37

Fixing Incorrect Vector Headers
 os_boolean value);

static os_boolean objectstore::get_fix_vector_headers();

The set...() forms of these functions correspond to the OS_CHECK_VECTOR_
HEADERS and OS_FIX_VECTOR_HEADERS environment variables, which are described
in the previous section. Passing true (nonzero) as the value argument enables
checking or fixing; false (0) disables checking or fixing.

You can use the get...() forms of the functions to determine whether vector-
header checking or fixing is enabled.

The considerations that apply to the use of the environment variables also apply to
the functions; see Using Environment Variables on page 36.

Using osfixvh to Check and Fix Vector Headers
You can use the command-line utility osfixvh to check for and fix incorrect vector
headers. To use this utility to detect and fix existing incorrect vector headers,
perform the following steps:

1 Make sure that you have installed ObjectStore Release 6.3.

2 To check for incorrect vector headers without fixing them, execute the following
command line:

 osfixvh -verify_only database_name

This command line generates a report similar to the following example:

 % osfixvh -verify_only foo.db
 An incorrect vector header was found during inbound
 relocation at 0xe1804890. The source architecture is an HP
 with aCC. The address corresponds to offset 0x4890 within
 cluster #0, segment #0 of database "/bar/foo.db".
 %

3 To fix incorrect vector headers in a database, execute the following command line:

 osfixvh -fix database_name

When it fixes an incorrect vector header, this command line generates a report
similar to the following example:

 % osfixvh -fix foo.db
 An incorrect vector header was fixed during inbound
 relocation at 0xe1804890. The source architecture is an HP
 with aCC. The address corresponds to offset 0x4890 within
 cluster #0, segment #0 of database "/bar/foo.db".
 %

The osfixvh utility does not automatically check for and fix incorrect vector headers
in schema databases and affiliated databases. You must check and fix such databases
separately. If you need assistance, please contact ObjectStore Technical Support.
38 ObjectStore Release Notes

Chapter 3: Restrictions, Limitations, and Known Problems
CMTL Restrictions
The following sections describe restrictions when using the Release 6.3 version of
CMTL.

Configuring CMTL from XML on Linux Platforms
On Linux platforms, if your application configures CMTL from an XML-based
configuration stream, you must specify the ios::in flag when creating the
ifstream object that is passed as an argument to os_cache_pool_manager_
configuration::create from_xml_stream().

On Linux platforms, ifstream is not opened for reading by default. The
workaround is to explicitly pass an argument to the ifstream constructor telling it
to open the stream for reading, as in the following example:

ifstream xml_file(config_info, ios::in);

The ios::in flag tells the constructor to open the stream for reading. Note that
adding this flag to the constructor is required only on Linux platforms.

Setting the commit_if_idle attribute
The CMTL cache pool attribute commit_if_idle value default is true for read-only
caches (true is also the value for update caches). Setting the commit_if_idle
attribute value to false will result in a shutdown timing problem in the CMTL
virtual transaction manager thread. If you have explicitly set the commit_if_idle
value to false in your cache pool configuration, you need to modify it to avoid this
timing issue.

DDML Restrictions
The following restrictions apply to the Release 6.3 version of DDML:

• DDML is not supported on Solaris 64-bit (sol64) platforms, HP 64-bit platforms,
Linux 64-bit platforms, or AIX.

• The following DDML warning message can be safely ignored:

Warning: com.odi.osdm.JosdmCPlusPlus.charPmap is a static field of
type com.odi.util.OSSmallMap which might refer to a persistent object.
If this field does refer to a persistent object it must be user
maintained.

Java Components of ObjectStore
The following sections describe the restrictions concerning the Java components of
ObjectStore — for example, OSJI and JMTL.
Release 6.3 39

Java Components of ObjectStore
Upgrading Pre-6.0 OSJI Databases
The osjidump utility packaged with this release of ObjectStore is not designed to
dump pre-6.0 OSJI databases. If you want to upgrade a pre-6.0 OSJI database using
the ObjectStore dump/load facility, contact Technical Support to obtain the most up-
to-date version of the ObjectStore osdump utility.

Also, see the ObjectStore Migration Guide at
www.progress.com/realtime/techsupport/documentation/objectstore.

References to Objects in Destroyed Clusters, Segments, and
Databases

If an object has a reference to another object in a cluster, segment, or database that
has been destroyed, any attempt to access the object containing the reference , or any
object on the same page in the database, will throw an exception. There may be cases
where writing a page in the database that contains such references will also throw an
exception. In previous releases, an exception was not thrown in this situation. If there
is the possibility that your pre-Release 6.3 database contains references to objects in
clusters, segments, or databases that have been destroyed, you should run the
ObjectStore osverifydb utility on the database with the -illegal_pointer_action
option before accessing the database with an Release 6.3 application. The result of
running osverifydb will be to resolve references to objects in the destroyed
placement as null values instead of throwing an exception.

Release 6.3 applications should use Cluster.destroy(), Segment.destroy() and
Database.destroy() very carefully to prevent this situation from occurring.

Not Supported on 64-Bit Platforms or AIX
The Java components of ObjectStore are not supported on 64-bit platforms or on AIX
for this release.

Running Java Browser on UNIX
Running the Java browser on UNIX platforms from Exceed clients have the
following problems:

• The Message Box is Empty, because the Windows Manager does not resize the
Message Box correctly. You have to resize the Message Box so the content will
appear.

• Menu position is incorrect. You need to resize the main window so the menu
position is correct.

Use of JDK 1.5
The default options for the javac compiler in JDK 1.5 (5.0) target 1.5 and greater VMs.
This means that classes compiled with this compiler with the default target are
incompatible with OSJI. If you are going to develop OSJI applications with JDK 1.5,
you must use the -target 1.4 compiler switch.
40 ObjectStore Release Notes

Chapter 3: Restrictions, Limitations, and Known Problems
In any case, it is possible to run OSJI applications developed with JDK 1.4 or lower
JDKs with JDK 1.5. Complete JDK 1.5 support will be introduced in a future OSJI
release.

.Use of JDK 1.4 on Solaris
To ensure compatibility between ObjectStore and JDK 1.4 on Solaris platforms, you
must set the LD_PRELOAD environment variable. C shell users can set this variable
with the following command line:

 setenv LD_PRELOAD libosopdel.so

Bourne or Korn shell users can use the following command line:

 LD_PRELOAD=libosopdel.so ; export LD_PRELOAD

Use of JDK 1.4 on HP-UX
To ensure compatibility between ObjectStore and JDK 1.4 on HP-UX 32-bit
platforms, you must set the LD_PRELOAD environment variable. C shell users can set
this variable with the following command line:

 setenv LD_PRELOAD libos.sl:libosth.sl

Bourne or Korn shell users can use the following command line:

 LD_PRELOAD=libos.sl:libosth.sl ; export LD_PRELOAD

Level One Integration
Level one integration (JTA transaction integration) is supported for BEA WebLogic
Server 8.1.

Terminated Sessions Do Not Release All Resources
Currently, a terminated session does not release all of its resources until each thread
in a session explicitly calls the Session.leave(), Session.terminate(),
Objectstore.shutdown(), Session.create() or Session.join() method.

Terminating a session continues to make all threads leave the session for all other
purposes, except for releasing the session's resources.

The Session.leave() method has been modified so it can be called by threads, even
if they are not joined to a session. Previously, an exception would be thrown.

Applications must ensure that all threads explicitly leave sessions that have been
terminated, so that session resources are freed. If this is not done, resources allocated
to sessions are not released, resulting in a possible
com.odi.AddressSpaceFullException being thrown when trying to create a new
session.

Threads Are Not Being Automatically Joined to Nonglobal Sessions
Threads that do not belong to a session are not automatically joined to a nonglobal
session when they should be. Until this problem is resolved, applications cannot rely
on session absorption to make a thread that accesses persistent objects join the
Release 6.3 41

Java Components of ObjectStore
appropriate session. As a work around, applications can explicitly join each thread
to a session by calling Session.join() or using a global session.

More specifically, API methods whose only session-implying arguments are
persistent objects require that the calling thread already belong to the same session
as the persistent objects. This applies to nonglobal sessions. This restriction will be
lifted in a future release. The methods affected by this restriction include the
following:

• ObjectStore.deepFetch()

• ObjectStore.destroy()

• ObjectStore.dirty()

• ObjectStore.evict()

• ObjectStore.export()

• ObjectStore.fetch()

• ObjectStore.isDestroyed()

• ObjectStore.isExported()

• ObjectStore.migrate()

• Persistent.deepFetch()

• Persistent.destroy()

• Persistent.dirty()

• Persistent.evict()

• Persistent.fetch()

• Persistent.isDestroyed()

Schema Write-Lock Conflicts Might Occur Immediately Following
Schema Installation

Users running ObjectStore applications concurrently against a database might
encounter schema segment write-lock conflicts during a transaction that
immediately follows a transaction in which the schema was installed.

To work around this problem, run a small dummy transaction immediately after the
transaction that installed the schema. The dummy transaction must use the database,
such as looking up a database root. Using the database validates the schema and
prevents potential future write lock conflicts.

Use of ossevol Utility
Do not use the ossevol utility on databases created with the Java interface to
ObjectStore (OSJI). Also, do not use the C++ API for this utility on OSJI databases.

You can use the OSJI Database.evolveSchema() method to evolve the schema in an
OSJI database.
42 ObjectStore Release Notes

Chapter 3: Restrictions, Limitations, and Known Problems
Use of osgc and oscompact Utilities
You should not run the osgc or oscompact utilities against databases that are
currently opened with applications that retain references to non-exported objects. To
prevent possible corruption you should close the databases before running either
utility.

Hosted Pathname Syntax Might Require Setting of Environment
Variable

If the directory specified in OS_LIBDIR uses the hosted pathname syntax (host:/ dir)
and the pathname syntax for that directory has the opposite style of slash from the
one for local pathnames on the client (that is, Windows and UNIX), you must set the
OS_META_SCHEMA_DB environment variable to the pathname of the metaschema
database. That database is named metaschm.db, and its default location is in the lib
subdirectory of OS_ROOTDIR.

Transient Segmentation Violation Errors
On UNIX platforms there are some known interaction problems between the Java
VM and OSJI. If you encounter any transient segmentation violations errors, choose a
heap size and set both the initial and maximum heap size to that value on the
command line. For example, if you choose a 64 MB heap size, specify both -Xms64m
and -Xmx64m as arguments to the java command.

Applets
ObjectStore is a Java application that uses C++ native methods. Consequently, you
cannot use ObjectStore in an applet other than through the Sun JDK Appletviewer
application.

Accessing Multithreaded OSCI Libraries on
Solaris

For information about accessing multithreaded ObjectStore C++ interface (OSCI)
libraries on Solaris, see Compiling and Linking on Solaris 2 in Chapter 4 of Building
ObjectStore C++ Applications. If your OSJI application is multithreaded and you want
to access an OSCI library to call APIs that are not available in OSJI, contact
ObjectStore Technical Support for recommendations.

Linux Users Must Use Only the Current Linux
Thread Libraries

On Linux platforms, ObjectStore 6.3 works with only the current version of the Linux
thread libraries. You must ensure that you do not set the Linux environment
Release 6.3 43

Following External Links with the Netscape 4.7 Browser
variable, LD_ASSUME_KERNEL, to a kernel version that does not use the current
version of the Linux thread libraries. If you do, ObjectStore no longer functions
properly.

You can set the LD_ASSUME_KERNEL variable to a different Linux kernel version only
if the new kernel version uses the current version of the Linux thread libraries.
Setting LD_ASSUME_KERNEL to anything less than 2.4.20 causes problems.

Following External Links with the Netscape
4.7 Browser

If you are using the Netscape 4.7 browser to view the ObjectStore documentation
and you click on a link to visit an external website, you will not be able to use the
WebHelp facility to navigate back to the ObjectStore documentation. To work
around this problem, right-click on the link and select Open in New Window from the
menu.
44 ObjectStore Release Notes

Chapter 4
New and Changed Features in
Release 6.2

ObjectStore Release 6.2 includes the following new and changed features:

• Support for Java Data Objects (JDO)

• Schema Evolution and Database Compaction

• JMTL Enhancements in 6.2

• Database Verification Optimization

• Stream Specification

• Solaris PSR Default Changes

Support for Java Data Objects (JDO)
ObjectStore for Java provides a complete implementation of the Java Data Objects
(JDO) 1.0.1 specification. Creating your application with JDO is an alternative to
using the native ObjectStore interface for storing persistent data.

The ObjectStore storage engine in conjunction with the ObjectStore JDO interface lets
you quickly read or modify portions of your persistent data. You are not required to
read in all persistent data when you just want to look at a subset. This reduces start-
up and transaction commit times and lets you run much larger Java applications
without increasing the amount of memory or swap space on the system.

ObjectStore JDO provides most of the features available to the native ObjectStore
Java interface. You need JDK 1.4 or later to use JDO with ObjectStore. For details, see
the ObjectStore Java API User Guide.

Schema Evolution and Database Compaction
Schema evolution and database compaction have been completely reimplemented in
ObjectStore 6.2. They are much faster. ObjectStore 6.2 schema evolution has been
measured to be 100 times faster than ObjectStore 6.0 on large databases. Schema
evolution now takes advantage of modern hardware resources such as multiple
Release 6.3 45

Schema Evolution and Database Compaction
CPUs and large main memory, and is aware of the non-uniform memory access
speed caused by multiple levels of hardware caching.

Schema evolution and database compaction use much less address space and are
now very unlikely to run out of address space in the persistent storage region.
Combined with the increased speed, it should now be practical to use schema
evolution and database compaction on large databases, up to at least 10 GB.

The declustering effect of schema evolution has been eliminated. Schema evolution
no longer changes the order of objects in persistent storage when it has to move
objects because the size of some object has changed. The new implementation
maintains the order of objects within a cluster. Where the page boundaries fall may
change, but objects that used to be close together remain close together, on adjacent
pages if not on the same page.

There have been extensive changes to the

• ossevol and oscompact command-line tools

• C++ os_schema_evolution and os_compact classes

• Java Database.evolveSchema() method

Read the updated documentation before using them.

Some forms of complex schema evolution are not implemented yet. Consult
ObjectStore technical support before doing complex schema evolution. Some of
these features will be added in a future release. The specific restrictions are:

• There is not yet a replacement for subtype selectors (also called instance
reclassification).

• There is not yet automatic recognition of moving a data member between base
and derived classes.

• Pointer-to-member where the target class evolves is not yet supported. The
pointer's value will become garbage.

• Unions in databases being evolved or compacted continue not to be supported, as
in previous versions of ObjectStore 6.x.

• There could be problems if there is a cluster whose size is close to the maximum
(2 GB).

• If you think you need to write a transformer function that calls os_schema_
evolution::get_unevolved_object(), you must adopt a different strategy.
Contact ObjectStore technical support.

A machine performing schema evolution or compaction must have the same byte
and bit order as the machine that wrote the pages in the database whose schema is
being updated or whose data is being compacted. This applies when you are using

• ossevol and oscompact utility

• C++ os_schema_evolution::evolve() function and os_compact::compact()
function

• Java Database.evolveSchema() function
46 ObjectStore Release Notes

Chapter 4: New and Changed Features in Release 6.2
For example, on a SPARC machine running Solaris, you cannot perform schema
evolution on a database that was written on an Intel x86 machine running Linux.

JMTL Enhancements in 6.2
With the JMTL proxy generator tool, ProxyCodeGenerator users can automatically
create code that handles an application’s JMTL transaction logic. This allows you to
separate the application’s business logic from the JMTL transaction logic. This tool
can be used for JMTL applications that do not use an application server or that use
session beans to perform JMTL transactions.

In addition, JMTL now provides full bean managed persistence (BMP) support for
entity beans for all application servers (Integration By Proxy). This is accomplished
with the JMTL proxy generator tool JMTLBmpAdapterGenerator. This tool
generates integration code based on your entity bean, the bean descriptor, and the
JMTL deployment descriptor. This level of integration eliminates the need for you to
develop JMTL transaction logic. Complete information about using the proxy
generator is in the JMTL User Guide.

Database Verification Optimization
The new fast mode for the osverifydb utility uses techniques optimized for
performance purposes. Run osverifydb with the -F option to specify fast mode.
Alternatively, if you set the environment variable OS_OSVERIFYDB_FAST to true
(non-zero), osverifydb will run in fast mode by default. You can use the
environment variable OS_OSVERIFYDB_BUFFER_SIZE to specify the maximum size of
the transient buffer used to optimize locality of reference by osverifydb in fast
mode. The default size is 512 MB. The fast mode for osverifydb is not compatible
with the following options:

• -ignore_references

• -illegal_pointer_action

• -o
• -v

• -whohas

Stream Specification
ObjectStore now uses the standard specification for streams in place of the classic
specification. Where your code uses the following:

#include <iostream.h>
#include <fstream.h>

You must change it to this:
Release 6.3 47

Solaris PSR Default Changes
#include <iostream>
#include <fstream>

Solaris PSR Default Changes
The default size and address of the persistent storage region (PSR) on Solaris systems
has changed. The new defaults are:

• PSR default size

- 32-bit Solaris — 512 MB

- 64-bit Solaris — 768 MB

The previous default was 192 MB (0xC000000).

• PSR default address

- 32-bit Solaris — Ends at the same address where it used to (0xEE000000).

- 64-bit Solaris — Starts at 32 GB.

The previous default PSR starting address was 0xE2000000. The previous default
PSR ending address was 0xEE000000.

If you want to revert to the previous defaults, or specify some other size or starting
address, use the OS_AS_SIZE and OS_AS_START environment variables. See
Managing ObjectStore. To revert to the previous defaults, set the following
environment variables to the values specified:

• OS_AS_SIZE=0xC000000

• OS_AS_START=0xE2000000
48 ObjectStore Release Notes

Chapter 5
New and Changed Features in
Release 6.1 Service Pack 2

The following sections describes features of ObjectStore that were added or changed
for Release 6.1 Service Pack 2.

Programmatic Support for Backup and
Restore Operations

The ObjectStore API has been extended for this release to include programmatic
support for backup and restore operation. Using the following classes, you can write
applications to perform operations similar to those you can perform with
ObjectStore command-line utilities:

• os_archiver

• os_archiver_options

• os_backup

• os_backup_options

• os_recover

• os_recover_options

• os_restore

• os_restore_options

The classes and their member functions are described in the ObjectStore C++ A P I
Reference.

New Pathname Encoding Function
A new function, objectstore::set_pathname_encoding(), has been added to the
C++ API for this release. The function enables you to specify a character set encoding
to override the default encoding, as specified by the platform. The signature is:

void objectstore::set_pathname_encoding(const char* encoding);
Release 6.3 49

Changes to the Schema Evolution API
where encoding can be one of the following:

If you supply an invalid encoding value, calling this function will result in the err_
invalid_pathname_encoding exception.

The objectstore::set_pathname_encoding() function must be called before
calling objectstore::initialize() or objectstore::initialize_for_
sessions().

The objectstore::set_pathname_encoding() function is similar to the OS_
PATHNAME_ENCODING environment variable; for more information about the variable,
see Managing ObjectStore, Chapter 3.

Changes to the Schema Evolution API
The following changes have been to the schema evolution for this release:

• New functions:

- os_class_type::get_dispatch_table_pointer_offset_other_

compiler()

- os_class_type::has_dispatch_table_other_compiler()

- os_object_cursor::release_address_space()

- os_schema_evolution::set_address_space_release_interval()

• The addition of the layout_only argument to the os_dbutil::compare_
schemas() function

• New options to the following ObjectStore utilities:

- osscheq -layout_only

- ossevol -address_space_release_interval

For information about the new and changed functions, see the ObjectStore C++ A P I
Reference. For information about the osscheq and ossevol utilities, see Managing
ObjectStore.

Valid encoding values Meaning

ASCII 7-bit ASCII

CP1252 Microsoft Code Page 1252 (US English)

CP932 Microsoft Code Page 932 (Japanese)

EUCJP Extended UNIX Code (Japanese)

UTF8 UCS Transformation Format 8

NONE No encoding translation; values 0x01 through 0xFF are
passed through without modification.
50 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
New Platform Support: HP-UX and AIX
This release includes support for the HP-UX and AIX platforms.

Multi-process Dump and Load
This release supports the use of multi-process dump and load on all platforms,
including Windows. For more information, see Managing ObjectStore

Performance and Metadata Checking
ObjectStore performs certain checks whenever a page is fetched from the database
and brought into the cache (inbound relocation) or is committed or evicted from the
cache (outbound relocation). These checks involve testing the consistency between
different pieces of metadata for the same page. Previously, relocation and the
accompanying checking would be skipped whenever ObjectStore could determine
that it was not needed for normal functional reasons.

Starting with this release, ObjectStore no longer skips relocation in the interest of
additional metadata checking. For example, ObjectStore would previously skip
outbound relocation for pages that do not contain pointers. This is no longer the case.
Starting with this release, the default behavior is to perform relocation and checking.
This default behavior allows ObjectStore to detect database corruption sooner than
would be the case without the checking. When such checking occurs during inbound
relocation, it can prevent an application from using a corrupt page. During outbound
relocation, metadata checking can prevent database corruption from occurring in the
first place.

However, the new default checking can add significant overhead in certain
circumstances, especially during outbound relocation when pages that have never
contained pointers are committed or evicted. As a result of the added checking, user
applications may experience lowered performance in comparison with application
performance in previous releases of ObjectStore.

To enable you to turn off the added checking and restore performance to its 6.1
levels, this release of ObjectStore provides the following new, Boolean-valued
environment variables:

• OS_ALLOW_OUTBOUND_RELOC_SKIPPING

• OS_ALLOW_INBOUND_RELOC_SKIPPING

• OS_SKIP_INBOUND_VERIFY_TAGS_INDEX

• OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK

To disable checking, set these environment variables to true (1). The following
paragraphs describe each variable:
Release 6.3 51

Performance and Metadata Checking
OS_ALLOW_OUTBOUND_RELOC_SKIPPING
Default: false (0)

When this variable is set to true (1), modified pages that have never had pointers on
them will skip outbound relocation and all associated checking -- that is, no
metadata checking will occur for such pages during outbound relocation. Setting this
variable to true enables users to get the performance advantage of skipping
outbound relocation at the expense of losing the extra checking.

OS_ALLOW_INBOUND_RELOC_SKIPPING
Default: false (0)

When this variable is set to true (1), pages that do not contain any data requiring
inbound relocation will, under non-hetero conditions -- that is, the page architecture
matches the client architecture -- skip inbound relocation. This skipping only occurs
for pages that have no pointers, virtual base pointers, or virtual function table
pointers. If inbound relocation is skipped, all metadata checks performed during
inbound relocation will also be skipped. Setting this variable to true enables users to
get the performance advantage of skipping inbound relocation at the expense of
losing the extra checking.

A previous release of ObjectStore disabled inbound relocation skipping by default to
allow checking for vector headers. If you want to skip inbound relocation and the
associated metadata checking, you must set these vector-header variables in
addition to OS_ALLOW_INBOUND_RELOC_SKIPPING, as follows:

setenv OS_ALLOW_INBOUND_RELOC_SKIPPING 1
setenv OS_CHECK_VECTOR_HEADERS 0
setenv OS_FIX_VECTOR_HEADERS 0

If you are using the ksh, the command lines would be:

export OS_ALLOW_INBOUND_RELOC_SKIPPING=1
export OS_CHECK_VECTOR_HEADERS=0
export OS_FIX_VECTOR_HEADERS=0

In Windows, you can either modify the environment settings in the control panel or
use the following command lines:

set OS_ALLOW_INBOUND_RELOC_SKIPPING=1
set OS_CHECK_VECTOR_HEADERS=0
set OS_FIX_VECTOR_HEADERS=0

Note that, by default, OS_CHECK_VECTOR_HEADERS is set to 1 and OS_FIX_VECTOR_
HEADERS is set to 0.

OS_SKIP_INBOUND_VERIFY_TAGS_INDEX
Default: false (0)

When this variable is set to true (1), inbound relocation on pages that are not yet
relocated in the client cache will skip the new tags index check. Setting this variable
to true enables users to get the performance advantage of not checking the tags index
during inbound relocation at the expense of losing the extra checking. Note that
52 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
pages that skip inbound relocation will also skip the tags index check regardless of
the setting of this variable. In other words, the effect of this variable is not orthogonal
to the setting of the OS_ALLOW_INBOUND_RELOC_SKIPPING variable.

OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK
Default: false (0)

When this variable is set to true (1), the SPFS metadata is not tested for self-
consistency when a page is prepared for relocation for the first time. (ObjectStore
uses SPFS metadata to control object allocation.) Note that pages for which inbound
relocation is skipped will still have this check done, since the check doesn't require
any iteration over the tags. In other words, the effect of this variable is orthogonal to
the setting of the OS_ALLOW_INBOUND_RELOC_SKIPPING variable.

ossg’s Default Front-End Parser
Previous to Release 6.1, the ObjectStore schema generation utility (ossg) required
you to use the -edgfe option to enable an improved front-end parser that provides
improved language support, including better support for nested classes and
templates. Starting with Release 6.1, this parser is the default, and the -edgfe option
is no longer recognized. If you believe you need to use the pre-6.1 Release front-end
parser, contact ObjectStore technical support.

The new default front-end parser requires you to use the OS_MARK_SCHEMA_TYPE and
OS_MARK_SCHEMA_TYPESPEC macros, as documented in the ObjectStore C++ A P I
Reference, Chapter 4 (“System-Supplied Macros”), and in Building ObjectStore C++
Applications, Chapter 2 (“Working with Source Files”). For a detailed description of
the ossg utility, see “ossg: Generating Schemas” in Managing ObjectStore, Chapter 4
(“Utilities”).

Note If your makefile invokes ossg with the -edgfe option, you must edit the makefile to
remove this option.

Improved Support for Failover
Release 6.1.2 provides improved support for failover, as follows:

• If you are using failover that is built into ObjectStore, you can configure failover
so that the primary server and the secondary (or standby) server share the load
during normal ObjectStore operations. In the event of failover, the secondary
server assumes the full load.

• If you are using ObjectStore on the Sun Clusters 3.0 operating system (see Support
for the Sun Clusters 3.0 on page 55), you can configure ObjectStore to use the
support for failover provided by the operating system as an alternative to
ObjectStore-managed failover.
Release 6.3 53

Replication API
For detailed information about failover, see Managing ObjectStore, Chapter 6 (“High
Availability of Data”).

ObjectStore’s support for failover also allows you to perform rolling upgrades when
installing a new release of ObjectStore. A rolling upgrade allows you to install a new
release of ObjectStore without interrupting service to clients. For more information,
see “osconfig: Configuring ObjectStore” in Managing ObjectStore, Chapter 4
(“Utilities”).

Replication API
Release 6.1.2 introduces the following classes for managing database replication
within an application:

• os_replicator

• os_replicator_options

• os_replicator_statistic_info

For more information about these classes, see os_replicator in C++ A P I Reference,
Chapter 2 (“Class Library”).

Defragmenting ObjectStore Databases
Release 6.1.2 provides support for defragmenting ObjectStore databases. This
support includes:

• The os_database::get_fragmentation() function, which returns statistics on
database fragmentation.

• The new -f option to the ossize utility. This option causes ossize to call the os_
database::get_fragmentation() function.

• New server parameters that can be used to prevent fragmentation:

- Cluster Growth Policy

- Database File Growth Policy

- RAWFS Partition Growth Policy

• New functions that can also be used to prevent fragmentation:

- os_cluster::set_size()

- os_database::set_size()

- os_database::set_size_in_sectors()

• You can access these functions from the command-line with the osdbcontrol
utility, using two new options: -cluster_size and -size
54 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
For information about defragmenting ObjectStore databases, see “Managing
Database Fragmentation” in Chapter 1 (“Overview of Managing ObjectStore”) of
Managing ObjectStore.

Support for the Sun Clusters 3.0
Release 6.1.2 supports Sun Clusters 3.0. This support enables ObjectStore to use the
failover support that is built into the Sun Clusters operating system. For more
information, see Improved Support for Failover on page 53.

Architecture Sets for Release 6.1
Release 6.1 supports the following categories of architecture sets for use with the
ossg -arch option when neutralizing schema:

• Standard architecture sets

• Versioned architecture sets

• User-defined architecture sets

In addition to the above architecture sets, Release 6.1 supports two other sets for use
when neutralizing schema that includes virtual base classes; see Neutralizing Virtual
Base Classes on page 56.

Note also that ossg has a new option, -showsets, which lists all architecture sets and
their contents.

Standard Architecture Sets
The standard architecture sets meet the needs of most applications that require
neutralization. These sets are:

• all32

• all64

Note that the all set is no longer supported. Support for this set has been removed
because ossg no longer supports neutralization across all 32-bit and 64-bit platforms
for applications that use the collections facility. If you use the all set in a makefile or
any other scripts, you must remove it and substitute either all32 or all64.

Versioned Architecture Sets
Starting with Release 6.1, you can use a versioned architecture set. A versioned
architecture set contains only those platforms that are supported on a particular
release of ObjectStore. For example, all32_610 contains only those 32-bit platforms
that are supported on Release 6.1. Unlike the contents of standard architecture sets,
the contents of versioned architecture sets do not change from release to release.
Release 6.3 55

Neutralizing Virtual Base Classes
For more information, see “Versioned Architecture Sets” in Building ObjectStore C++
Applications, Chapter 5 (“Building Applications for Multiple Platforms”). You can list
all architecture sets and their contents by invoking ossg with the -showsets option,
as described in “ossg: Generating Schemas” in Managing ObjectStore, Chapter 4
(“Utilities”).

User-Defined Architecture Sets
Release 6.1 allows you to define your own architecture sets, which can be specified
as arguments to ossg‘s -arch option. To define an architecture set, use the OS_USER_
ARCH_SET environment variable, as described in Managing ObjectStore, Chapter 3
(“Environment Variables”).

Neutralizing Virtual Base Classes
If you are neutralizing schema against all 32-bit platforms, and the schema contains
virtual base classes that use other virtual base classes, the ossg schema generator for
Release 6.1 will prompt you to replace the virtual base classes with forced-order base
classes. Replacing virtual base classes with forced-order classes ensures that the
allocation order for the virtual base classes is the same across all 32-bit platforms.

Forced-order base classes are needed because of differences in the way different
platforms allocate the virtual base classes. On linux3 (gcc3) platforms, virtual base
classes are allocated in inheritance order. Currently, all other 32-bit platforms use
post-traversal order. This difference results in a different layout order that requires
neutralization.

If you are neutralizing against all 32-bit platforms except linux3, and your schema
contains virtual base classes that use virtual base classes, you can specify the
all32vbtrav architecture set to prevent the need for forced-order classes during
neutralization. (The use of forced-order classes can increase code size.) For more
information, see “Neutralizing the Allocation Order of Virtual Base Classes” in
Building ObjectStore C++ Applications, Chapter 5 (“Building Applications for Multiple
Platforms”). For more information about architecture sets, see Architecture Sets for
Release 6.1 on page 55.

Changing the Windows Registration Location
Release 6.1 enables you to change the Windows registry location that is used by
ObjectStore. Changing the registry location is especially useful when you have
embedded ObjectStore in an application. By changing the registry location, you can
prevent another application that also uses ObjectStore from overwriting information
in the registry location that your application uses.

You can use the following to change the registry location:
56 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
• os_authentication class — For more information about this new class, see the
description of the class in Chapter 2 (“Class Library”) of the C++ A P I Reference.

• osserver -r — For more information about the new -r option to osserver, see
“osserver: Starting the Server” in Chapter 4 (“Utilities”) of Managing ObjectStore.
Note that the oscmgr6 utility for starting the cache manager now has the same
new -r option.

• OS_REMOTE_AUTH_REGISTRY_LOCATION — For more information about this new
environment variable, see “osserver: Starting the Server” in Chapter 3
(“Environment Variables”) of Managing ObjectStore.

For information about changing the registry location on NT machines, see “Setting
the Registry Location for ObjectStore (Windows Only)” in Managing ObjectStore,
Chapter 8.

Preventing Excessive Page Faulting
Release 6.1 provides the following functions of the objectstore class that enable
you to prevent excessive page faults by disabling address markers:

• objectstore::get_asmarkers_useless()

• objectstore::set_asmarkers_useless()

Note, however, that if you disable address-space markers in an application for which
address space consumption is critical, the application runs the risk of running out of
address space.

You can also use a new environment variable, OS_ASMARKERS_USELESS, to disable
address markers. For information about the environment variable, see the
description in Chapter 3 (“Environment Variables”) of Managing ObjectStore. The
functions are described in Chapter 2 (“Class Library”) of the C++ A P I Reference.

Changes to Dump and Load
Release 6.1 includes enhanced versions of the ObjectStore osdump and osload
utilities. Changes to these utilities include:

• Support for multiple processors in both osdump and osload. The option to specify
the use of multiprocessors is -pr.

• Support for the ability to restart the osload process.

• The mechanism for generating the source code for loader applications is moved
from osdump to osload. This option to specify this operation remains -emit.

• Elimination of the -ds option to dump the database schema. The database schema
is always dumped in Release 6.1.

For more information, see osdump and osload in Chapter 4 (“Utilities”) of Managing
ObjectStore.
Release 6.3 57

Changes to Dump and Load
Using Dump and Load to Migrate Databases
If you plan to use osdump and osload to migrate databases from Release 5.1 or
release 6.0, you should always check the ObjectStore Technical Support Web site
(www.objectstore.net/support) for the most recent version of each of these
utilities.

The dump and load subsystem has undergone considerable revision since the last
release. Data files dumped with prior releases of osdump are not compatible with
current and future releases of osload. The databases from which those files were
generated will need to be re-dumped with an updated version of osdump.

Updated versions of osdump for ObjectStore 5.1 and ObjectStore 6.0 can be obtained
by contacting ObjectStore Technical Support. If you need to run osdump or osload
with more than one process under any version of Microsoft Windows, you need to
obtain updated versions from support as well. If you need to upgrade an OSJI
database on any platform you must obtain updated libraries as well.

Applications built or linked with libosdump or libosload will at the very least need
to be recompiled and relinked to take advantage of recent bug fixes. The following
APIs have changed as well and may require code changes for some applications:

• os_Database_table has changed to allocate at the cluster level rather than the
segment so any function calls which used to take an os_Segment as an argument
will now take an os_Cluster.

• os_Database_table::insert() has been replaced with explicitly named
function calls. This eliminates the confusion of 12 different overloadings of the
insert() function.

• os_Loader::load() has been changed to os_Loader::start_load().

Resumption of osload in the Event of Failure
In the event of failure during load, do not remove any temporary databases and
simply re-start osload. The osload application will look for a current work database
and attempt to resume based on the state of the found work database. In general this
is only useful if the failure is due to hardware or user failures, such as out of disk
space, network failure, or user interruptions.

Easier Schema Generation for osload
The updated process to generate a schema specific osload:

1 Generate a 6.1 application schema; for example, my_new_schema.adb

2 Emit the osload specializations required for that schema; for example:

osload -emit my_new_schema.adb

3 Compile the new osload with the files generated in step 2. You will need to
update the makefile with your application specific libraries and headers.
58 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
Simplified osload Usage
The usage of osload has changed and it no longer requires you to input the dumped
file names. By default osload will look for a file named db_table.dmp in the current
directory and, using that master file, it builds the work file list. If the files are located
in a directory other than the current directory the -dir switch must be used.

Performance Improvements
New features of osdump and osload in ObjectStore 6.1 and post-ObjectStore 5.1.5
include performance and scalability improvements. General performance
improvements require no additional steps, while scalability improvements are
achieved by running osdump or osload with more than one process. To do so use the
-pr switch and provide the number of process to do the work (for example. -pr 2).

Note on Multi-process osdump and osload
There is a fair amount of overhead necessary to manage the child processes in the 6.1
release so it may at times be slower than running osload with a single process. (It is
expected that this overhead will be reduced in the future). The dump and load work
is partitioned among child processes by the segments in a supplied database. In
general, if the segments to be dumped or loaded are large (i.e., greater than 100 MB)
and you have more than one in a given database, you should use multi-process
osdump or osload. On the other hand, if you have a database with 2000 segments of
approximately 5 MB each or a database with one segment approximately 2GB in size,
you should use osdump or osload with a single process.

New Macro for Functions Used in Queries
Release 6.1 provides a new macro, OS_MARK_QUERY_FUNCTION_WITH_NAMESPACE(),
for use in schema source files to include a query function in the schema. Use this
macro instead of the OS_MARK_QUERY_FUNCTION() macro when the function is a
member of a class that is declared in a namespace. For more information about the
OS_MARK_QUERY_FUNCTION_WITH_NAMESPACE() macro, see the C++ Collections Guide
and Reference, Chapter 9.

Optimizing Collections
Previous to Release 6.1, you could optimize the creation of transient sets, lists, and
cursors by manually adding an optimization flag to the constructor. The flag would
instruct ObjectStore to use hard pointers instead of soft pointers for the constructed
type.
Release 6.3 59

Compiling Single-Threaded Applications on Solaris
Release 6.1 introduces the following changes for optimizing transient sets, lists, and
cursors:

• The os_cursor::optimized flag is no longer needed to construct an optimized
transient cursor. By default, all transient cursors use hard pointers.

• Two new defines have been added for the release: _OS_COLL_LIST_OPTIMIZE and
_OS_COLL_SET_OPTIMIZE. By setting these defines in your application or on the
compile line, users can globally change their applications to use transient lists and
sets that are based on hard pointers, without having to specify the optimization
flags in the constructors.

For more information about these optimizations, see “Compiling for Collections
Optimization” in C++ Collections Guide and Reference, Chapter 2.

Compiling Single-Threaded Applications on
Solaris

When using the Solaris compiler to compile single-threaded applications, it is no
longer necessary to use the -mt option. You must use this option when compiling a
Release 6.1 application only if your application uses multiple threads. Refer to the
Solaris documentation for more detailed information about the -mt option.

Note that, if you want a Release 6.1 application to use a Release 6.0 cache manager,
you must compile the application with the -mt option, even if it is single-threaded.
In this situation, however, the performance of the client/cache interface will be the
same as for a 6.0 application that uses a 6.0 cache manager — not as fast as for a 6.1
application that uses a new 6.1 cache manager. For best performance and to avoid
the overhead of linking with the ObjectStore thread-safe library (libosth), 6.1
single-threaded applications should use the 6.1 cache manager.

objectstore::export() Renamed
The objectstore::export() function has been renamed objectstore::export_
object() to reflect its purpose more clearly — to export persistent, top-level objects.
For more information about the function, see its description in Chapter 2 (“Class
Library”) of the C++ A P I Reference. If you wish to continue using the old name, you
must define OS_EXPORT_API at the top of your source file, before the ObjectStore
header files are included.

Changes to the ObjectStore Java Interface
60 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
(OSJI)
Release 6.1 of the ObjectStore Java Interface (OSJI) now supports both JDK 1.3 and
1.4. Support for JDK 1.2 and earlier is no longer maintained.

Changes to JMTL
In Release 6.1, the Java Middle Tier Library (JMTL) has been incorporated into the
ObjectStore product and uses the same release numbering.

com.odi.jmtl.env.JVMEnviroment Class Renamed
The com.odi.jmtl.env.JVMEnviroment class has been renamed to
com.odi.env.JVMEnviroment. Java applications that use the JVMEnvironment class
need to be modified and recompiled.

com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed
The com.odi.jmtl.env.JVMEnviroment.initialize() method is replaced by
com.odi.env.JVMEnviroment.deploy(). Any Java classes using this method need
to be modified and recompiled.

New JMTL Deployment Descriptor Format
With Release 6.1, JTML has a new deployment descriptor format. The new
deployment descriptor format requires the following XML modifications:

The new deployment descriptor format is defined by the DTD file jmtl-dd.dtd
located in jmtl.jar. To use the new format, change the DOCTYPE entry from:

Release 1.2 Element Release 6.1 Element

CachePoolManager cache-pool-manager

CachePools cache-pools

CachePool cache-pool

CacheStorage cache-storage

Databases databases

DatabaseDescriptor database-descriptor

Roots roots

RootDescriptor root-descriptor

RootObjectDescriptor root-object-descriptor

Component component-descriptor

Method method

MethodDescriptor method-descriptor

ExtentDescriptor unsupported

FinderDescriptor unsupported
Release 6.3 61

Changes to the Documentation
<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/xml/EnvConfig.dtd">

to:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd.dtd">

Release 6.1 includes a DTD file jmtl-dd-compat.dtd that you can use to make
existing JMTL 1.2 XML deployment descriptor files compatible with Release 6.1. To
use this file, change the DOCTYPE entry from:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/xml/EnvConfig.dtd">

to:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd-compat.dtd">

New Cache Pool Attributes
Release 6.1 includes new cache pool attributes that influence cache performance. The
new attributes are:

• CommitIfIdle

• CommitIfIdleMvcc

• GroupOpenInterval

• GroupOpenIntervalMvcc

• LockTimeout

• MaxConcurrentTransactions

For more information on these attributes, see “Declarative Configuration” in the
JMTL User Guide.

Integration with WebLogic Server 7.0
Release 6.1 includes a new application server specific jar file that provides level one
integration with BEA WebLogic Server 7.0.

Updated Examples Using Ant Build Files
The JMTL examples have been updated to use Apache Ant to simplify configuration,
building, and deployment. For additional information on using Ant, see the
README.html file in the examples directory.

Changes to the Documentation
The following changes have been made to the documentation for Release 6.1:

• The ObjectStore online documentation has been reorganized into two
bookshelves:

- C++ bookshelf

- Java bookshelf

• The online documentation is delivered through WebHelp, which provides full-
text search capability.
62 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
• All of the documentation has been consolidated into the doc directory. This
directory is directly under the installation directory for ObjectStore and contains
the documentation for all installable components of this release, regardless of
whether or not you decide to install them all.

• The following features of ObjectStore were previously released but never
documented until this release:

- os_schema_evolution::set_explanation_level(): See the description in
Chapter 2 (“Class Library”) of the C++ A P I Reference.

- os_schema_evolution::set_resolve_ambiguous_void_pointers(): See
the description in Chapter 2 (“Class Library”) of the C++ A P I Reference.

- osconfig: See the description in Chapter 4 (“Utilities”) of Managing
ObjectStore.

• The JMTL User Guide contains a new chapter titled “Chapter 7: Using the JMTL
Console”

Summary of Changes in 6.1
The following sections summarize all user-visible changes to ObjectStore for Release
6.1, including changes that have been more fully described in the preceding sections.
The information in these sections is provided as a migration aid for users who might
want to know at a glance how Release 6.1 will impact their applications and scripts.
Each section also includes references to the relevant parts of the ObjectStore
documentation for more detailed information about the changes.

New C++ Classes and Functions in 6.1
The following classes and functions have been added to the ObjectStore API for
Release 6.1:

• objectstore::get_asmarkers_useless()

• objectstore::set_asmarkers_useless()

• os_authentication

• os_cluster::set_size()

• os_database::get_fragmentation()

• os_database::set_size()

• os_database::set_size_in_sectors()

• os_dbutil::install_backrest_control_c_handler()

• os_dbutil::start_backrest_logging()

• os_dbutil::stop_backrest_logging()

• os_dbutil::svr_machine()

• os_replicator

• os_replicator_options
Release 6.3 63

Summary of Changes in 6.1
• os_replicator_statistic_info

• os_schema_evolution::set_explanation_level()

• os_schema_evolution::set_resolve_ambiguous_void_pointers()

Some of these functions are described in other sections of this document. For detailed
information about all of the new classes and functions, see the descriptions in
Chapter 2 (“Class Library”) of the C++ A P I Reference.

New Environment Variables in 6.1
The following environment variables are new for Release 6.1:

• OS_16K_PAGE

• OS_32K_PAGE

• OS_64K_PAGE

• OS_8K_PAGE

• OS_ASMARKERS_USELESS

• OS_CORE_DIR

• OS_NETWORK_SERVICE

• OS_PREALLOCATE_CACHE_FILES

• OS_REMOTE_AUTH_REGISTRY_LOCATION

• OS_USER_ARCH_SET

Some of these environment variables are described in other sections of this
document. For detailed information about all of the new environment variables, see
their descriptions in Chapter 3 (“Environment Variables”) of Managing ObjectStore.

New Server Parameters in 6.1
The following server parameters are new for Release 6.1:

• Cluster Growth Policy

• Database File Growth Policy

• Failover Heartbeat File

• Failover Script

• Identical Pathnames on Failover Server

• RAWFS Partition Growth Policy

• RPC Timeout

Some of these server parameters are described in other sections of this document. For
detailed information about all of the new server parameters, see their descriptions in
Chapter 2 (“Server Parameters”) of Managing ObjectStore.

New Options for ObjectStore Utilities in 6.1
New options have been added to the following ObjectStore utilities:

• osarchiv -P -T
64 ObjectStore Release Notes

Chapter 5: New and Changed Features in Release 6.1 Service Pack 2
• osbackup -P -r -T

• oscopy rawfs_dir

• osdbcontrol -cluster_size -size

• osdump -dir -pr -v

• osload -dir -pr -v

• osrecovr -s -T

• osreplic -c -C -P -R -s -T

• osrestore -s -T

• osserver -con -hostname -M -server_name -upgradeRAWFS

• ossg -auditor -showsets -ignore_vbo

Note that the -auditor option is provided as a migration tool and is not described
in Managing ObjectStore. For information about this option, see ossg’s Default
Front-End Parser on page 53.

• ossize -f

• ossvrstat -databases

• osverifydb -all -tag

For information about the new options refer to the descriptions of the utilities in
Chapter 4 (“Utilities”) of Managing ObjectStore.

Unsupported C++ Functions in 6.1
The objectstore::export() function is not supported and has been replaced by
the objectstore::export_object() function. For more information, see
objectstore::export() Renamed on page 60.

Unsupported Java Methods in 6.1
The JVMEnvironment.initialize() method is not supported and has been
replaced by the JVMEnvironment.deploy() method. For more information, see
com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed on page 61.

Unsupported Options for ObjectStore Utilities in 6.1
The following options to the ossg utility are no longer supported:

• The -edgfe option; for more information, see ossg’s Default Front-End Parser on
page 53.

• The -store_function_parameters (-sfp) option. Specifying the -store_
member_functions (-smf) option provides the same functionality; see the
description of the ossg utility in Chapter 4 (“Utilities”) of Managing ObjectStore.
Release 6.3 65

Summary of Changes in 6.1
66 ObjectStore Release Notes

Release 6.3
Index
A
abstract classes

used as virtual base classes 35
address markers, disabling 57
address space

Linux platforms 35
release facility 35

address-space
release facility restriction 35

all architecture set 55
all32 architecture set 55
all32vbtrav architecture set 56
all64 architecture set 55
applets

using Objectstore in 43
application compatibility 23
-arch option (ossg) 55
architecture sets

all 55
all32 55
all32vbtrav 56
all64 55
Release 6.1 55
standard 55
user-defined 56
versioned 55

attributes
commit_if_idle 39

-auditor option (ossg) 53

C
cache manager performance 60
changes, summarized 63
changing Windows registry location 56
classes, system-supplied

os_authentication 56
os_replicator 54

os_replicator_options 54
os_replicator_statistic_info 54

client compatibility 25
Cluster Growth Policy server parameter 54
cluster operating system

failover 53
support for 55

-cluster_size option (osdbcontrol) 54
CMTL

address-space release restriction 35
Linux platforms 39

CMTL Restrictions 39
com.odi.jmtl.env.JVMEnviroment Class

Renamed 61
com.odi.jmtl.env.JVMEnviroment.initialize()

Method Renamed 61
commit_if_idle attribute 39
compare_schemas()

os_dbutil, defined by 50
compatibility

application 23
client 25
database 25
server 25

Compiler Compatibility 25
Compiling Single-Threaded Applications on

Solaris 60
Configuring CMTL from XML on Linux

Platforms 39
cursors, optimizing 59

D
database

compaction 45
defragmenting 54
failover support 53
replication 54
verification 47
67

E

database compatibility 25
Database File Growth Policy server

parameter 54
Database Verification Optimization 47
Databases Being Evolved or Compacted Can

Contain Unions 12
DDML Restrictions 39
DDML, restrictions 39
deadlock information 19
defaults for Solaris PSR 48
defines

_OS_COLL_LIST_OPTIMIZE 60
_OS_COLL_SET_OPTIMIZE 60

defragmenting databases 54
Defragmenting ObjectStore Databases 54
Differing Support for #pragma pack(pop,N) 33
Differing Support for Integral Extension Types 34
disabling address markers 57
documentation changes in 6.1 62
documentation, changes 62
dump/load facility 57

multi-process restriction 51
upgrading OSJI databases 40

E
Easier Schema Generation for osload 58
-edgfe option (ossg) 53
empty abstract classes 35
encoding for pathnames 49
Enhanced Schema Evolution and Database

Compaction Features 11
environment variables

OS_ALLOW_INBOUND_RELOC_SKIPPING 52
OS_ALLOW_OUTBOUND_RELOC_SKIPPING 52
OS_ASMARKERS_USELESS 57
OS_OSVERIFYDB_BUFFER_SIZE 47
OS_OSVERIFYDB_FAST 47
OS_REMOTE_AUTH_REGISTRY_LOCATION 56
OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK 53
OS_SKIP_INBOUND_VERIFY_TAGS_INDEX 52
OS_USER_ARCH_SET 56

err_invalid_pathname_encoding exception 50
export()

objectstore, defined by 60

F
-f option (ossize) 54

-F option
(osverifydb) 47

failover support 53
Fast Mode for Verifying OSJI Databases is

Supported 18
forced-order base classes 56
front-end parser 53
fstream specification 47

G
Generating Schema for Empty Abstract Classes on

Solaris 35
generating schema, restriction 35
get_asmarkers_useless()

objectstore, defined by 57
get_dispatch_table_pointer_offset_other_

compiler()

os_class_type, defined by 50
get_fragmentation()

os_database, defined by 54

H
has_dispatch_table_other_compiler()

os_class_type, defined by 50
Hosted Pathname Syntax Might Require Setting of

Environment Variable 43
hostname resolution 35
Hostname Resolution and Performance 35

I
Improved Support for Failover 53
inbound relocation and performance 51
Incompatibilities Between Visual C++ 6 and 7.1 33
Integration with WebLogic Server 7.0 62
iostream specification 47

J
Java browser, problems with 40
Java Components of ObjectStore 39
Java interface to ObjectStore

changes in 6.1 60
changes in 6.3 16

JDK 1.4 on Solaris 41
JMTL

proxy generator 47
restrictions 39
68 ObjectStore Release Notes

Index
JMTL changes in 6.1 61
JMTL Enhancements in 6.2 47
JMTL No Longer Depends On Xerces Parser 18

L
Level One Integration 41
level one integration, support for 41
libosth library 60
Linux 32-bit platforms 28
Linux 64-bit platforms 29
Linux platforms

address space limitation 35
CMTL 39
virtual base classes 56

Linux Users Must Use Only the Current Linux
Thread Libraries 43

lists, optimizing 59

M
macros

OS_EXPORT_API 60
OS_MARK_QUERY_FUNCTION_WITH_NAMESPACE 59

Maximum Propagation Buffer Size server
parameter

changed default 19
metadata checking 51
migration aids

-auditor option (ossg) 53
platform and release information 23
summary of changes 63

Modified Neutralization Option for Schema
Generator 20

-mt option (Solaris compiler) 60
Multi-process Dump and Load 51
multithreaded applications 43
multi-threaded applications, linking 60
multithreaded OSCI libraries 43

N
Neutralizing Virtual Base Classes 56
neutralizing virtual base classes 56
New Address Space Marker Cursors 15
New and Changed Features in Release 6.1 Service

Pack 2 49
New and Changed Features in Release 6.2 45
New and Changed Features in Release 6.3 11
New C++ Classes and Functions in 6.1 63

New C++ Collections Features 15
New Cache Pool Attributes 62
New Constructor Overloadings for os_coll_range

Class 16
New Database Compaction Options and

Functions 12
New Environment Variables in 6.1 64
New Index Monitoring Tools 15
New JMTL Deployment Descriptor Format 61
New Macro for Functions Used in Queries 59
New Options for ObjectStore Utilities in 6.1 64
New Order by DSCO Argument for Cursor

Constructors 16
New os_path_to_data Function 21
New OS_USE_MAP_FIXED Environment

Variable 19
New Pathname Encoding Function 49
New Platform Support

HP-UX and AIX 51
New Schema Evolution Functions 14
New Server Parameters in 6.1 64
Not Supported on 64-Bit Platforms or AIX 40
Note on Multi-process osdump and osload 59

O
objectstore

export() Renamed 60
objectstore, the class

export() 60
get_asmarkers_useless() 57
set_asmarkers_useless() 57

objectstore::set_pathname_encoding() 49
optimizing

cursors 59
database verification 47
lists 59
sets 59

Optimizing Collections 59
options

-auditor (ossg) 53
-arch (ossg) 55
-cluster_size (osdbcontrol) 54
-ds (osdump) 57
-edgfe (ossg) 53
-emit (osdump) 57
-f (ossize) 54
-F (osverifydb) 47
Release 6.3 69

P

-mt (Solaris compiler) 60
-pr (osdump) 57
-pr (osload) 57
-r (osserver) 56
-showsets (ossg) 55
-size (osdbcontrol) 54

OS_ALLOW_INBOUND_RELOC_SKIPPING 52
OS_ALLOW_INBOUND_RELOC_SKIPPING environment

variable 52
OS_ALLOW_OUTBOUND_RELOC_SKIPPING 52
OS_ALLOW_OUTBOUND_RELOC_SKIPPING

environment variable 52
OS_AS_SIZE environment variable 48
OS_AS_STARTenvironment variable 48
OS_ASMARKERS_USELESS environment variable 57
os_authentication, the class 56
os_class_type, the class

get_dispatch_table_pointer_offset_other_

compiler() 50
has_dispatch_table_other_compiler() 50

os_cluster, the class
set_size() 54

_OS_COLL_LIST_OPTIMIZE define 60
_OS_COLL_SET_OPTIMIZE define 60
os_database, the class

get_fragmentation() 54
set_size() 54
set_size_in_sectors() 54

os_dbutil, the class
compare_schemas() 50

OS_EXPORT_API macro 60
OS_MARK_QUERY_FUNCTION_WITH_NAMESPACE

macro 59
os_object_cursor, the class

release_address_space() 50
OS_OSVERIFYDB_BUFFER_SIZE environment

variable 47
OS_OSVERIFYDB_FAST environment variable 47
OS_REMOTE_AUTH_REGISTRY_LOCATION

environment variable 56
os_replicator, the class 54
os_replicator_options, the class 54
os_replicator_statistic_info, the class 54
os_schema_evolution, the class

set_address_space_release_interval() 50
set_explanation_level() 63
set_resolve_ambiguous_void_pointers() 63

OS_SKIP_FREE_SPACE_CONSISTENCY_

CHECK 53
OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK

environment variable 53
OS_SKIP_INBOUND_VERIFY_TAGS_INDEX 52
OS_SKIP_INBOUND_VERIFY_TAGS_INDEX

environment variable 52
OS_USER_ARCH_SET environment variable 56
oscmgr6 utility 56
osconfig utility 63
osdbcontrol utilitiy 54
osdump utility 57

changes in 6.1 57
OSJI

changes in 6.1 60
changes in 6.3 16

OSJI Performance Improvements - Peer Objects and
Peer Collections No Longer Supported 17

OSJI, restrictions 39
osload utility 57

changes in 6.1 57
osscheq utility 50
osserver utility 56, 57
ossevol utility 50
ossg utilitiy

architecture sets 55
empty abstract classes 35
front-end parser 53

ossg’s Default Front-End Parser 53
ossize utilitiy 54
ossize utility

changes in 6.3 20
osverifydb utility fast mode 47
outbound relocation and performance 51

P
page faults, preventing 57
pathname encoding 49
Performance and Metadata Checking 51
Performance Improvements 59
performance, using environment variables to

improve 51
Platform and Release Compatibility 23
Platform Configuration

AIX 31
HP-UX 32-Bit 30
HP-UX 64-Bit 30
Solaris 32-Bit 26
Solaris 64-Bit 27
70 ObjectStore Release Notes

Index
Windows Visual Studio .NET 2003 28
platform configurations

Linux 32-bit 28
Linux 64-bit 29
Windows 27

platform support
AIX 31
HP-UX 32-bit 30
HP-UX 64-bit 30
Linux 28, 29
Solaris 32-bit 26
Solaris 64-bit 27
Windows VC7 27

Preventing Excessive Page Faulting 57
preventing page faults 57
Programmatic Support for Backup and Restore

Operations 49
proxy generator for JMTL 47
PSR defaults for Solaris 48

Q
query functions 59

R
-r option (osserver) 56
RAWFS Partition Growth Policy server

parameter 54
Reclassification of Instances is Again Supported 14
Red Hat Linux 8 Address Space Limitation 35
References to objects in destroyed placements 40
registration location on Windows 56
registry location, changing 56
release_address_space()

os_object_cursor, defined by 50
releasing address space 35
relocation and performance 51
replicating databases 54
Replication API 54
Requirement for Running JMTL Examples 18
Restrictions, Limitations, and Known Problems 33
Resumption of osload in the Event of Failure 58
rolling upgrades 54
Running Java Browser on UNIX 40

S
schema evolution

6.1 changes 50

6.2 changes 45
changes in 6.1 50
restrictions 46

Schema Evolution and Database Compaction 45
Schema Evolution and Database Compaction

Allocation Option 12
Schema Evolution of Pointer-to-Member Types 13
schema failures 33
schema generation, restriction 35
Schema Write-Lock Conflicts Might Occur

Immediately Following Schema
Installation 42

server compatibility 25
server parameters

Cluster Growth Policy 54
Database File Growth Policy 54
RAWFS Partition Growth Policy 54

set_address_space_release_interval()

os_schema_evolution, defined by 50
set_asmarkers_useless()

objectstore, defined by 57
set_explanation_level()

os_schema_evolution, defined by 63
set_resolve_ambiguous_void_pointers()

os_schema_evolution, defined by 63
set_size()

os_cluster, defined by 54
os_database, defined by 54

set_size_in_sectors()

os_database, defined by 54
sets, optimizing 59
Setting the commit_if_idle attribute 39
-showsets option (ossg) 55
Simplified osload Usage 59
single-threaded applications, linking 60
-size option (osdbcontrol) 54
Soft References Are the Default 18
Solaris

DDML restriction 39
Solaris platforms

JDK 1.4 41
multithreaded libraries 43

Solaris platforms, restriction 35
Solaris PSR Default Changes 48
Solaris PSR defaults 48
Standard Architecture Sets 55
standard architecture sets 55
Stream Specification 47
Release 6.3 71

T

stream specification 47
summary of changes 63
Summary of Changes in 6.1 63
Sun Clusters 3.0 system

failover 53
ObjectStore support for 55

Support for .NET Applications 18
Support for Java Data Objects (JDO) 45
Support for Long Immediate Strings 17
Support for Remote Schemas 17
Support for the Sun Clusters 3.0 55

T
Terminated Sessions Do Not Release All

Resources 41
threaded applications, linking 60
Threads Are Not Being Automatically Joined to

Nonglobal Sessions 41
thread-safe library 60
Transient Segmentation Violation Errors 43

U
Unsupported C++ Functions in 6.1 65
Unsupported Java Methods in 6.1 65
Unsupported Options for ObjectStore Utilities in

6.1 65
Updated Examples Using Ant Build Files 62
upgrading OSJI databases, restriction 40
Upgrading Pre-6.0 OSJI Databases 40
Use of JDK 1.4 on HP-UX 41
Use of JDK 1.5 40
Use of osgc and oscompact Utilities 43
Use of ossevol Utility 42
User-Defined Architecture Sets 56
user-defined architecture sets 56
Using Dump and Load to Migrate Databases 58
Using Environment Variables 36
Using osfixvh to Check and Fix Vector Headers 38
utilities

oscmgr6 56
osconfig 63
osdbcontrol 54
osdump 57
osload 57
osscheq 50
osserver 56, 57
ossevol 50

ossg

architecture sets 55
empty abstract classes 35
front-end parser 53

ossize 54
osverifydb 47

V
vector headers

fixing 36
fixing programmatically 37

vector headers, problems with 36
Versioned Architecture Sets 55
versioned architecture sets 55
virtual base classes

abstract classes 35
virtual base classes, neutralizing 56
Visual C++

schema incompatibilities 33
Visual c++ 6 27

W
Windows 32-bit platforms 27
Windows platforms

registration location 56
Windows registry location, changing 56
72 ObjectStore Release Notes

	Contents
	Preface
	New and Changed Features in Release 6.3
	Enhanced Schema Evolution and Database Compaction Features
	Databases Being Evolved or Compacted Can Contain Unions
	Schema Evolution and Database Compaction Allocation Option
	New Database Compaction Options and Functions
	Schema Evolution of Pointer-to-Member Types
	Reclassification of Instances is Again Supported
	New Schema Evolution Functions

	New C++ Collections Features
	New Index Monitoring Tools
	New Address Space Marker Cursors
	New Order by DSCO Argument for Cursor Constructors
	New Constructor Overloadings for os_coll_range Class

	Changes to the Java Interface to ObjectStore
	Support for Remote Schemas
	OSJI Performance Improvements - Peer Objects and Peer Collections No Longer Supported
	Support for Long Immediate Strings
	JMTL No Longer Depends On Xerces Parser
	Soft References Are the Default
	Ant Requirement for Running JMTL Examples
	Fast Mode for Verifying OSJI Databases is Supported

	Support for .NET Applications
	New OS_USE_MAP_FIXED Environment Variable
	Changed Default Propagation Buffer Size
	Additional Deadlock Information
	Changes to ossize Utility Output
	Modified Neutralization Option for Schema Generator
	New os_path_to_data Function
	New os_path_to_data Function

	Platform and Release Compatibility
	Application Compatibility
	Compiler Compatibility
	Client, Server and Database Compatibility
	Platform Configuration: Solaris 32-Bit
	Platform Configuration: Solaris 64-Bit
	Platform Configuration: Windows 32-Bit Visual C++ 6 and 7
	Platform Configuration: Windows Visual Studio .NET 2003
	Platform Configuration: Linux 32-Bit
	Platform Configuration: Linux 64-Bit
	Platform Configuration: HP-UX 32-Bit
	Platform Configuration: HP-UX 64-Bit
	Platform Configuration: AIX

	Restrictions, Limitations, and Known Problems
	Incompatibilities Between Visual C++ 6 and 7.1
	Differing Support for #pragma pack(pop,N)
	Differing Support for Integral Extension Types

	Red Hat Linux 8 Address Space Limitation
	Address-Space Release Facility
	Hostname Resolution and Performance
	Generating Schema for Empty Abstract Classes on Solaris
	Fixing Incorrect Vector Headers
	Using Environment Variables
	Checking and Fixing Vector Headers Programmatically
	Using osfixvh to Check and Fix Vector Headers

	CMTL Restrictions
	Configuring CMTL from XML on Linux Platforms
	Setting the commit_if_idle attribute

	DDML Restrictions
	Java Components of ObjectStore
	Upgrading Pre-6.0 OSJI Databases
	References to Objects in Destroyed Clusters, Segments, and Databases
	Not Supported on 64-Bit Platforms or AIX
	Running Java Browser on UNIX
	Use of JDK 1.5
	.Use of JDK 1.4 on Solaris
	Use of JDK 1.4 on HP-UX
	Level One Integration
	Terminated Sessions Do Not Release All Resources
	Threads Are Not Being Automatically Joined to Nonglobal Sessions
	Schema Write-Lock Conflicts Might Occur Immediately Following Schema Installation
	Use of ossevol Utility
	Use of osgc and oscompact Utilities
	Hosted Pathname Syntax Might Require Setting of Environment Variable
	Transient Segmentation Violation Errors
	Applets

	Accessing Multithreaded OSCI Libraries on Solaris
	Linux Users Must Use Only the Current Linux Thread Libraries
	Following External Links with the Netscape 4.7 Browser

	New and Changed Features in Release 6.2
	Support for Java Data Objects (JDO)
	Schema Evolution and Database Compaction
	JMTL Enhancements in 6.2
	Database Verification Optimization
	Stream Specification
	Solaris PSR Default Changes

	New and Changed Features in Release 6.1 Service Pack 2
	Programmatic Support for Backup and Restore Operations
	New Pathname Encoding Function
	Changes to the Schema Evolution API
	New Platform Support: HP-UX and AIX
	Multi-process Dump and Load
	Performance and Metadata Checking
	OS_ALLOW_OUTBOUND_RELOC_SKIPPING
	OS_ALLOW_INBOUND_RELOC_SKIPPING
	OS_SKIP_INBOUND_VERIFY_TAGS_INDEX
	OS_SKIP_FREE_SPACE_CONSISTENCY_CHECK

	ossg’s Default Front-End Parser
	Improved Support for Failover
	Replication API
	Defragmenting ObjectStore Databases
	Support for the Sun Clusters 3.0
	Architecture Sets for Release 6.1
	Standard Architecture Sets
	Versioned Architecture Sets
	User-Defined Architecture Sets

	Neutralizing Virtual Base Classes
	Changing the Windows Registration Location
	Preventing Excessive Page Faulting
	Changes to Dump and Load
	Using Dump and Load to Migrate Databases
	Resumption of osload in the Event of Failure
	Easier Schema Generation for osload
	Simplified osload Usage

	Performance Improvements
	Note on Multi-process osdump and osload
	New Macro for Functions Used in Queries
	Optimizing Collections
	Compiling Single-Threaded Applications on Solaris
	objectstore::export() Renamed
	Changes to the ObjectStore Java Interface (OSJI)
	Changes to JMTL
	com.odi.jmtl.env.JVMEnviroment Class Renamed
	com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed
	New JMTL Deployment Descriptor Format
	New Cache Pool Attributes
	Integration with WebLogic Server 7.0
	Updated Examples Using Ant Build Files

	Changes to the Documentation
	Summary of Changes in 6.1
	New C++ Classes and Functions in 6.1
	New Environment Variables in 6.1
	New Server Parameters in 6.1
	New Options for ObjectStore Utilities in 6.1
	Unsupported C++ Functions in 6.1
	Unsupported Java Methods in 6.1
	Unsupported Options for ObjectStore Utilities in 6.1

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

