
Advanced C++ A P I User Guide

Release 6.3

Copyright

Advanced C++ A P I User Guide

ObjectStore Release 6.3 for all platforms, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This
manual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes
no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design),
DataDirect Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center,
eXcelon, Fathom,, IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered
by Progress, Progress, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program,
Progress Fast Track, Progress OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and
design), ProCare, Progress en Partners, Progress in Progress, Progress Profiles, Progress Results, Progress Software
Developers Network, ProtoSpeed, ProVision, SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, and Your Software, Our Technology-Experience the Connection are registered
trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other
countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect XQuery,
DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks
of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Any other trademarks or trade names contained herein are the property of their respective owners.

ObjectStore includes software developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 2000-2003 The Apache Software Foundation. All rights reserved. The names "Ant," "Xerces," and
"Apache Software Foundation" must not be used to endorse or promote products derived from the Products
without prior written permission. Any product derived from the Products may not be called "Apache", nor may
"Apache" appear in their name, without prior written permission. For written permission, please contact
apache@apache.org.

September 2005

Contents

Preface . 13

Chapter 1 Advanced Persistence . 17

Controlling Address Space Reservation. 17

Purpose of Address Space Reservation. 18

Controlling Address Space Reservation . 18

Midtransaction Address-Space Release Must Be User Controlled 19

Clustering to Conserve Address Space . 19

Releasing Address Space . 20

Example. 20

Nesting Markers . 21

Retaining the Validity of Specified Pointers . 21

Deleting Markers . 22

Using Other Marker Functions . 22

Using ObjectStore Soft Pointers . 22

Softness Is Application Relative . 23

Specifying the Pointers That Are Soft . 23

Soft Pointer API . 23

Example. 24

Soft Pointer Classes and Macros . 25

Opening a Database Automatically . 26

Soft-Pointer Decaching . 26

Retaining the Validity of a Specified Variable . 27

Using os_retain_address . 28

Example. 29

Retaining and Releasing the Validity of All Pointers . 31

Persistent Pointers to Transient Objects. 32

Example. 33

ObjectStore’s Relocation . 34

Inbound Relocation . 34

Outbound Relocation . 35

Controlling Relocation by Clustering . 35
Release 6.3 3

Contents
4

Soft-Pointer Decaching and Relocation. 36

Setting Data Fetch Policies . 36

os_fetch_cluster Policy . 37

os_fetch_page Policy . 38

os_fetch_stream Policy . 38

When the Fetch Quantum Is Too Large . 38

Using Persistent Unions. 39

Union Overhead . 39

Example. 39

Setting Segment Reference Policies . 40

Setting and Getting Segment Reference Policies . 41

Exporting Objects . 42

Examining Export IDs . 42

Example. 43

Chapter 2 Advanced Transactions . 47

Reducing Wait Time for Locks . 47

Clustering . 47

Locking Granularity. 47

Transaction Length . 48

Multiversion Concurrency Control (MVCC) . 48

Abort-Only Transactions . 48

Lock Timeouts . 48

Nested Transactions . 48

Locking and Nesting . 49

Abort-Only Transactions . 49

Deadlock . 50

Deadlock Victim . 50

Automatic Retries Within Lexical Transactions . 50

Consequences of Automatic Deadlock Abort . 50

Deadlocks in Dynamic Transactions. 51

Multiversion Concurrency Control (MVCC) . 51

No Waiting for Locks . 51

Snapshots . 51

Accessing Multiple Databases in a Transaction . 52

Serializability . 52

MVCC API . 52

MVCC and the Transaction Log . 53

Handling err_mvcc_incoherent . 54

Performance Note . 54

Logging and Propagation . 55
4 Advanced C++ A P I User Guide

Contents
Transaction Logging . 55

Propagation . 55

Performing Transaction Checkpoints. 56

Checkpointing a Transaction . 56

Locking and Checkpoints . 57

Pointer Validity . 57

Support for the XA Standard for Transaction Processing. 57

Transactions in the DTP Model . 58

 ObjectStore Clients . 59

ObjectStore and RDBMS Database. 59

Registering ObjectStore as a Resource Manager . 59

Using the Transaction Manager . 60

Two-Phase Commit and Recovery . 61

Restrictions . 61

Transaction Locking Examples . 62

Simple Waiting Scenario. 62

Simple Deadlock Scenario . 63

MVCC and the Simple Waiting Scenario . 63

MVCC and the Simple Deadlock Scenario . 64

MVCC Conflict Scenario . 64

Chapter 3 Multithread and Multisession Applications . 65

What Are Sessions? . 66

Threads in Different Sessions . 66

Threads in the Same Session . 66

Thread Locking and Collections . 67

Designing Multithreaded Applications . 67

Transaction Management Styles . 68

Transaction Sharing . 68

Batch Transaction Commits and Aborts . 68

Overview of Using Sessions . 69

Using Pointers Across Sessions . 70

Pointers to Transient ObjectStore Objects . 70

Pointers to Persistent Objects . 71

Pointers to Transient Non-ObjectStore Objects . 73

Cross-Session References . 74

Initializing the Sessions Facility . 74

Considering Per-Session Costs When Initializing . 75

Determining Whether the Sessions Facility Has Been Initialized 75

Initializing an Individual Session. 75

How Partition Size is Determined . 75
Release 6.3 5

Contents
6

Creating and Deleting Sessions . 76

Setting and Getting the Current Session . 76

Thread Absorption . 77

Getting the Session of Pointers to Objects . 77

Retrieving the Session for an ObjectStore Object . 78

Retrieving the Session for a Persistent Object . 78

Using Collections in a Multisession Environment. 79

Setting and Getting Session Defaults and Session-Specific State 79

Dual-Purpose Functions . 79

Single-Purpose Functions . 80

Example . 81

main() . 81

Request Execution. 82

init() . 82

Start-up Procedures . 82

Thread Functions . 83

buy_seats() and view_seats() . 83

send_reply() . 83

refresh_if_needed() . 83

get_request() . 84

Chapter 4 Data Integrity . 85

Data Integrity Facilities . 85

Inverse Members . 85

Illegal Pointers . 86

References to Deleted Objects . 86

Inverse Data Members . 86

Inverse Member End-User Interface . 87

Defining Relationships . 88

Relationship Macros . 88

Macro Arguments. 89

Relationship Examples . 89

Example: Single-Valued Relationships . 89

Example: Many-Valued Relationships . 92

Example: One-to-Many and Many-to-One Relationships 93

Duplicates and Many-Valued Inverse Relationships . 95

Use of Parameterized Types. 96

Deletion Propagation and Required Relationships . 97

Indexable Inverse Members. 98

Chapter 5 Metaobject Protocol . 99
6 Advanced C++ A P I User Guide

Contents
Metaobject Protocol (MOP) Overview . 100

MOP Header Files . 100

Attributes of MOP Classes . 100

Schema Read Access Compared to Schema Write Access 102

Schema Read Access . 102

Schema Write Access . 102

Schema Consistency Requirements. 103

Retrieving an Object Representing the Type of a Given Object. 103

type_at() Function . 103

type_containing() Function . 104

Retrieving Objects Representing Classes in a Schema 104

The Transient Schema . 106

Initializing the Transient Schema with initialize() . 106

Copying into the Transient Schema with copy_classes() 106

Looking Up a Class in the Transient Schema with find_type() 107

Using MOP for Schema Installation and Evolution . 108

The Metatype Hierarchy . 109

Class os_type . 110

create() Function . 110

kind Attribute . 110

Retrieving the kind_string Attribute. 111

Retrieving the string Attribute . 112

Determining an os_type’s Type and Status . 112

Type-Safe Conversion Operators . 113

Class os_integral_type. 114

create() Functions . 115

Determining a Signed Type with is_signed() . 115

Class os_real_type . 115

create() Functions . 115

Class os_class_type. 116

create() Functions . 116

name Attribute . 117

class_kind Attribute . 117

members Attribute . 118

os_base_class Objects. 118

declares_get_os_typespec_function() Function . 119

set_declares_get_os_typespec_function() Function . 119

defines_virtual_functions Attribute . 119

introduces_virtual_functions Attribute . 119

is_forward_definition Attribute . 120
Release 6.3 7

Contents
8

is_persistent Attribute . 120

Finding the Nonvirtual Base Class with find_base_class() 120

Finding Base Classes from Which this Inherits with
get_allocated_virtual_base_classes() . 120

Finding Classes from Which this Indirectly Inherits with
get_indirect_virtual_base_classes() . 121

Finding the Member with a Specified Name with
find_member_variable() . 121

Finding a Containing Object with get_most_derived_class() 121

Class os_base_class . 123

create() Functions . 125

class Attribute . 125

access Attribute . 126

is_virtual Attribute . 126

Class os_member . 126

create() Functions . 127

access Attribute . 127

kind Attribute . 127

defining_class Attribute . 128

Type-Safe Conversion Operators . 128

Class os_member_variable . 129

create() Function . 129

name Attribute . 130

type Attribute . 130

storage_class Attribute . 130

is_field Attribute. 130

is_static Attribute . 131

is_persistent Attribute . 131

Type-Safe Conversion Operators . 131

Class os_relationship_member_variable . 131

create() Function . 132

related_class Attribute . 132

related_member Attribute . 132

Class os_field_member_variable. 133

create() Function . 133

size Attribute . 133

Class os_access_modifier . 134

create() Function . 134

base_member Attribute . 134

Class os_enum_type . 135

create() Function . 135
8 Advanced C++ A P I User Guide

Contents
name Attribute . 135

enumerators Attribute . 135

Class os_enumerator_literal. 136

create() Function . 136

name Attribute . 136

Class os_void_type . 137

create() Function . 137

Class os_pointer_type . 137

create() Function . 137

target_type Attribute . 137

Type-Safe Conversion Operators . 138

Class os_reference_type . 138

create() Function . 138

target_type Attribute . 139

Class os_pointer_to_member_type . 139

create() Function . 139

target_type Attribute . 139

target_class Attribute . 140

Class os_indirect_type . 140

Class os_named_indirect_type. 141

create() Function . 141

target_type Attribute . 141

name Attribute . 141

Class os_anonymous_indirect_type . 142

create() Function . 142

target_type Attribute . 142

is_const Attribute . 143

is_volatile Attribute. 143

Class os_array_type . 143

create() Function . 144

number_of_elements Attribute . 144

element_type Attribute . 144

Fetch and Store Functions. 144

os_fetch() Functions. 145

os_store() Functions . 145

Type Instantiation . 146

Example: Schema Read Access . 146

Top-Level print() Function . 147

Recursive Execution of print() . 149

print_a_pointer() Function. 152
Release 6.3 9

Contents
10

Other Data-Handling Routines . 153

Example: Dynamic Type Creation . 157

Overview of the gen_schema() Example . 157

gen_schema() Function . 158

Supporting Functions for the gen_schema() Application. 160

Call Graph of Non-ObjectStore Functions for gen_schema(). 161

gen_schema.cc Source File . 161

Driver Definition . 166

Chapter 6 Dump/Load Facility . 171

When Is Customization Required? . 172

Customizing Dumps. 173

Creation Stages . 173

Dumper Actions . 173

Supplying Customized Type-Specific Actions . 175

Customizing Loads . 176

Specializing os_Planning_action . 177

Implementing operator ()(). 178

Defining and Registering the Instance . 180

Specializing os_Dumper_specialization . 180

Implementing operator ()(). 181

Implementing should_use_default_constructor() . 182

Implementing get_specialization_name() . 183

Defining and Registering the Dumper Instance . 183

Specializing os_Fixup_dumper . 184

Implementing dump_info() . 184

Implementing duplicate(). 186

Implementing the Constructor . 186

Specializing os_Type_info . 186

Implementing data . 187

Implementing the Constructor . 187

Specializing os_Type_loader . 188

Implementing operator ()(). 189

Implementing load() . 189

Implementing create() . 190

Implementing fixup() . 192

Implementing get() . 193

Defining and Registering the Instance . 194

Specializing os_Type_fixup_info . 194

Implementing fixup_data . 195

Implementing the Constructor . 195
10 Advanced C++ A P I User Guide

Contents
Specializing os_Type_fixup_loader . 195

Implementing operator ()(). 196

Implementing load() . 197

Implementing fixup() . 198

Implementing get() . 199

Registering the Fixup Loader . 200

Chapter 7 Advanced Schema Evolution . 201

Phases of the Schema Evolution Process . 202

Instance Initialization . 202

Pointers to Modified Objects and Their Subobjects . 202

Untranslatable Pointers . 203

C++ References . 203

ObjectStore References . 203

Obsolete Indexes and Queries . 203

Task List Reporting . 204

Instance Transformation . 204

Transformer Functions. 204

Initiating Schema Evolution . 204

Databases to Evolve . 206

Removed Classes. 206

Work Database . 206

Example: Changing the Type of a Data Member, Assignment-compatible
Types . 207

Using ossevol for Simple Schema Evolution . 209

Using Transformer Functions . 209

Signature of Transformer Functions . 209

Associating a Transformer with a Class . 209

Example: Changing the Type of a Data Member, Assignment-incompatible
Types . 210

Example: Changing Inheritance . 212

Instance Reclassification . 217

Untranslatable Pointers . 220

Using Handler Objects . 220

Creating a Handler Object . 220

Understanding Untranslatable Pointers . 221

Example: Using Untranslatable Pointer Handlers . 222

Obsolete Index and Query Handlers . 224

Task List Reporting . 225

Instance Initialization Rules . 226

Class Creation . 227
Release 6.3 11

Contents
12

Inheritance Redefinition . 227

Data Member Redefinition . 227

Member Function Redefinition . 227

Class Deletion . 228

Schema Changes Related to Data Members . 228

Adding Data Members . 229

Deleting Data Members. 229

Changing the Value Type of a Data Member . 230

Changing the Order of Data Members . 232

Moving Information from One Data Member to Another 232

Evolving Schemas That Contain Pointer-to-Member Types 232

Summary of Data Member Changes Not Requiring Explicit Evolution 233

Schema Changes Related to Member Functions . 233

Schema Changes Related to Class Inheritance . 233

Adding Base Classes. 234

Removing Base Classes. 235

Inserting Base Classes . 236

Changing Between Virtual and Nonvirtual Inheritance . 237

Class Deletion . 239

Evolving Schemas That Contain Union Bystanders . 240

Evolving or Compacting Very Large Databases . 242

Chapter 8 Using Asian Language String Encodings . 243

Class Library: os_str_conv . 243

Automatic Detection of a Source String Encoding . 244

How to Instantiate the Converter . 246

Guidelines for Extensions to os_str_conv . 246

What Are the Different Modes and Their Meanings? . 246

Variations Among Standard Character Mappings . 246

Instructions on Overriding Particular Mappings . 247

Example. 248

Byte Order . 248

Overhead . 249

Restrictions . 249

Performance Notes . 249

Index . 251
12 Advanced C++ A P I User Guide

Preface

Purpose The Advanced C++ A P I User Guide describes the way to use the C++ programming
interface to ObjectStore to create database applications that use the more complex
features of ObjectStore. This book supports ObjectStore Release 6.3.

This publication’s companion volume, the C++ A P I User Guide, describes the basic
features of the C++ programming interface to ObjectStore.

Audience This book assumes that the reader is very experienced with C++ and with
programming with ObjectStore in particular, especially with the information
contained in the C++ A P I User Guide.

Scope Information in this book assumes that ObjectStore is installed and configured.

The Way This Book Is Organized
In contrast to the C++ A P I Reference and C++ Collections Guide and Reference manuals,
both of which are organized alphabetically, the two ObjectStore user guides are
organized functionally. This manual, the Advanced C++ A P I User Guide, describes
advanced functions and macros. The C++ A P I User Guide contains basic features.

Some chapters of this book parallel chapters in the C++ A P I User Guide, providing a
more advanced look at the ideas and features of ObjectStore, including persistence,
transactions, threads and sessions, and schema evolution. The remainder of the
chapters describe sophisticated features not generally used in more basic
applications; these chapters describe integrity control, compaction, metaobject
protocol, and dump/load.

Notation Conventions
This document uses the following conventions:

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.
Release 6.3 13

Preface
Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods indicate that you can repeat the
immediately previous item. In examples, they also indicate
omissions.

Convention Meaning
14 Advanced C++ A P I User Guide

Preface
If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 15

Preface
16 Advanced C++ A P I User Guide

Chapter 1
Advanced Persistence

The information in this chapter augments Chapter 3, Programming with Persistent
Storage, in the C++ A P I User Guide. The material is organized in the following
manner:

Controlling Address Space Reservation 17

Clustering to Conserve Address Space 19

Releasing Address Space 20

Using ObjectStore Soft Pointers 22

Retaining the Validity of a Specified Variable 27

Retaining and Releasing the Validity of All Pointers 31

Persistent Pointers to Transient Objects 32

ObjectStore’s Relocation 34

Setting Data Fetch Policies 36

Using Persistent Unions 39

Setting Segment Reference Policies 40

Controlling Address Space Reservation
Address space is the space of all possible virtual memory addresses. Each address
designates one byte of actual or potential virtual memory. When ObjectStore maps a
page of data into virtual memory (see ObjectStore’s Memory Mapping Architecture
in the C++ A P I User Guide), it reserves address space for objects referenced by
pointers on the mapped page. By default, ObjectStore unreserves this address space
at the end of each transaction.

Address space is always reserved in 64 KB units. When address space is reserved for
an object, ObjectStore actually reserves addresses for the entire 64 KB-aligned
portion of memory containing the object. This document refers to a 64 KB-aligned
Release 6.3 17

Controlling Address Space Reservation
portion of memory for which address space is reserved as a reservation chunk or,
simply, chunk.

On 32-bit platforms, if the pages used by a transaction refer to reservation chunks
whose total size approaches the size of the current session’s address space partition,
you might have to control address space reservation.

Purpose of Address Space Reservation
Address space is reserved for a reservation chunk in preparation for the possibility
of mapping pages in the chunk. If a page has a pointer to a reservation chunk,
address space is reserved for the chunk when the page is mapped (unless space is
already reserved for the chunk). If such a pointer is dereferenced, the page
containing the referent is mapped at the appropriate offset from the location
reserved for the chunk.

Controlling Address Space Reservation
As a transaction proceeds, the amount of address space reserved typically increases.
As more pages are mapped, more chunks typically are referred to by mapped pages.
As more chunks are referred to by mapped pages, more address space is reserved.
By default, ObjectStore releases (that is, unreserves) all reserved address space at the
end of each transaction.

Under some circumstances, the initial fan-out of a mapped page — the total amount
of address space that must be reserved for all pointers on the page — can consume

Mapped Data

Pointer on Page Being Mapped

Referent Object on Unmapped Page

 64 KB Chunk for Which Address Space Is Reserved

64 KB Chunk

Chunk

Chunk

Chunk

Pointers to
Objects on
Unmapped
Pages

Pointer to
Object on
Mapped
Page

Chunk

Chunk

Chunk

Chunk

Chunk

Chunk

Chunk

Chunk

Unmapped Data
18 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
all address space in the course of a single transaction. On 32-bit platforms, this might
happen if the pages used by a transaction refer to chunks whose total size
approaches the total size of the application’s persistent storage region (or, for
applications that use the sessions facility, the total size of the current session address
space partition). When all address space is reserved, ObjectStore signals err_
address_space_full.

Note 64-bit platforms are generally not at risk of running out of address space.

If you think a transaction might exhaust address space, first consider whether the
transaction can be broken up into multiple shorter transactions, each of which
consumes less address space. If this is not possible, you can control address space
reservation in one of the following ways:

• Cluster data to reduce the amount of address space that must be reserved, as
described in Clustering to Conserve Address Space on page 19.

• Release address space explicitly in midtransaction, before it is all reserved. (You
can use objectstore::is_unassigned_contiguous_address_space() to
determine if there is an unreserved address space portion of a given size.) For
more information, see the next section.

• Handle err_address_space_full by releasing address space explicitly.

• Use soft pointers instead of certain hard pointers in your application schema to
reduce the amount of address space reserved when pages containing the pointers
are mapped into virtual memory. For more information, see Using ObjectStore
Soft Pointers on page 22.

Midtransaction Address-Space Release Must Be User Controlled
When all address space is reserved, why does ObjectStore not automatically release
some, just as it automatically evicts least recently used pages when the client cache
is full? The answer concerns pointer validity. When pages are released from address
space, all encached pointers to those pages become invalid because the virtual
memory locations designated by the pointers can now be reserved for different data.
Any automatic eviction scheme makes it difficult or impossible for the program to
determine the pointers that have been rendered invalid.

With explicit address-space release, the program, in effect, specifies the pointers to
be released, so there is no question about the pointers that have been rendered
invalid and the program can take care not to use the pointers again. If the program
subsequently needs pointers to the same objects, it knows to re-retrieve the pointers
from the database.

Clustering to Conserve Address Space
Clustering can conserve address space by lowering the fan-out of a page of data
when it is initially mapped into virtual memory — that is, by reducing the total
amount of address space that ObjectStore must reserve for objects referenced by the
pointers on the mapped page.
Release 6.3 19

Releasing Address Space
Good clustering not only groups related data (the working data set) on a minimal
number of pages but also produces high locality of reference by grouping objects
with the pointers that reference them. When such a page is mapped into virtual
memory, the amount of address space that must be reserved for the page is minimal.

For information about using the ObjectStore API to cluster data, see Clustering in the
C++ A P I User Guide.

Releasing Address Space
Use explicit release of address space to prevent reservation of all address space or to
handle err_address_space_full (see Controlling Address Space Reservation on
page 17). By default, all reserved address space is released automatically at the end
of each transaction. You can release address space explicitly at other times as well,
using one of the following:

• objectstore::release_persistent_addresses(); see Retaining and
Releasing the Validity of All Pointers on page 31

• os_address_space_marker, discussed in this section

The class os_address_space_marker provides functions for

• Marking a point in the flow of execution

• Releasing all address space reserved since a specified marked point

To mark a point in the flow of execution of a program, create an instance of os_
address_space_marker on the transient heap or the stack. The os_address_space_
marker constructor has no arguments.

os_address_space_marker the_marker;

Call the member function release() on a specified marker to release all address
space reserved since the creation of the marker (except address space retained by
calls to os_address_space_marker::retain(), discussed later in this section, and
any retained by os_retain_address objects. See Retaining the Validity of a
Specified Variable on page 27). The function has no arguments and no return value.

the_marker.release();

Caution Calling this function invalidates all pointers to the objects for which the released
address space was reserved.

You can call release() on a marker repeatedly. After the first time you release a
marker, releasing the marker releases the address space reserved since the last time
the marker was released (except those retained by retain() or os_retain_
address).

Example
Suppose that an application must process a large vector of pointers in a single
transaction and that the pointers point to objects scattered among many different
reservation chunks. Further suppose that after an element of the vector has been
20 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
processed, it is not used again in the transaction. To avoid exhausting address space,
the application could release address space at various points during the traversal of
the vector.

In the worst case, each vector element points to a different reservation chunk. In this
case, the application should release address space after each RES_LIMIT element has
been processed. RES_LIMIT is the size of the persistent storage region (or the current
session’s address space partition, for multisession applications) divided by 64 KB
(minus the number of chunks occupied by addresses reserved before the marker and
minus a few chunks for ObjectStore internal data).

If there are an average of 100 referents of the vector elements in each reservation
chunk, the application can process 100 times as many elements before releasing
address space.

Here is an example of releasing address space during a vector traversal:

 OS_BEGIN_TXN(tx1, 0, os_transaction::update)
{
 Foo *p = ...; // needed across release() calls

 os_address_space_marker the_marker;

 Foo *vec1[LARGE_NUMBER] = ...;
 for (int i = 0; i < vec_size; i++) {
 if ((i-1) % RES_LIMIT == 0)
 the_marker.release();
 process (vec1[i], p);
 }

}
OS_END_TXN(tx1)

Nesting Markers
Address space markers can be nested, which means that several markers can be in
effect at the same time. Calling os_address_space_marker::release() on a
marker releases the marker and all markers nested within it.

Retaining the Validity of Specified Pointers
The static function os_address_space_marker::retain() allows you to specify
exceptions to the release of address space for pointers whose validity you want
maintained across release boundaries. Here is its signature:

static void os_address_space_marker::retain(
 void *p,
 os_address_space_marker *marker = 0
);

If marker is 0, the function retains the validity of p across calls to os_address_
space_marker::release() (assuming that p is currently valid).

If marker is nonzero, the argument specifies a marker that you can use to release the
address space occupied by p’s referent. In other words, the function retains the
Release 6.3 21

Using ObjectStore Soft Pointers
validity of p across calls to os_address_space_marker::release(), except calls to
marker.release().

Caution marker must not be nested within p’s associated marker, where a pointer’s associated
marker is the most deeply nested marker in existence when address space was
reserved for the pointer’s referent. If marker is nested within p’s associated marker,
the call to retain() is ignored.

Deleting Markers
Deleting a marker does not release the address space that marker has marked. If a
marker is deleted and no call to os_address_space_marker::release() is made,
the marker is removed and the address space that it controlled is now controlled by
its previous marker. If there is no previous marker, the address space is not governed
by any marker and is no longer incrementally releasable.

After the outermost marker is created, no more than 230 minus 1 additional markers
can be created before the outermost marker is deleted. This is true even if some or all
of the inner markers are deleted.

Using Other Marker Functions
The class os_address_space_marker defines member functions for the following:

• Getting the most recently constructed marker that has not been deleted

• Getting a marker’s nesting level

• Getting the marker created after a specified marker

• Getting the marker created before a specified marker

• Getting a pointer’s associated marker

See the C++ A P I Reference for more information.

Using ObjectStore Soft Pointers
ObjectStore soft pointers provide an alternative to using regular pointers to persistent
memory. Soft pointers reduce address space usage by deferring the reservation of
address space for the soft pointer’s referent until the soft pointer is dereferenced. See
Controlling Address Space Reservation on page 17.

You can also use soft pointers to allow 32-bit applications to access persistent
pointers stored by 64-bit applications, as well as to allow 64-bit applications to access
pointers stored by 32-bit applications.

Dereferencing a soft pointer is somewhat slower than dereferencing a regular hard
pointer. But the soft pointer facility uses a caching mechanism to increase soft-
pointer efficiency. When a soft pointer is dereferenced, it resolves to a hard pointer.
ObjectStore caches the dereferenced soft pointer along with the hard pointer to
which it resolves. For this reason, a cached soft pointer is faster than a decached one
because it really is just a hard pointer.
22 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Also, when a page that contains cached soft pointers is reused, chunks of address
space for the soft-pointer targets are immediately reserved.

Softness Is Application Relative
In a database, a soft pointer has the same format as a hard pointer. When one
application stores a soft pointer in a database, another application subsequently can
use the pointer as a regular hard pointer. Inversely, when one application stores a
hard pointer in a database, another application can subsequently use the pointer as
a soft pointer.

Specifying the Pointers That Are Soft
An application’s (or DLL’s) schema specifies those pointers that are treated as soft by
the application (or DLL). For any pointer-valued data member in a database schema,
the application’s schema can specify the member’s value type as a soft pointer class
instead of a pointer type.

For example, suppose a database schema contains the class

class part
{
 employee* responsible_engineer;
 . . .
};

If your application accesses this database and you want the application to treat the
values of part::responsible_engineer as soft pointers, define the application’s
class part in the following way:

class part
{
 os_soft_pointer<employee> responsible_engineer;
 . . .
};

These definitions of the class part are schema compatible. So although the
application’s definition of part and the database schema’s definition of part differ,
the application can access the database. When the application accesses an instance of
part, it does not initially reserve address space for the part’s responsible engineer
(an instance of employee).

Because an application’s schema specifies those pointers that are to be treated as soft,
only values of data members can be treated as soft pointers. Top-level pointers or
pointers in top-level arrays cannot be treated as soft.

To defer address-space reservation for referents of top-level pointers, replace the
top-level pointers with instances of os_Reference. This class has an API just like the
soft pointer API (see Soft Pointer API, following).

Soft Pointer API
Following is a brief description of the member functions provided by the soft pointer
classes. Note that the referent of a hard or soft pointer is the object to which the
pointer points or refers.
Release 6.3 23

Using ObjectStore Soft Pointers
Constructors The soft pointer classes provide constructors for

• Creating a soft pointer with the same referent as a given hard pointer (conversion
constructor)

• Creating a null soft pointer (no-argument constructor)

• Copying a soft pointer (copy constructor)

Assignment
operators

Overloadings of the assignment operator (operator =()) allow for modifying a soft
pointer so that it has the same referent as a given hard or soft pointer.

Resolution
functions

Before you dereference a soft pointer, you must resolve it, that is, retrieve a hard
pointer with the same referent. Resolution is either implicit or explicit. Implicit
resolution is supported by the dereference operator (operator ->()) and by a
conversion operator, for conversion to a pointer to the referent type. Explicit
resolution is supported by the member function resolve(). All these functions
return a hard pointer with the same referent as this.

Other functions The soft pointer classes also provide functions for comparing soft pointers with hard
or soft pointers, as well as functions for hashing soft pointers and for dumping soft
pointers to ASCII and loading soft pointers from ASCII. See the C++ A P I Reference.

Do not use the C++ memcpy() function or any means other than the soft pointer API
to copy soft pointers. Using direct memory manipulation can cause the resulting
copy to be unusable by ObjectStore.

Example
Because of the constructors, assignment operators, conversion operator, and
operator ->() defined by the soft pointer classes, you often can use soft pointers
just as you would use hard pointers. Following is an example of using a soft pointer,
an instance of os_soft_pointer:

#include <ostore/ostore.hh>
#include <stdio.h>

class employee
{
 static os_typespec *get_os_typespec();
 . . .
};

class part
{
 static os_typespec *get_os_typespec();
 . . .
 os_soft_pointer<employee> responsible_engineer;
 . . .
};

void f() {
 OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();

 static os_database *db1 = os_database::open("/thx/parts");
 OS_BEGIN_TXN(tx1, 0, os_transaction::update)
24 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
 part *a_part = new(db1, part::get_os_typespec()) part;
 employee *an_emp =
 new(db1, employee::get_os_typespec()) employee;
 a_part->responsible_engineer = an_emp;

 printf("%d\n", a_part->responsible_engineer->emp_id);
 OS_END_TXN(tx1)

 db1->close();

 OS_END_FAULT_HANDLER
}

The member responsible_engineer is declared to be of type os_soft_
pointer<employee>. The class name in angle brackets is the referent type. It indicates
that values of responsible_engineer are soft pointers to instances of the class
employee.

When a part is created,

part *a_part = new(db1, part::get_os_typespec()) part;

C++ implicitly calls the no-argument os_soft_pointer constructor, which
constructs a null soft pointer as the value of the data member responsible_
engineer.

When an employee* (an_emp) is assigned to the member responsible_engineer,

a_part->responsible_engineer = an_emp;

C++ invokes the soft pointer assignment operator, which makes the soft pointer
point to the same object as an_emp.

When the value of responsible_engineer is dereferenced,

printf("%d\n", a_part->responsible_engineer->emp_id);

C++ invokes the soft pointer -> operator, which resolves the soft pointer. C++
reapplies the -> operator to the resulting hard pointer.

Note that implicit resolution is performed only by the -> and conversion operators.
Other operators, such as [] and ++, do not perform implicit resolution and are not
defined by the soft pointer classes.

Soft Pointer Classes and Macros
ObjectStore provides several soft pointer classes, but typically your code should
refer only to instantiations of the class template os_soft_pointer<T>, such as os_
soft_pointer<employee> in the preceding example. The template parameter is the
referent type — the type of object referred to by the soft pointer.

Macro os_soft_pointer is a macro, defined as os_soft_pointer32 on 32-bit platforms
and defined as os_soft_pointer64 on 64-bit platforms. When you use os_soft_
pointer<T>, therefore, you are actually using os_soft_pointer32<T> or os_soft_
pointer64<T>.

Class templates os_soft_pointer32<T> and os_soft_pointer64<T> define constructors,
assignment operators, a conversion operator, operator ->(), and resolve(). Other
Release 6.3 25

Using ObjectStore Soft Pointers
soft pointer operations are inherited from os_soft_pointer32_base or os_soft_
pointer64_base.

Base classes os_soft_pointer_base<32> and os_soft_pointer_base<64> define decache,
hash, dump, and load functions. Comparison operators are defined in these base
classes and in classes derived from them.

Nonclass
referent types

If you use a soft pointer type whose referent type is not a class, you must call either
the macro OS_SOFT_POINTER32_NOCLASS() or OS_SOFT_POINTER64_NOCLASS(),
passing the referent type. This provides a definition for the template instantiation.
For example, the following defines the class os_soft_ptr32<float>:

OS_SOFT_POINTER32_NOCLASS(float);

Implicit instantiation of the template defines operator ->(), which is invalid for
nonclass parameters. Calling the macro defines an instantiation that does not
provide operator ->().

For soft pointers whose referent type is not a class, you resolve the pointer by calling
resolve() or by relying on the conversion operator.

The ObjectStore API explicitly provides the following instantiations of os_soft_
pointer32<T> and os_soft_pointer64<T>, using OS_SOFT_POINTER32_
NOCLASS() and OS_SOFT_POINTER64_NOCLASS():

• os_soft_pointer32<void> and os_soft_pointer64<void>

• os_soft_pointer32<char> and os_soft_pointer64<char>

Opening a Database Automatically
If a soft pointer refers to an object in a database that is not open, ObjectStore opens
the database automatically when the object is accessed (unless the autoopen mode is
auto_open_disable). The mode in which the database is opened is determined by
the value of objectstore::get_auto_open_mode().

Soft-Pointer Decaching
As mentioned in Using ObjectStore Soft Pointers on page 22, ObjectStore caches the
targets of soft pointers to increase their efficiency. By default, ObjectStore does not
automatically decache soft pointers on a page when that page is accessed again.
When a page that contains cached soft pointers is reused, chunks of address space
for the soft-pointer targets are immediately reserved.

If your application uses soft pointers and address space is an issue, you can force
ObjectStore to decache soft pointers following the release of address space. When
decaching is in effect and a page with soft pointers is reused, the soft pointers on the
page are decached and the address space for their targets is not reserved.

To enable automatic, process-wide soft-pointer decaching , set the following
environment variable to any nonnull value except 0:

OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE
26 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Alternatively, you can call objectstore::set_decache_soft_pointers_after_
address_space_release(). To enable decaching, specify true (nonzero) as the
argument; to disable decaching (the default), specify false (0). You should call this
function immediately after creating the session to ensure the release of all address
spaces that needs to be released.

To determine if decaching is enabled, call objectstore::get_decache_soft_
pointers_after_address_space_release(). This function returns true if soft-
pointer decaching is enabled and false otherwise.

You can also specify decaching for individual soft pointers, as described in os_soft_
pointer32_base::decache() in the C++ A P I Reference. Note that decaching takes
effect immediately after you call the decache() function. When process-wide
decaching is enabled, however, soft pointers are decached the next time the page that
contains them is reused, following the release of address space.

Soft-pointer decaching can degrade performance and should be enabled only if your
application uses soft pointers and address space consumption is an issue. For more
information about the impact of soft-pointer decaching on performance, see Soft-
Pointer Decaching and Relocation on page 36.

For information about enabling soft-pointer decaching, see the following:

• OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE in Managing
ObjectStore

• objectstore::get_decache_soft_pointers_after_address_space_

release() in the C++ A P I Reference

• objectstore::set_decache_soft_pointers_after_address_space_

release() in the C++ A P I Reference

Retaining the Validity of a Specified Variable
When a pointer to persistent memory is assigned to a transiently allocated variable,
the value of the variable is valid only until the end of the top-level transaction in
which the assignment was made. However, the ObjectStore API provides several
ways to retain the validity of addresses to persistent memory across transaction
boundaries, allowing you to assign a persistent address to a pointer in one
transaction and dereference the pointer in another. The ways of doing this are as
follows:

• Call objectstore::get_retain_persistent_addresses(), which globally
reserves all persistent addresses. For more information, see Retaining and
Releasing the Validity of All Pointers on page 31.

• Construct an os_retain_address object for a specific persistent object.

• Assign the address of a persistent object to an ObjectStore soft pointer.

os_retain_
address vs. soft
pointers

If you are interested in retaining the validity of a specific variable, you should
consider using either os_retain_address or soft pointers. Both allow you to assign
the address of a persistent object in one transaction and access it in another. One
Release 6.3 27

Retaining the Validity of a Specified Variable
difference between the two is that, unlike soft pointers, os_retain_address works
by specially reserving the address space that holds the persistent object and not
releasing it once the transaction ends. os_retain_address reserves address space in
blocks of 64 KB. Depending on the amount of address space that is reserved, using
os_retain_address for a number of large objects can result in problems in
managing address space.

Although soft pointers do not reserve address space between transactions, assigning
and dereferencing persistent memory is generally slower with soft pointers than
with os_retain_address. os_retain_address allows you to reference the objects
using C++ hard pointers. If you want to retain the addresses of a limited number of
small objects, you should consider using os_retain_address.

The following sections discuss how to use os_retain_address. If you are interested
in soft pointers, see Using ObjectStore Soft Pointers on page 22.

Using os_retain_address
You can cause such a variable’s value to remain valid across top-level transaction
boundaries with the class os_retain_address.

To cause a given variable’s value to remain valid, create a stack-allocated instance of
os_retain_address, passing to the constructor the address of the given variable:

document *the_doc_p = 0;
os_retain_address((void**) &the_doc_p);
...
the_doc_p = (document*) (
 db1->find_root("documents_root")–>get_value()
);

As long as the associated instance of os_retain_address exists, ObjectStore retains
the validity of the address that is currently or subsequently assigned to the variable.
At the end of each top-level transaction, ObjectStore retains the validity of the value
of the variable rather than unmapping it.

The instance of os_retain_address must be stack allocated; therefore, it is deleted
automatically at the end of the block in which it was created. Because lexical
transactions establish their own blocks, you do not typically call the os_retain_
address constructor within a lexical transaction. The resulting instance would be
deleted at the end of the transaction and would, therefore, be of no use in retaining
validity across top-level transaction boundaries. (You could, however, use it to retain
validity across calls to objectstore::release_persistent_addresses().)

Note Retaining the validity of a given address prevents release of a portion of address
space at least 64 KB in size. See Controlling Address Space Reservation on page 17.

os_retain_address defines members for determining the address of an instance’s
associated variable and for changing an instance’s associated variable. See os_
retain_address in the C++ A P I Reference.
28 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Example
Consider a pointer to a database entry point. Using an entry point typically involves
looking up a root and retrieving its value, a pointer to the entry point. Frequently this
pointer is assigned to a transiently allocated variable for future use. However, its use
is limited because it typically does not remain valid in subsequent transactions.

Example of loss
of pointer
validity across
transactions

#include <ostore/ostore.hh>
#include "part.hh"

void f() {
 OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();

 static os_typespec part_type("part");

 part *a_part_p = 0;
 employee *an_emp_p = 0;

 os_database *db1 = os_database::open("/thx/parts");

 OS_BEGIN_TXN(tx1,0,os_transaction::update)
 a_part_p = (part*) (
 db1->find_root("part_root")–>get_value()
); /* retrieval */
 . . .
 OS_END_TXN(tx1)

 OS_BEGIN_TXN(tx2,0,os_transaction::update)
 an_emp_p = a_part_p->responsible_engineer; /* INVALID! */
 . . .
 OS_END_TXN(tx2)
 db1–>close();
 OS_END_FAULT_HANDLER
}

Example of
re-retrieving
pointers in
subsequent
transactions

One way to ensure that the pointer remains valid is to re-retrieve the pointer in each
subsequent transaction in which it is required.

#include <ostore/ostore.hh>
#include "part.hh"

f() {
 OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();

 static os_typespec part_type("part");
 part *a_part_p = 0;
 employee *an_emp_p = 0;

 os_database *db1 = os_database::open("/thx/parts");

 OS_BEGIN_TXN(tx1,0,os_transaction::update)
 a_part_p = (part*) (
 db1->find_root("part_root")–>get_value()
); /* retrieval */
 . . .
 OS_END_TXN(tx1)
Release 6.3 29

Retaining the Validity of a Specified Variable
 OS_BEGIN_TXN(tx2,0,os_transaction::update)
 a_part_p = (part*) (
 db1->find_root("part_root")–>get_value()
); /* re-retrieval */

 an_emp_p = a_part_p->responsible_engineer; /* valid */
 . . .
 OS_END_TXN(tx2)

 db1–>close();

 OS_END_FAULT_HANDLER
}

Example of
using os_
retain_address

A convenient alternative is to use os_retain_address:

#include <ostore/ostore.hh>
#include "part.hh"

void f() {
 OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();

 part *a_part_p = 0;
 os_retain_address((void**) &a_part_p);
 employee *an_emp_p = 0;

 os_database *db1 = os_database::open("/thx/parts");

 OS_BEGIN_TXN(tx1,0,os_transaction::update)
 a_part_p = (part*) (
 db1->find_root("part_root")–>get_value()
); /* retrieval */

 . . .
 OS_END_TXN(tx1)

 OS_BEGIN_TXN(tx2,0,os_transaction::update)
 an_emp_p = a_part_p->responsible_engineer; /* valid */
 . . .
 OS_END_TXN(tx2)

 db1–>close();

 OS_END_FAULT_HANDLER
}

Note that although you can use a_part_p from one transaction to the next without
re-retrieving its value, you cannot use it between transactions. As always, you must
be within a transaction to access persistent data.
30 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Retaining and Releasing the Validity of All
Pointers

To convert an existing application to use ObjectStore, it might be inconvenient to
rewrite the code to re-retrieve pointers to persistent memory in each transaction or
to use os_retain_address (see Retaining the Validity of a Specified Variable on
page 27). A feature of ObjectStore enables you to retain the validity of all persistent
addresses across transaction boundaries so that it is unnecessary to re-retrieve them
or to use os_retain_address on a case-by-case basis.

The advantage of this feature is that code is easier to port to ObjectStore. The
disadvantage is that ObjectStore might run out of address space if too much
persistent data is referenced. This is because ObjectStore normally releases all
reserved addresses at the end of each transaction and the use of this feature disables
that release, which might leave less address space available for reservation in
subsequent transactions. (See Controlling Address Space Reservation on page 17.) In
addition, database access might be somewhat slower, particularly if multiple
databases are referenced.

The static member function objectstore::retain_persistent_addresses()
globally enables retaining persistent addresses. It has no arguments.

Releasing
address space

The static member function objectstore::release_persistent_addresses()
globally releases persistent addresses. After this function is called, all existing
transient-to-persistent pointers are invalidated, except possibly those for which
there is a corresponding instance of os_retain_address (see Retaining the Validity
of a Specified Variable on page 27). If the argument to release_persistent_
addresses() is 0 (the default), pointers for which there is a corresponding instance
of os_retain_address are retained. If the argument to release_persistent_
addresses() is nonzero, pointers for which there is a corresponding instance of os_
retain_address are not retained.

You can determine whether persistent addresses are currently retained with
objectstore::get_retain_persistent_addresses(), which returns nonzero for
true and 0 for false.

Example:
retaining
persistent
addresses

Following is an example of retaining addresses:

#include <ostore/ostore.hh>
 #include "part.hh"

f() {
 OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();

 os_database *db1;

 . . .
 person *p, *q;
 . . .
 objectstore::retain_persistent_addresses();

 OS_BEGIN_TXN(tx1,0,os_transaction::update)
Release 6.3 31

Persistent Pointers to Transient Objects
 p = (person *) (db1->find_root("fred")–>get_value());

 /* Now p is valid, and can be referenced normally. */
 p–>print_info();

 OS_END_TXN(tx1)

 /* p cannot be dereferenced outside a transaction, but it */
 /* can be stored anywhere. */
 q = p;

 OS_BEGIN_TXN(tx1,0,os_transaction::update)

 /* If persistent addresses were not retained, we */
 /* could not do this without using references for p and q */
 q–>print_info();

 OS_END_TXN(tx1)

 OS_ESTABLISH_FAULT_HANDLER
}

Persistent Pointers to Transient Objects
ObjectStore provides an API for managing persistent pointers to transient objects.
For a description of this API, see the following sections in see the following sections
of Chapter 2 of the C++ A P I Reference:

• os_persistent_to_transient_pointer_manager

• objectstore::change_type()

• objectstore::release_cleared_persistent_to_transient_pointers()

• objectstore::set_persistent_to_transient_pointer()

When an application accesses a persistent pointer to a transient object, it checks to
see whether the pointer is null. If it is, the application is responsible for establishing
a connection between the pointer and the object via an appropriate function. Then
the application informs ObjectStore of the connection by calling the
objectstore::set_persistent_to_transient_pointer() function. ObjectStore
keeps track of these connections. ObjectStore clears the persistent pointers to
transient objects when necessary so the transient pointers are not written to the
database.

The application needs to derive an application-specific concrete class from os_
persistent_to_transient_pointer_manager. The application is responsible for
defining a release() function for the concrete class. This manager class and the
objectstore::release_cleared_persistent_to_transient_pointers()
function provide a way for ObjectStore and the application to clean up connections
between persistent pointers and their associated transient objects. When an
application calls the objectstore::release_cleared_persistent_to_
transient_pointers() function, the appropriate user-defined release() function
is run on each cleared pointer.
32 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Your application can also call the objectstore::clear_persistent_to_
transient_pointers() in order to immediately release transient storage.

Users should call release_cleared_persistent_to_transient_pointers() at a
time when it is convenient to release transient storage that had been allocated in
connection with calls to set_persistent_to_transient_pointer(). This time
depends on the application, but after ending a transaction is a suitable time.

Example
Consider an example in which there are persistent objects of the color class whose
data member, gco, is intended to point to a transient object based on the values of r,
g, and b. The application code to establish and tear down this persistent-to-transient
association would look something like this:

class color {
 ...
 private:
 int r, g, b;
 GUI_color_object *gco;

 public:
 GUI_color_object *get_gco();
 ...
};

class color_persistent_to_transient_pointer_manager: public /
os_persistent_to_transient_pointer_manager {

 public:

// Application-specific code responsible for tearing down the
// persistent-to-transient association from the application's
// perspective and deleting the transient memory when appropriate.

 virtual void release(void * pointer);

// Application-added class-specific function for establishing
// the persistent-to-transient association.

 GUI_color_object * find_or_create_gco(int r, int g, int b);

 private:
// Whatever structures are necessary for the application's
// management of the persistent-to-transient association.

};
...

// somewhere accessible to the color object
color_persistent_to_transient_pointer_manager color_pttp_mgr;

// Class function
 GUI_color_object * color::get_gco() {

// set up persistent-to-transient connection, if necessary
 GUI_color_object *transient_gco = gco;
 if (transient_gco == NULL) {
Release 6.3 33

ObjectStore’s Relocation
 transient_gco = color_pttp_mgr.find_or_create_gco(r, g, b);
 objectstore::set_persistent_to_transient_pointer(
 &gco,
 transient_gco,
 color_pttb_mgr
);
 }
 return transient_gco;
}

// mainline application code
...
 OS_BEGIN_TXN(txn1, 0, os_transaction::update) {
 color *persistent_color_object;
 ...
 persistent_color_object->get_gco()->do_something();
 ...
 } OS_END_TXN(txn1)

objectstore::release_cleared_persistent_to_transient_pointers();
 ...

ObjectStore’s Relocation
Relocation refers to a set of tasks that the ObjectStore client performs on a persistent
page, preparatory to making it accessible by the application or to copying the page
to the server. These tasks require the client to examine and sometimes modify each
field in an object, while preserving the logical content of the data in the field.

The following sections describe the two main types of relocation — inbound and
outbound — and discuss how applications can influence relocation.

Inbound Relocation
Inbound relocation occurs when ObjectStore fetches a page from the server for access
by the client. The ObjectStore client performs the following tasks to render the
inbound page usable by the application:

• Create and reserve address space for objects referenced by pointers on the
inbound page, as described in Controlling Address Space Reservation on page 17.

• Convert (or swizzle) pointers on the page from the encoded values they have in the
database into address values that are meaningful to the application.

• Fill in C++ run-time dope, such as pointers (vptrs) to virtual function tables.

• Check the consistency between different pieces of metadata for the fetched page.

• If the current client is a different platform from that of the client that last modified
the page, perform platform-related conversions to the data, such as byte-
swapping.
34 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Outbound Relocation
Outbound relocation occurs when a transaction has modified data that is
subsequently committed or evicted from the client cache and therefore must be
copied back to the server to be made persistent. The conversion work that occurs
during outbound relocation includes:

• Pointer swizzling — converting the pointers on the page from their application
format into the encoded format used by the database.

• Metadata checking.

Controlling Relocation by Clustering
Although application programmers have no direct control over relocation, they can
reduce the need for relocation by clustering data. (For information about using the
ObjectStore API to cluster data, see Clustering in the C++ A P I User Guide.) By
clustering the working data set on a minimal number of pages, the application makes
it more likely that those pages (or a subset of them) will stay in the cache over a
sequence of transactions, thus reducing the number of page fetches and, as a side
effect, reducing the number of times that the client must perform inbound relocation.
Except for pages that are modified, a cached page requires no inbound relocation
following the initial fetch.

Forward
relocation

For pages that stay in the client cache over a sequence of transactions, ObjectStore
gathers information about the pointers on each page during the previous
transactions and about the address space that must be reserved for the pointers on
the page. ObjectStore uses this information to perform what is called forward
relocation, which consists of updating the cached page for subsequent access instead
of having to subject the page to outbound relocation at the end of the previous
transaction and inbound relocation in the current transaction. Only modified pages
must undergo outbound relocation — in preparation for copying them back to the
server and making them persistent. Forward relocation can be considered as an
optimized combination of outbound relocation and inbound relocation that is
applied to pages that stay encached between transactions.

Relocation
optimization

In some cases, ObjectStore can skip forward relocation. This condition, known as
relocation optimization, occurs when the chunks of address space that were reserved
for a page in previous transactions are currently unreserved — that is, they have not
been reserved by another page. In this situation, ObjectStore simply re-reserves the
chunks targeted by the pointers on the page.

It is important to note that a cached page is eligible for relocation optimization only
as long as the address-space chunks that were reserved for it in a previous
transaction remain available — that is, unreserved — in succeeding transactions. (By
default, ObjectStore unreserves chunks at the end of a transaction.) But if the
application is at risk of running out of address space, ObjectStore will recycle
previously reserved chunks that are not currently reserved, making them available
for reservation by other pages. If a page has lost any of its previously reserved
chunks to recycling, it is no longer eligible for relocation optimization and must
undergo forward relocation.
Release 6.3 35

Setting Data Fetch Policies
One way to promote relocation optimization is to prevent the need for recycling by
good clustering. As discussed in Clustering to Conserve Address Space on page 19,
clustering can not only reduce the number of pages that an application will access
over a series of transactions but also improve locality of reference by grouping
objects with the pointers that reference them. Both of these effects of clustering can
help reduce address-space consumption, thereby preventing the need for recycling.

Soft-Pointer Decaching and Relocation
As discussed in Soft-Pointer Decaching on page 26, you can use the following
environment variable and function call to enable automatic soft-pointer decaching:

• OS_ENABLE_DECACHE_SOFT_POINTERS_AFTER_AS_RELEASE

• objectstore::set_decache_soft_pointers_after_address_space_

release()

Decaching soft pointers is one way to force ObjectStore to unreserve chunks of
address space that have been reserved for cached soft pointers, thus freeing up
additional address space needed by the application. By default, the only soft pointers
that ObjectStore decaches are those on pages that get forward relocation. When you
enable automatic soft-pointer decaching, ObjectStore also decaches soft pointers on
pages that would otherwise get relocation optimization. Such pages now get
forward relocation.

Enabling soft-pointer decaching can impact performance, as follows:

• Once decached, a soft pointer takes longer to resolve than when encached, as
described in Using ObjectStore Soft Pointers on page 22.

• Pages that are affected by automatic decaching lose the performance benefit of
relocation optimization and instead must undergo forward relocation. Note that
automatic decaching has no affect on pages that are eligible for relocation
optimization and whose soft pointers have already been decached.

Before enabling soft-pointer decaching, you should weigh the benefit of unreserving
address space against the cost in relocation performance.

Setting Data Fetch Policies
An ObjectStore application can control, for each cluster, the granularity of data
transfers from the server to the client. When an application dereferences a pointer to
an object that is not already resident in the client cache, ObjectStore retrieves from
the server at least the page containing the object. The default behavior is to retrieve
only the page containing the object. However, in some circumstances, retrieving
additional pages can improve performance if the objects stored nearby in the
database are likely to be referenced within a brief period of time.
36 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Differences in
granularity
among fetch
policies

ObjectStore has several fetch policies you can associate with a given cluster to control
transfer granularity. Each fetch policy specifies the transfer granularity used when
an object in the cluster needs to be transferred:

• os_fetch_cluster specifies that the entire cluster containing the desired object
be fetched.

• os_fetch_page specifies that the page containing the desired object be fetched,
along with zero or more of the pages that follow it in memory.

• os_fetch_stream specifies that a double buffering policy should be used to
stream data from the referenced object’s cluster. It is useful for special
applications scanning large quantities of data.

Specifying a
fetch policy

You specify the fetch policy for clusters, segments, or databases by using the member
function set_fetch_policy(), declared as follows:

enum os_fetch_policy {
 os_fetch_page,
 os_fetch_stream,
 os_fetch_cluster,
};

static void set_fetch_policy(
 os_fetch_policy policy,
 os_int32 bytes
);

os_cluster::set_fetch_policy() sets the fetch policy for a specified cluster. os_
segment::set_fetch_policy() sets the fetch policy for all clusters in a specified
segment, including clusters created by the current process in the future. Similarly,
os_database::set_fetch_policy() sets the fetch policy for all segments in a
specified database. Finally, objectstore::set_fetch_policy() sets the fetch
policy for all databases retrieved by the current process.

Note that a fetch policy established with set_fetch_policy() (for either a segment
or a database) remains in effect only until the end of the process making the function
call. Moreover, set_fetch_policy() affects only transfers made by this process.
Other concurrent processes can use a different fetch policy for the same segment or
database.

os_fetch_cluster Policy
Use the os_fetch_cluster policy when you are performing an operation that
manipulates a substantial portion of a small cluster. Under this policy, ObjectStore
attempts to fetch the entire cluster containing the desired page in a single
client/server interaction if the cluster fits in the client cache without evicting any
other data. If there is not enough space in the cache to hold the entire cluster, the
behavior is the same as for os_fetch_page, with a fetch quantum specified by the
bytes argument to the set_fetch_policy() function.
Release 6.3 37

Setting Data Fetch Policies
os_fetch_page Policy
If your database contains clusters larger than the client cache of your workstation or
if your application does not refer to a significant portion of each cluster in the
database, you should use the os_fetch_page fetch policy. This policy causes
ObjectStore to fetch a specified number of bytes at a time (rounded up to the nearest
positive number of pages), beginning with the page required to resolve a given
object reference. Appropriate values for the fetch quantum might range from 4 KB to
256 KB or higher, depending on the size and locality of the application data
structures.

os_cluster *text_cluster;

/* The text cluster contains long strings of characters */
/* representing page contents, which tend to be referred */
/* to consecutively. So tell ObjectStore to fetch them */
/* 16 KB at a time. */

text_cluster->set_fetch_policy (os_fetch_page, 16384);

os_fetch_stream Policy
For special applications that scan sequentially through very large data structures,
os_fetch_stream might considerably improve performance. As with os_fetch_
page, os_fetch_stream enables you to specify the amount of data to fetch in each
client/server interaction for a particular cluster. In addition, it specifies that a double
buffering policy should be used to stream data from the cluster.

This means that when you scan a cluster sequentially, after the first two transfers
from the cluster, each transfer from the cluster replaces the data cached by the
second-to-last transfer from that cluster. This way, the last two chunks of data
retrieved from the cluster generally are in the client cache at the same time. And after
the first two transfers, transfers from the cluster generally do not result in eviction of
data from other clusters. This policy also greatly reduces the internal overhead of
finding pages to evict.

os_cluster *image_cluster;

/* The image cluster contains scan lines full of pixel data, */
/* which we’re about to traverse in sequence for image */
/* sharpening. Telling ObjectStore to stream the data from */
/* the server in 32 KB chunks gives us access to adjacent */
/* scan lines simultaneously and optimizes client/server traffic*/

image_cluster->set_fetch_policy (os_fetch_stream, 32768);

When you perform allocation that extends a cluster whose fetch policy is os_fetch_
stream, the double buffering described earlier begins when allocation reaches an
offset in the cluster that is aligned with the fetch quantum (that is, when the offset mod
the fetch quantum is 0).

When the Fetch Quantum Is Too Large
For all policies, if the fetch quantum exceeds the amount of available cache space
(cache size minus wired pages), transfers are performed a page at a time. In general,
the fetch quantum should be less than half the size of the client cache.
38 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Using Persistent Unions
Whenever you activate a member of a persistent union, including initially, you must
make a function call indicating the active member. The function to call is
objectstore::set_union_variant(). You can determine the active member of a
union with objectstore::get_union_variant(). For more information about
these functions, see the following sections of Chapter 2 of the C++ A P I Reference:

• objectstore::get_union_variant()

• objectstore::set_union_variant()

Union Overhead
Each union is associated with 16 bits of extra overhead in the form of internal schema
information (minus savings due to optimization of certain cases involving union
nesting). The use of unions also disables certain schema information storage
optimizations. Consider benchmarking your application to determine if the actual
memory savings outweigh the additional computational overhead.

Example
The following example shows the definition of a class with a union-valued member.
set_union_variant() is called in the set functions for the member.

/*** example.cc ***/
#include "example.hh"

os_int32 main() {
OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();
 os_database *db = os_database::create("example.db", 0666, 1);
 os_transaction::begin(os_transaction::update);
 kgraph *p_kg1 = new(db, kgraph::get_os_typespec()) kgraph();
 kgraph *p_kg2 = new(db, kgraph::get_os_typespec()) kgraph();
 if (!p_kg1->verify() || !p_kg2->verify()) return -1;
 p_kg1->set_int(5);
 if (!p_kg1->verify()) return -1;
 p_kg2->set_kg(p_kg1);
 if (!p_kg2->verify()) return -1;
 os_transaction::abort();
 db->destroy();
 return 0;
OS_END_FAULT_HANDLER
}

/*** example.hh ***/
#include <iostream>
#include <ostore/ostore.hh>

class kgraph {
private:
 union kg_union {
 kgraph* kg_kg;
 os_int32 kg_int;
 } kg;
Release 6.3 39

Setting Segment Reference Policies
 os_int16 kg_type;

public:
 kgraph()
 {
 kg_type = 0;
 }

 void set_kg(kgraph* new_kg)
 {
 kg_type = 1;
 if (objectstore::is_persistent(this))
 objectstore::set_union_variant(&this->kg,"kg_union",1);
 kg.kg_kg = new_kg;
 }

 void set_int(int new_int)
 {
 kg_type = 2;
 if (objectstore::is_persistent(this))
 objectstore::set_union_variant(&this->kg,"kg_union",2);
 kg.kg_int = new_int;
 }

 os_boolean verify()
 {
 os_int16 uv =
 objectstore::get_union_variant(&this->kg, "kg_union");
 if (kg_type != uv)
 cout << "union variant verification failed: expected "
 << kg_type << " but returned " << uv << endl;
 return (kg_type == uv);
 }

 static os_typespec *get_os_typespec();
};

/*** schema.cc ***/
#include <ostore/ostore.hh>
#include <ostore/manschem.hh>
#include "example.hh"

OS_MARK_SCHEMA_TYPE(kgraph);

Whenever either kgraph::set_kg() or kgraph::set_int() is called, the
embedded call to objectstore::set_union_variant() records the currently
active member object.

Setting Segment Reference Policies
Every segment has one of the two following reference policies:

• export_id_access_required: when a segment has this policy, certain
reorganization facilities, such as compaction, can operate more efficiently on the
segment. The cost of this policy consist of some extra cost to export objects in the
40 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
segment that might be referred to from other segments and some extra cost for
traversing cross-segment pointers to the segment.

• dsco_access_allowed: this policy is the default and does not carry the costs
described for export_id_access_required. Reorganizing the segment,
however, might require scanning an entire database or group of databases, rather
than scanning only that segment.

(These reorganization tools are provided in the current release or will be provided in
subsequent releases.)

In addition to affecting reorganization, a segment’s reference policy also affects
garbage collection. The ObjectStore garbage collector automatically treats exported
objects in export_id_access_required segments as garbage-collection roots. For
garbage collection of dsco_access_allowed segments, you must identify the roots
(the objects referred to by other segments) explicitly.

Setting and Getting Segment Reference Policies
To allow efficient operation of reorganization tools on a given segment, do both of
the following:

• Specify the segment’s reference policy as objectstore::export_id_access_
required.

• Export every object in the segment that might be referred to by an object in a
different segment. (See Exporting Objects on page 42.)

You specify a segment’s reference policy when you create the segment.

enum objectstore::segment_reference_policy {
 export_id_access_required,
 dsco_access_allowed
};

os_segment* os_database::create_segment(
 objectstore::segment_reference_policy ref_policy
);

dsco_access_allowed refers to regular, nonexport ID access.

If you fail to export an object in an export_id_access_required segment, cross-
segment pointers to the object are treated as illegal pointers (see
objectstore::set_null_illegal_pointers() in the C++ A P I Reference).

You can get a segment’s reference policy with the following function:

objectstore::segment_reference_policy
 os_segment::get_segment_reference_policy() const;

You can specify the default reference policy for newly created segments in a given
database with the following:

void
os_database::set_new_segment_reference_policy(
objectstore::segment_reference_policy ref_policy);

err_no_trans is signaled if there is no transaction in progress at the time of the call.
Release 6.3 41

Setting Segment Reference Policies
You can also specify a default reference policy when you create a database. See os_
database::create() and os_database::open() in the C++ A P I Reference.

You can get a database’s default reference policy with the following:

objectstore::segment_reference_policy
 os_database::get_new_segment_reference_policy() const;

Exporting Objects
You export an object with objectstore::export_object():

static os_export_id objectstore::export_object(
 void const * export_address
);

This function exports the top-level object pointed to by export_address. If export_
address does not point to a top-level object, this function exports the top-level object
containing the specified address. (An object is a top-level object if it is the entire
object allocated by some call to new.)

Exporting an object assigns the object an ID (the object’s export ID) that is unique
within the object’s segment. The export ID is used internally by ObjectStore. export_
object() returns the exported object’s export ID, an instance of os_export_id.

The database containing the exported object must be opened at the time of the call to
export_object(). If the specified top-level object is not already exported, the
database containing it must be opened for update and the current transaction must
be an update transaction. If the object is already exported, calling this function is a
read-only operation.

If you retrieve an export ID in a transaction that is later aborted, do not use the export
ID after the abort. ObjectStore might reuse the export ID in a subsequent transaction.

For more information about export_object(), see objectstore::export_
object() in the C++ A P I Reference.

Examining Export IDs
ObjectStore provides functions for manipulating export IDs in the following ways:

• Getting the export ID of a given object

• Getting all the export IDs in a given segment

• Getting the object associated with a specified export ID

• Copying, comparing, and assigning export IDs

• Getting the integer value of an export ID

There is also an export ID cursor class that supports traversal of all export IDs in a
segment.

See os_export_id and os_export_id_cursor in the C++ A P I Reference.
42 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
Example
Following is an example that illustrates setting segment reference policies, exporting
objects, and examining export IDs.

#include <iostream>
#include <ostore/ostore.hh>
#include <ostore/mop.hh>
#include "Widget.h"

int main(int argc, char** argv)
{
OS_ESTABLISH_FAULT_HANDLER
 objectstore::initialize();
 const char* db_name = argv[1];

 os_database* db = create_db(db_name, "widgets");

 show_db(db, "widgets");

 show_all_exports(db, "widgets");

 db->close();
 db->release_pointer();

OS_END_FAULT_HANDLER
}

os_database* create_db(const char* db_name, char* root_name)
{
 os_database* db = os_database::create(db_name, 0664, 1);

 os_transaction* txn =
 os_transaction::begin(os_transaction::update);

 // set the default segment reference policy for newly created
 // segments within the database.
 db->set_new_segment_reference_policy(
 objectstore::export_id_access_required
);

 // create an export_id_access_required segment (per db-default)
 os_segment* seg1 = db->create_segment();

 // create an dsco_access_allowed segment
 os_segment* seg2 =
 db->create_segment(objectstore::dsco_access_allowed);
 // create an export_id_access_required segment explicitly
 os_segment* seg3 =
 db->create_segment(
 objectstore::export_id_access_required
);

 Widget* widget1 =
 new (seg1, Widget::get_os_typespec()) Widget("X");

 // make sure that widget1 has an export_id assigned because it
 // will be the target of a cross-segment hard pointer.
 objectstore::export_object(widget1);
Release 6.3 43

Setting Segment Reference Policies
 Widget* widget2 =
 new (seg2, Widget::get_os_typespec()) Widget("Y");
 // seg2 doesn’t require export-id access so the export isn’t
 // required but it is ok to export locations within the
 // segment anyway.
 objectstore::export_object(widget2);

 Widget* widget3 =
 new (seg3, Widget::get_os_typespec()) Widget("Z");
 Widget** widgets =
 new (seg3, os_typespec::get_pointer(), 3) Widget*[3];

 widgets[0] = widget1;
 widgets[1] = widget2;
 widgets[2] = widget3;

 // set_value automatically exports the widgets array
 db->create_root(root_name)->set_value(widgets);

 txn->commit();
 delete txn;

 return db;
}

void show_db(os_database* db, char* root_name)
{
 os_transaction* txn =
 os_transaction::begin(os_transaction::read_only);

 os_database_root* widget_root = db->find_root(root_name);
 Widget** widgets = (Widget**)widget_root->get_value();
 widget_root->release_pointer();

 for (int i=0; i<3; i++) {

 os_export_id widget_export_id =
 objectstore::get_export_id(widgets[i]);

 if (widget_export_id.is_null()) {
 cout << "widget number " << i << " is not exported\n";
 }
 else {
 os_segment* widget_segment =
 os_segment::of(widgets[i]);
 cout << "widget number "
 << i << " is exported in segment "
 << widget_segment->get_number()
 << " with export id value "
 << widget_export_id.get_value() << "\n";
 widget_segment->release_pointer();
 }
 }

 txn->commit();
 delete txn;
}

void show_all_exports(os_database* db, char* root_name)
44 Advanced C++ A P I User Guide

Chapter 1: Advanced Persistence
{
 os_transaction* txn =
 os_transaction::begin(os_transaction::read_only);
 os_segment_cursor segs(db);
 os_segment* seg;
 while (seg = segs.next()) {
 os_export_id_cursor eids(seg);
 os_export_id eid;
 while (!(eid = eids.next()).is_null()) {
 void* addr = seg->resolve_export_id(eid);
 os_type const* export_type = os_type::type_at(addr);
 cout << "export id value " << eid.get_value()
 << " in segment number " << seg->get_number()
 << " refers to ";
 if (export_type) {
 char* type_string = export_type->get_string();
 cout << "an object of type " << type_string << "\n";
 delete[] type_string;
 }
 else {
 cout << "an object of unknown type\n";
 }
 }
 seg->release_pointer();
 }

 txn->commit();
 delete txn;
}

Release 6.3 45

Setting Segment Reference Policies
46 Advanced C++ A P I User Guide

Chapter 2
Advanced Transactions

This chapter is intended to augment Chapter 5, Transactions, of the C++ A P I User
Guide. It includes descriptions of several advanced transaction concepts, particularly
those pertaining to locks and locking. The information is organized in the following
manner:

Reducing Wait Time for Locks 47

Nested Transactions 48

Deadlock 50

Multiversion Concurrency Control (MVCC) 51

Logging and Propagation 55

Performing Transaction Checkpoints 56

Support for the XA Standard for Transaction Processing 57

Transaction Locking Examples 62

Reducing Wait Time for Locks
What can you do to reduce the overhead of waiting for locks? One application can
reduce the waiting overhead for other concurrent applications by avoiding locking
data unnecessarily and by avoiding locking data for unnecessarily long periods of
time. This section describes several techniques for minimizing wait time.

Clustering
One way to help avoid locking data unnecessarily involves the use of clustering.
Suppose that during a given transaction, an application requires object-a but not
object-b. If the two objects are clustered onto the same page, they are both locked,
preventing other processes from accessing both objects until the end of the
transaction. In contrast, by clustering object-b in a different object cluster or
segment from object-a, you guarantee that the objects will be on different pages. So
if you use page-level locking granularity, the objects are not locked together.

Locking Granularity
By default, each page is locked as it is faulted on; the default locking granularity is
page level. You can override this default with the set_lock_option() member of
Release 6.3 47

Nested Transactions
os_cluster, os_segment, os_database, or objectstore, specifying cluster-,
segment-, or database-level granularity. See the C++ A P I Reference.

Overriding the default avoids the overhead of a separate page fault for each page
locked and can reduce server communication. It can also lock data unnecessarily and
increase wait time.

Transaction Length
One way to avoid locking data for unnecessarily long periods of time is to make
nonnested transactions as short as possible while still guaranteeing that persistent
data is in a consistent state between transactions.

The disadvantage of using shorter transactions is that it can mean using a greater
number of transactions. This can increase network overhead because each
transaction commit requires the client to send a commit message to the server.
Nevertheless, this extra network overhead is often outweighed by the savings from
shorter waits for locks to be released.

Multiversion Concurrency Control (MVCC)
Read-only transactions can use multiversion concurrency control, or MVCC. When you
open a database using MVCC, you can perform nonblocking reads of the database
allowing another ObjectStore application to update the database concurrently, with
no waiting by either the reader or the writer. See Multiversion Concurrency Control
(MVCC) on page 51 for additional information.

Abort-Only Transactions
The locking restrictions are relaxed somewhat for abort-only transactions. With
abort-only transactions, the client does not get write locks for any pages that are
written during an abort-only transaction. The client does get read locks for all pages
it reads or writes. This lock relaxation is another method of reducing wait time.

Lock Timeouts
Lock timeouts provide the ability to limit wait time and to abort if limits are exceeded.
You can set a timeout for read- or write-lock attempts, to limit the amount of time
your application will wait. When the timeout is exceeded, an exception is signaled.
Handling the exception allows you to continue with alternative processing and make
a later attempt to acquire the lock. set_readlock_timeout() and set_writelock_
timeout() are members of the objectstore, os_database, and os_segment
classes, which are all described in Chapter 2 of the C++ A P I Reference.

Nested Transactions
For a number of reasons, it is useful to allow transactions to be nested. For example,
suppose one transaction is required to hide intermediate results. This also allows
rollback of persistent data to its state as of the beginning of the transaction. But
48 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
suppose you would like to be able to roll back persistent data to its state as of some
point after the beginning of this transaction. To allow this, you can use a nested
transaction that starts at this later point.

In addition, allowing nested transactions means that a routine that initiates a
transaction can be called from both inside and outside a transaction.

When a nested transaction is aborted, persistent data is rolled back to its state as of
the beginning of that nested transaction.

Caution After a nested transaction aborts, do not use persistent values retrieved during the
aborted transaction. See Locking and Nesting, following.

Locking and Nesting
Locks acquired during a given nested transaction are released upon whichever of
these conditions comes first:

• Abort of the given nested transaction

• Abort of a transaction within which the given transaction is nested

• Commit of the top-level transaction within which the given transaction is nested

This means that after a nested transaction aborts, you should not use persistent
values retrieved during the nested transaction because they might not be consistent
with values retrieved later in the same top-level transaction. Consider, for example,
the following nested transactions:

start outer txn
 start nested txn
 read persistent var x
 abort nested txn
 start nested txn
 read persistent var x
 commit nested txn
commit outer txn

The two read operations performed on x might not have the same result. Another
process can change the value of x in the interval between the abort of the first nested
transaction and the next read of x.

Abort-Only Transactions
An update transaction nested within a read-only transaction is known as an abort-
only transaction. In an abort-only transaction, you can write to persistent data, but
you must end the transaction with an abort.

Abort-only transactions allow you to write to databases that are

• Read-only

• Protected against writes

• MVCC opened

You must end an abort-only transaction by calling abort() or abort_top_level().
ObjectStore signals err_commit_abort_only if you try to commit an abort-only
transaction.
Release 6.3 49

Deadlock
With an abort-only transaction, the client does not get write locks for any pages
written during the transaction. Thus there can be multiple concurrent abort-only
writers to a database. The client does get read locks for all pages it reads or writes.

Deadlock
ObjectStore sometimes aborts a transaction automatically because of deadlock. A
simple deadlock occurs when one transaction holds a lock on a page that another
transaction is waiting to access, while at the same time this other transaction holds a
lock on a page that the first transaction is waiting to access. Neither process can
proceed until the other does. See Simple Deadlock Scenario on page 63. There are
other, more complicated forms of deadlock that are analogous.

Deadlock Victim
ObjectStore has a deadlock detection facility that breaks deadlocks, when they are
detected, by aborting one of the transactions involved in the deadlock. By aborting
one transaction (the victim), ObjectStore causes the victim’s locks to be released so
that other processes can proceed.

You can control the way ObjectStore chooses a victim with objectstore::set_
transaction_priority() (see Chapter 2 of the C++ A P I Reference) and the
Deadlock Victim server parameter (see Chapter 2 of Managing ObjectStore).

Automatic Retries Within Lexical Transactions
When a lexical transaction (one specified with the transaction statement macros) is
aborted because of a deadlock, the system retries the aborted transaction
automatically.

In the event that the transaction is repeatedly aborted by the system, the retries
continue until the maximum number of retries has occurred. This maximum for any
transaction in a given process is determined by the value of the static data member
os_transaction::max_retries. You can retrieve the value of this member with
os_transaction::get_max_retries().

static os_int32 get_max_retries() ;

Changing the
maximum
number of
retries

The default value of max_retries is 10. You can change the value of max_retries
at any time with os_transaction::set_max_retries().

static void set_max_retries(os_int32) ;

The change remains in effect only for the duration of the process and is invisible to
other processes.

Consequences of Automatic Deadlock Abort
When a transaction is aborted by the system, its changes are undone. However, only
persistent state is rolled back. Transient state is not undone, and any form of output
that occurred before the abort is not, of course, undone. Sometimes it is a good idea
50 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
to perform output outside a transaction, but other times this might not be the best
approach.

Deadlocks in Dynamic Transactions
Dynamic transactions that are aborted because of deadlock are not retried. If you
want to retry a dynamic transaction aborted because of deadlock, you must do so
explicitly by handling the exception err_deadlock. Call os_transaction::abort_
top_level() from within the handler.

See Using Dynamic Transactions in Chapter 5 of the C++ A P I User Guide for more
information about dynamic transactions.

Multiversion Concurrency Control (MVCC)
When you use multiversion concurrency control (MVCC), you can perform
nonblocking reads of a database, allowing another ObjectStore application to update
the database concurrently, with no waiting by either the reader or the writer. If your
application contains a transaction that uses a database in a read-only fashion, you
might be able to use MVCC.

If a transaction does both of the following, you should open the database for MVCC.

• Only performs read access on a database

• Does not require a view of the database that is completely up to date, but can
instead rely on a snapshot of the data

You can open the database for MVCC with members of the class os_database (see
MVCC API on page 52).

No Waiting for Locks
If an application has a database opened for MVCC, it never has to wait for locks to
be released in order to read the database. Reading a database opened for MVCC also
never causes other applications to have to wait to update the database; see the
example MVCC and the Simple Waiting Scenario on page 63. In addition, an
application never causes a deadlock by accessing a database it has opened for
MVCC. See the example MVCC and the Simple Deadlock Scenario on page 64.

Snapshots
In each transaction in which an application accesses a database opened for MVCC,
the application sees what it would see if viewing a snapshot of the database taken
sometime during the transaction. If an application accesses databases that have been
opened for multidatabase MVCC it will see snapshots of those databases taken at the
same moment in time.

This snapshot has the following characteristics:

• It is internally consistent.
Release 6.3 51

Multiversion Concurrency Control (MVCC)
• It might not contain changes committed during the transaction by other processes.

• It does contain all changes committed before the transaction started.

Performing a checkpoint is often a good way to update an application’s snapshot.
See Performing Transaction Checkpoints on page 56.

Accessing Multiple Databases in a Transaction
You can open databases for MVCC in either single-database or multidatabase mode.
When an application reads a database opened for single-database MVCC, the
snapshot it sees is not necessarliy consistent with other databases accessed in the
same transaction (although it is always internally consistent).

When an application reads databases opened for multidatabase MVCC, the snapshot
is a consistent, aggregate view of all data items in all the databases at the time the
snapshot was taken. To ensure that an application maintains a consistent view of all
data in the database open for multidatabase MVCC, the application should handle
the err_mvcc_incoherent exception as described in Handling err_mvcc_incoherent
on page 54

Serializability
Even though the snapshot might be out of date by the time some of the access is
performed, MVCC retains serializability if each transaction that accesses an MVCC
database accesses only that one database. Such a transaction sees a database state
that would have resulted from some serial execution of all transactions, and all the
transactions produce the same effects as would have been produced by the serial
execution.

MVCC API
You open a database for single-database MVCC with one of the following members
of os_database:

void open_mvcc();

static os_database* open_mvcc(const char* pathname) ;

You open a database for multidatabase MVCC with one of the following members of
os_database:

void open_multi_db_mvcc();

static os_database* open_multi_db_mvcc(const char* pathname) ;

It is valid to open MVCC databases by following cross-database pointers.

After you open a database for MVCC, MVCC is used for access to that database until
you close it. If the database is already opened, but not for MVCC, err_mvcc_nested
is signaled. If you try to perform write access on a database opened for MVCC, err_
opened_read_only is signaled.

You can determine if a database is already opened for single-database or
multidatabase MVCC with the following members of os_database:

os_boolean is_open_mvcc() const;
52 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
Returns nonzero if the database is opened for either single-database MVCC or
multidatabase MVCC, and 0 otherwise.

os_boolean is_open_single_db_mvcc() const;

Returns nonzero if the database is opened for single-database MVCC, and 0
otherwise.

os_boolean is_open_multi_db_mvcc() const;

Returns nonzero if the database is opened for multidatabase MVCC, and 0
otherwise.

You can update an application’s snapshot of a database with os_
transaction::checkpoint (see Performing Transaction Checkpoints on page 56)
or by closing and then reopening the database.

MVCC and the Transaction Log
Although MVCC can cause ObjectStore to, in effect, take a snapshot of an entire
database, the implementation actually copies data only when needed, on a page-by-
page basis. Moreover, making the copy simply amounts to retaining the page in the
transaction log. See Logging and Propagation on page 55.

In the absence of MVCC, updated pages from committed transactions are
propagated from the log to the database on a periodic basis. But with MVCC,
updated pages are held in the log as long as necessary, so that the corresponding
page in the database is not overwritten and can be used as part of the MVCC
snapshot.

Caution This means that long transactions that use MVCC can cause the log to become very
large.

Conflict
detection

MVCC determines whether a page must be held in the log based on the following
notion of conflict. From the time a conflict is detected in a given transaction,
propagation is delayed for subsequently committed data until the given transaction
ends.

A conflict occurs when one of the following happens:

• A process tries to read a page in a database it has opened for MVCC and another
process has the page write locked.

• A process tries to write a page in a database and another process that has the
database opened for MVCC has the page read locked.

In both of these cases, both processes proceed; no one is blocked. The transaction
performed by the MVCC process is placed just before the conflicting update
transaction in the serialization order. This is effectively when the snapshot is taken.
See MVCC Conflict Scenario on page 64.

Under some circumstances, the ObjectStore server might decide to hold a page in the
log in anticipation of a conflict, even if none has actually occurred.
Release 6.3 53

Multiversion Concurrency Control (MVCC)
Handling err_mvcc_incoherent
ObjectStore throws the err_mvcc_incoherent exception when it cannot guarantee
a consistent snapshot of all databases currently opened for multidatabase MVCC, as
in any of the following situations:

• Your application calls an overloading of os_database::open_multi_db_mvcc()
to open a database explicitly for multidatabase MVCC during a transaction.

• Your application follows a cross-database pointer, the target database is not
already open, and the application is in multidatabase MVCC autoopen mode.

• Your application loses its connection to the server for a database that is opened for
multidatabase MVCC, re-establishes the connection, and then fetches some of the
database's data.

• Server-to-server communication fails while a snapshot of databases on multiple
servers is being taken, and then your application fetches some of the database's
data from one of the servers involved.

If an err_mvcc_incoherent exception occurs during a dynamic transaction, a
handler should abort the current transaction and then retry it. If the exception occurs
in a lexical transaction, the transaction will be automatically retried. You can also
provide your own transaction handler inside a lexical transaction in place of the
automatic retry. If you attempt to commit either a dynamic or lexical transaction in
which the err_mvcc_incoherent exception has occurred, an err_cannot_commit
exception will be thrown. If the application proceeds with the current transaction
instead of aborting it, the application may see an inconsistent view of the data,
producing incorrect results in the transaction. Be sure to verify that any
inconsistency does not compromise the accuracy of your application's results.

When ObjectStore throws the err_mvcc_incoherent exception, the database whose
opening caused the exception remains open. Therefore, the retry should not reopen
the database. Reopening the database will increase the open count, possibly
defeating a later attempt to close the database.

Performance Note
Although MVCC can eliminate locking delays that can occur in regular, non-MVCC
transactions, they can still cause an application to wait for the resolution of a
callback. (See Ownership and Locks in Chapter 1, Managing ObjectStore for
information about callbacks.) In most cases the resulting delay is only a matter of
milliseconds. Such a delay can occur under the following conditions:

• An MVCC client reads a page for which an update client has write ownership, or
an update client acquires a write lock on a page for which an MVCC client has
read ownership.

• A snapshot has not already been taken.

• The other client does not have a lock on the page that the server knows about.

In this situation, a callback occurs to check whether there is a conflict that requires a
snapshot to be taken. There is no conflict if the page is not locked and thus can be
54 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
called back. Delays related to callbacks can occur in either single-database or
multidatabase MVCC.

In addition, when a multidatabase MVCC snapshot is being taken concurrently with
the commit of an update transaction, and the intersection of the snapshot's data with
the update transaction's written data spans more than one server, a delay may occur
while the servers determine whether the update is or is not visible in the snapshot.
In most cases, this delay is unnoticeable, but in the worst case it may take a few
seconds. This delay can slow either the MVCC client or the update client and is not
under user control. It depends on network communication delays or the load on the
server. Of course, if all the multidatabase MVCC databases opened by a given client
are hosted by one server, a delay can never arise.

Logging and Propagation
The ObjectStore transaction log, as with the log in any database system, is used to
ensure fault tolerance and to support the functionality involved in transaction
aborts. The log is stable storage (that is, disk storage) used to keep temporary copies
of data on its way to the database from the client cache.

Transaction Logging
Data is recorded in the log before being written to the database (with certain
exceptions — see the following paragraphs) and is not removed from the log until
some time after the transaction sending it has committed. That way, if a failure
occurs in the middle of moving a transaction’s data to the database (for example,
because the network crashes or the power fails on the server host), the data is
nevertheless safely in the log and can be moved to the database in its entirety during
recovery.

If a failure occurs before or during the recording of a transaction’s data in the log, the
transaction is considered to have aborted, and the data is never written to the
database (and similarly, if the transaction aborts because of deadlock or a call to
abort(), the data is never written to the database).

New data whose creation results in the use of new disk sectors is handled differently.
This data is sometimes moved directly to the database, and sufficient information is
maintained on stable storage to effectively remove the data from the database if the
creating transaction aborts. For new sectors and segments, this undo information is
kept in the database itself; for new databases, the information is stored in the log as
an undo record.

Propagation
During normal operation, the ObjectStore server moves, or propagates, data from the
log to the database on a periodic basis. The server keeps track of what has been
propagated and always knows whether the latest committed version of any given
sector is to be found in the log or in the database. That way, when clients request data
from the server, the server can send the sector’s most up-to-date version.
Release 6.3 55

Performing Transaction Checkpoints
Controlling
propagation

You can control how often propagation occurs with the ObjectStore server parameter
Propagation Sleep Time; the default is every 60 seconds. This determines the time
between propagations, except when the server temporarily deems it necessary to
propagate on a more frequent basis. By default, the server increases the propagation
rate when there are more than 8192 sectors waiting to be propagated. You can
override the default of 8192 with the server parameter Max Data Propagation
Threshold. The server also increases the propagation rate to empty out a log record
segment.

You can control the amount of data propagated each time with the server parameter
Max Data Propagation Per Propagate. For propagates that consist of a single disk
write (that is, propagation of data that is contiguous in the database), this specifies
the number of sectors to propagate (the default is 512).

For information on these and other server parameters, see Chapter 2, Server
Parameters, in Managing ObjectStore.

Performing Transaction Checkpoints
By performing a checkpoint operation on a transaction, you can commit modified
data from a top-level transaction without incurring some of the usual overhead of
ending a transaction and starting a new one. A checkpoint operation

• Commits the current top-level transaction.

• Immediately starts a new transaction.

• Immediately acquires read locks on all or most persistent objects that were locked
before the checkpoint. This operation is generally less expensive than acquiring
the locks incrementally, as happens without checkpoint in an explicitly started
transaction.

• Retains the validity of pointers to persistent memory across the checkpoint
boundary. Note that address space is not released across checkpoint boundaries.
See Controlling Address Space Reservation on page 17.

• Refreshes the application’s view of any database opened for MVCC. See
Multiversion Concurrency Control (MVCC) on page 51.

This is useful when you are making modifications to a database and you want to
periodically commit your changes but continue updating the database without
intervention. This might be the case, for example, when you are bulk-loading new
data into a database.

Checkpointing a Transaction
To checkpoint a transaction, call os_transaction::checkpoint(). Thgis function
has two overloadings. The no-argument overloading is used to perform a checkpoint
on the current transaction, and os_transaction overloading performs a checkpoint
on the specified transaction.
56 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
Note that, checkpoints within a transaction differ from conventional checkpoints. In
this checkpoint, an application might not have all the locks after the checkpoint that
it had before the checkpoint.

Like transaction commit and abort operations, a checkpoint operation is not thread
safe. Applications must ensure that other threads in the same session do not access
persistent memory during a checkpoint operation.

For more information about the checkpoint() function, see os_
transaction::checkpoint() in the C++ A P I Reference.

Locking and Checkpoints
If another client is waiting for a write lock on a persistent object that was locked in
your transaction, you lose that lock when you checkpoint the transaction. As long as
another client is not waiting for a write lock on an object that was associated with
your transaction, you reacquire as read locks any locks you had before the
checkpoint.

If there were any write locks before the checkpoint, ObjectStore changes them to read
locks or gives them to any clients waiting for those write locks. Consequently, you
might have to wait for locks or you might get a deadlock when you try to update the
database again.

Pointer Validity
After the checkpoint, you do not have to start from a root object to set up your access
to objects. Your application’s access to objects can be the same before and after the
checkpoint.

Support for the XA Standard for Transaction
Processing

ObjectStore supports X/Open's transaction demarcation protocol (known as XA).

XA is a set of services that is part of the X/Open Distributed Transaction Processing
(DTP) model. The model consists of three components: an application, a transaction
manager, and a resource manager.

In the DTP model, transaction demarcation is controlled by a transaction manager.

The transaction manager can coordinate distributed transactions in multiple
database systems so that, for example, one transaction can involve one or more
processes and update one or more databases. The databases can be multiple
ObjectStore databases or incompatible databases, such as ObjectStore and Sybase.

Transactions under the control of a transaction manager are made through a two-
phase commit process. In the first phase, transactions are prepared to commit; in the
second, the transaction is either fully committed or rolled back.
Release 6.3 57

Support for the XA Standard for Transaction Processing
An ObjectStore client acts as a resource manager. Resource managers must be
registered with the transaction manager.

Applications are written using the transaction manager’s API. XA is the interface
between the transaction manager and the resource manager and is not visible to
application programmers.

Transactions in the DTP Model
A global transaction is a metatransaction managed by a transaction manager and
possibly involving multiple resource managers. Such transactions have globally
unique identifiers generated by the transaction manager. Note that DTP global
transactions are distinct from ObjectStore global transactions.

A transaction branch is a transaction from a resource manager's point of view.

A global transaction can consist of many transaction branches in a mix of resource
managers. Multiple branches belonging to the same global transaction can exist on a
single resource manager.

XA transactions are identified by XIDs (universally unique identifiers for global
transactions). A branch has a globally unique ID composed of the global transaction
ID and a branch ID.

XA transactions are always of the type update.

XA is also integrated into the OMG Object Transaction Service (OTS), which is based
on DTP.

An application that uses a transaction manager must use the transaction manager's
interface (for example, the OMG Object Transaction Service (OTS)) to begin and end
transactions. Other database operations can be done using the database systems'
proprietary APIs. When recovery is required, the transaction manager manages the
process, using the XA interfaces to roll back web or commit transactions that were in
progress.
58 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
 ObjectStore Clients

ObjectStore and RDBMS Database

Registering ObjectStore as a Resource Manager
You must register ObjectStore as a resource manager with your transaction manager.

Registering a resource manager provides basic identification information used in
initialization and in processing transactions.

txn

control

A
pp

lic
at

io
n

A
pp

lic
at

io
n

txn

control

ObjectStore

ObjectStore

Storage

Storage

Resource

txn

control

txn

control

data

Resource
Manager

data

Manager

Tr
an

sa
ct

io
n

M
an

ag
er

A
pp

lic
at

io
n

txn
control

txn
control

Transaction
 Manager

ObjectStore

Resource
Manager

Storage

RDBMS

data

data

txn
control

txn
control
Release 6.3 59

Support for the XA Standard for Transaction Processing
The information you must provide to register ObjectStore as a resource manager is
packaged in a global data structure of type xa_switch_t. This data structure is
defined in libos with the name ObjectStore_xa_switch.

In addition, for each ObjectStore resource manager, you must identify the hosts that
will run ObjectStore servers for applications that use the transaction manager.

There are several ways to register a resource manager. See your individual vendor
documentation for specific information.

The example below uses the Orbix OTS as the transaction manager and describes the
way to register a resource manager by passing a set of arguments to the
Encina::Server::RegisterResource function.

Information for the following parameters is required

Initialization
example

The following example shows sample initialization code:

extern struct xa_switch_t ObjectStore_xa_switch;

// XA_OSTORE_SERVERS should be a space-delimited
// list of ObjectStore server host names. For example,
// "host.domain.com host2.domain.com ..."

char *openStringP = getenv("XA_OSTORE_SERVERS");

Encina::Server server;

// Register the database as a resource manager

server.RegisterResource(
 &ObjectStore_xa_switch, openStringP, "");

Using the Transaction Manager
After you register ObjectStore as a resource manager, you can use the transaction
manager's interface to start and commit transactions.

Nested
transactions

All transactions controlled by the transaction manager must be the top-level
transaction. Nested DTP transactions are not allowed. Nested ObjectStore

Parameter Description

xaSwitchP Pointer to a data structure of type xa_switch_t. Specify the
symbol ObjectStore_xa_switch for ObjectStore resource
managers.

openString String specific to the resource manager. For ObjectStore, this is a
space-separated list of hosts running ObjectStore servers that
might be contacted by the ObjectStore client that is the resource
manager. This list of servers is queried during recovery
operations. An attempt to contact a server not in the list is
considered an error.

closeInfo Empty string.

isThreadAware Specifies the type of thread support. For ObjectStore resource
managers, use the value False.
60 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
transactions are allowed within an XA transaction. These can be started and
committed using the native ObjectStore interfaces.

If your program tries to start a transaction through the transaction manager when
another transaction is already in progress, the transaction manager receives an error.

If your programs attempt to use the regular ObjectStore interface to commit or abort
a transaction that was started by a transaction manager, the exception err_commit_
xa or err_abort_xa is generated.

Concurrency
modes

When ObjectStore is in use, the concurrency mode must be SERIALIZE_TRPCS_AND_
TRANSACTIONS. ObjectStore can run only one transaction at a time, and this
concurrency mode prevents the transaction manager from trying to start multiple
concurrent transactions. Attempts to use other concurrency modes can result in the
transaction manager’s getting a deadlock error at the XA interface when it starts a
transaction.

Following is an example of using SERIALIZE_TRPCS_AND_TRANSACTIONS:

server.Listen(
 Encina::Server::SERIALIZE_TRPCS_AND_TRANSACTIONS);

Two-Phase Commit and Recovery
The ObjectStore client refers to XA transactions by XID. The XID is saved in the
server's transaction log so that the server, when queried after a crash, can provide a
list of the XIDs of transactions that were prepared (phase 1 commit) but not committed
(phase 2 commit).

Recovery is through the transaction manager and occurs during the initialization
process for a DTP application.

Restrictions
There are some restrictions on the use of ObjectStore’s native transaction interfaces
when they are used with distributed transaction processing. Other ObjectStore
interfaces can be used as usual.

• DTP global transactions can have multiple transaction branches in separate
processes that access the same resource manager. ObjectStore supports loosely
coupled global transactions, in which the different transaction branches of a
global transaction are regarded as distinct transactions and are, therefore, subject
to deadlock with one another if they attempt to access the same data.

• Multiserver backup does not synchronize with XA transactions. With solely
ObjectStore transactions, a transaction-consistent backup of multiple servers can
be taken even while two-phase transactions are in progress. This is not true for XA
transactions.

You cannot use checkpoint/refresh (os_transaction::checkpoint()) within a
DTP transaction because top-level transactions must be handled using transaction
manager calls.
Release 6.3 61

Transaction Locking Examples
Transaction Locking Examples
The following examples illustrate some of the locking situations described in this
chapter.

Simple Waiting Scenario
If one transaction reads a page and then another transaction reads the same page, the
second transaction is not blocked. However, if the second transaction tries to write
to the page, it must wait until the first transaction commits.

So the actual schedule of operations looks like the following:

Transaction 1 Transaction 2

Read P

Read P

Write P: BLOCKED

Commit

Transaction 1 Transaction 2

Read P

Read P

Commit

Write P (succeeds)
62 Advanced C++ A P I User Guide

Chapter 2: Advanced Transactions
Simple Deadlock Scenario
In the schedule below, Transaction 2 attempts to write P1 but cannot proceed until
Transaction 1 completes and releases its read lock on P1. However, Transaction 1
cannot proceed until Transaction 2 completes and releases its lock on P2. Because
neither transaction can proceed until the other does, the result is a classic deadlock
scenario. ObjectStore chooses Transaction 1 as victim and aborts it, whereupon
Transaction 2 can proceed.

MVCC and the Simple Waiting Scenario
If one transaction reads a page of a database it has opened for MVCC and then
another transaction attempts to update the same page, the second transaction is not
blocked. Compare this with the Simple Waiting Scenario on page 62.

Transaction 1 Transaction 2

Read P1

Read P1

Read P2

Write P2

Write P1: BLOCKED

Read P2: BLOCKED — DEADLOCK

Abort

Write P1 (succeeds)

MVCC Transaction 1 Update Transaction 2

Read P

Read P

Write P: NOT BLOCKED
Release 6.3 63

Transaction Locking Examples
MVCC and the Simple Deadlock Scenario
In the schedule below, Transaction 2 writes P1 without waiting; it can proceed before
Transaction 1 completes and releases its read lock on P1 because Transaction 1 has
the database containing the page opened for MVCC. Similarly, Transaction 1 can
proceed before Transaction 2 completes and releases its lock on P2. Without MVCC,
deadlock would have resulted. See the Simple Deadlock Scenario on page 63.

MVCC Conflict Scenario
MVCC and update conflict because update writes something (A) which is being read
by MVCC. Therefore, all pages updated by update must be retained in the log so that
MVCC can see the old copies of these pages.

MVCC Transaction 1 Update Transaction 2

Read P1

Read P1

Read P2

Write P2

Write P1: NOT BLOCKED

Read P2: NOT BLOCKED

MVCC Transaction 1 Update Transaction 2

Read A

Read A, B, C, D, E

Write A, B, C, D, E

Commit

Read B (old)
64 Advanced C++ A P I User Guide

Chapter 3
Multithread and Multisession
Applications

ObjectStore supports the use of multiple threads within a client application. The key
to developing a successful multithreaded application with ObjectStore lies in
choosing

• The right assignment of operations to threads

• The right assignment of threads to sessions

These topics are discussed in the first two sections of this chapter:

What Are Sessions? 66

Designing Multithreaded Applications 67

The rest of the chapter describes using the sessions facility and consists of the
following sections:

Overview of Using Sessions 69

Using Pointers Across Sessions 70

Cross-Session References 74

Initializing the Sessions Facility 74

Initializing an Individual Session 75

Creating and Deleting Sessions 76

Setting and Getting the Current Session 76

Thread Absorption 77

Getting the Session of Pointers to Objects 77

Using Collections in a Multisession Environment 79

Setting and Getting Session Defaults and Session-Specific State 79

Example 81

For more
information

For information about using the ObjectStore API to set up thread locking, see
Threads Support in Chapter 1 of the C++ A P I User Guide. The os_session class
provides user access to the sessions facility. For information about the member
functions this class, see os_session, in the C++ A P I Reference.
Release 6.3 65

What Are Sessions?
What Are Sessions?
A session provides a context for the execution of specified portions of one or more
threads. A session is, in many respects, exactly like an ObjectStore client. Each
session is a subclient of an ObjectStore client and has its own

• Cache

• Server and cache manager connections

• Communications segment (commseg)

• Portion of the persistent storage region of the current process (address space
partition)

If you do not use the sessions facility explicitly, all your application’s threads execute
within a single session. If you use the sessions facility, concurrent threads can be in
different sessions or in the same session.

Threads in Different Sessions
If you use the sessions facility,

• ObjectStore synchronizes access to persistent data by threads in different sessions
automatically.

• Threads in different sessions can run in different transactions concurrently.

• Threads in different sessions can operate against the same database opened for
different types of access — MVCC, update, or read-only access — concurrently.

ObjectStore performs the same kind of automatic lock management whether
different sessions or different clients perform concurrent access to persistent data.
Therefore, threads in different sessions are synchronized using the ObjectStore
concurrency control facility and can achieve the same degree of concurrency that
separate ObjectStore client processes can.

Threads in the Same Session
Threads in the same session can use either global or local transactions.

Global
transactions

With global transactions, threads in the same session can participate in the same
transaction. When one thread starts a global transaction, all threads in that thread’s
session enter that transaction. When one thread ends a global transaction, all threads
in that thread’s session leave that transaction.

For threads in the same global transaction, ObjectStore thread locking prevents two
threads from operating within the ObjectStore run time at the same time (but see
Thread Locking and Collections on page 67). So, if you run multiple threads in the
same global transaction, you are responsible for synchronizing the threads’ access to
persistent data and for ensuring that the threads perform no persistent access during
a commit or checkpoint.

Local
transactions

With local transactions, the transactions of different threads in the same session are
serialized. When one thread starts a local transaction, other threads in the same
66 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
session are blocked until the transaction commits. So if you run multiple threads in
the same session and use local transactions, the threads are automatically
synchronized. But the degree of concurrency among the threads is lower than it
would be if the threads were in different sessions.

Thread Locking and Collections
This section describes ObjectStore thread locking for collections. ObjectStore thread
locking is used for threads executing within the same global transaction.

ObjectStore thread locking ensures that no two threads execute within the
ObjectStore run time at the same time, with the exception of parts of the collections
run time. Because of automatic thread locking, no two threads can create a query or
execute a query against the same collection at the same time. Automatic thread
locking, however, does not prevent different threads from performing other types of
collection access at the same time.

Therefore, for threads in the same global transaction, you are responsible for
synchronizing all other forms of access to ObjectStore collections, such as insertion,
deletion, and traversal with cursors.

Because of blocking from thread locking, an unoptimized query might not perform
as well as an equivalent explicitly coded traversal of the collection.

Designing Multithreaded Applications
Many applications take streams of requests from other processes. For each request,
they perform a requested operation and send a reply. For example, many application
servers accept, process, and reply to requests from thin client processes running on
web-server hosts. These applications benefit from multithreading because the
requests represent discrete, independent units of work that can be performed in any
order and can, therefore, be handled by multiple threads.

An effective design for these applications groups requests according to the style of
transaction management appropriate for each request (see Transaction Management
Styles). With this design, the application creates a session for each style of transaction
management and one or more threads for each session. A router thread accepts
requests and routes each one to a thread in a session dedicated to the appropriate
transaction management style.

For example, multiple threads in one session might service read-only requests with
a database opened for MVCC, while a single thread in another session services
update requests with a database opened for update. For information about MVCC
and its advantages, see Multiversion Concurrency Control (MVCC) on page 51.

When you are deciding the number of sessions to have in one ObjectStore client
process, be sure to weigh the per-session costs, as discussed in Considering Per-
Session Costs When Initializing on page 75.
Release 6.3 67

Designing Multithreaded Applications
Note that the different transaction management styles need not be handled by
sessions that are all in the same ObjectStore client process; it might be beneficial to
have multiple application servers processing requests.

Transaction Management Styles
Each style of transaction management varies along the following dimensions:

• Sharing: batch or isolated. Transaction management styles vary according to
whether they allow processing of multiple requests or a single request per
transaction. See Transaction Sharing on page 68.

• Database access: MVCC, read-only, or update. Transaction styles vary according to
the way the database they operate against is opened, as described in Multiversion
Concurrency Control (MVCC) on page 48.

• Transaction boundaries, how marked: checkpoint or commit/begin. Transaction
boundaries can be marked either with a call to checkpoint() or with calls to
commit() and begin(). See Performing Transaction Checkpoints on page 56.

Batch transactions also vary according to the latency between commits or
checkpoints, or according to the batch size.

Transaction Sharing
Transaction sharing concerns the number of requests that are serviced in a single
transaction. Isolated transactions service a single request. Batch transactions service
multiple requests.

A single transaction can service multiple requests in one of two ways:

• In a single thread by beginning a transaction, servicing several requests, and then
committing or checkpointing the transaction.

• In multiple threads of the same session by beginning a global transaction in one
thread, servicing several requests in each thread in the session, synchronizing
threads, and then committing or checkpointing the transaction in one thread —
the same thread that started the transaction.

Using batch transactions can sometimes increase throughput by reducing commit
overhead. Use multithreaded batch transactions for operations that cannot conflict
with one another — for example, for read-only operations.

It is always safe to use multithreaded batch transactions for read-only operations;
but you should be careful when using multithreaded, batch update transactions. If
the operations in different threads (in the same session) conflict, the results might be
incorrect and transactionally inconsistent data might be recorded in the database.

Batch Transaction Commits and Aborts
If an operation in a batch update transaction aborts, all the operations in the batch
must be aborted. Therefore, with batch update transactions, do one of the following:

• Do not reply to a given request until all the requests in the given request’s batch
have been serviced (that is, until the transaction commits or checkpoints).
68 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
• Log requests so that they can be replayed in case of transaction abort.

Results of batched read operations can be returned without waiting for all operations
in the batch to commit, because an abort of one (read-only) operation does not affect
the results of other operations in the batch.

You should abort a lexical transaction only from the thread that started the
transaction with OS_TXN_BEGIN(). err_explicit_abort is signaled if another
thread aborts the transaction.

Overview of Using Sessions
These are basic steps for using the sessions facility:

1 Initialize the sessions facility.

Call objectstore::initialize_for_sessions() instead of
objectstore::initialize(). This function lets you specify the number of
sessions you expect to use. See Initializing the Sessions Facility on page 74.

2 Create sessions.

Use os_session::create() to create a session. A pointer to an instance of os_
session is returned by each call to create(). See Creating and Deleting Sessions
on page 76.

3 Set the current session in each thread.

One way to set the current session is by calling os_session::set_current().
You can also sometimes join a given session by dereferencing a pointer associated
with the session (sometimes called thread absorption). A thread can enter, leave,
and change sessions during the course of its execution. A thread can be in at most
one session at a time. See Setting and Getting the Current Session on page 76 and
Thread Absorption on page 77.

4 Open databases and retrieve data.

Threads must be within a session when you are opening and closing databases
and when you are accessing persistent data.

There are also some optional steps you can take:

• Set default address space partition size after calling objectstore::initialize_
for_sessions(). See How Partition Size is Determined on page 75.

• Set other session defaults before calling objectstore::initialize_for_
sessions(). See Setting and Getting Session Defaults and Session-Specific State
on page 79.

• Change the size of a session’s address space partition before the session has
retrieved any persistent data, using the objectstore::acquire_address_
space() function.
Release 6.3 69

Using Pointers Across Sessions
• Set other session-specific state after calling objectstore::initialize_for_
sessions(). See Setting and Getting Session Defaults and Session-Specific State
on page 79.

• Force full initialization of a session. See Initializing an Individual Session on
page 75.

Using Pointers Across Sessions
This section describes when you can and cannot use a pointer in more than one
session. It discusses three categories of pointers:

• Pointers to transient ObjectStore objects — databases, transient collections, and
related transient objects

• Pointers to persistent objects

• Pointers to transient non-ObjectStore objects

Pointers to Transient ObjectStore Objects
A pointer to an instance of any of the following ObjectStore classes can be retrieved
only within a session. Each such pointer is associated with the session in which it was
retrieved.

• os_database

• os_segment

• os_cluster

• os_database_root

• os_transaction

• ObjectStore collection classes

You must dereference such a pointer only in its associated session.

err_wrong_session is signaled if you dereference such a pointer in a session other
than the one in which it was retrieved.

err_no_session is signaled if you retrieve or dereference such a pointer when there
is no current session.

Example Following is an example in which a pointer to an os_database is retrieved in one
session and dereferenced in another:

os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
os_database *db;
void f()
{
 os_session::set_current(sess_1);
 db = os_database::open("testdb");
 ...
}

70 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
void g()
{
 os_session::set_current(sess_2);
 OS_BEGIN_TXN(tx1, 0, os_transaction::read_only)
 os_database_root *a_root =
 db->find_root("count"); // WRONG -- err_wrong_session
 ...

 OS_END_TXN(tx1)
 ...
 db->close(); // WRONG -- err_wrong_session
}

For two sessions to access the same database, each must open the database and
retrieve its own associated database pointer:

os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
os_database *db1;
os_database *db2;
void f()
{
 os_session::set_current(sess_1);
 db1 = os_database::open("testdb");
 ...
 db1->close();
}

void g()
{
 os_session::set_current(sess_2);
 db2 = os_database::open("testdb");

 OS_BEGIN_TXN(tx1, 0, os_transaction::read_only)
 os_database_root *a_root = db2->find_root("count");
 ...

 OS_END_TXN(tx1)
 ...
 db2->close();
}

Pointers to Persistent Objects
A pointer to a persistent object is associated with the session in which the pointer was
retrieved from a database. You must not dereference such a pointer in a session other
than its associated session.

Caution If you dereference such a pointer in a session other than the one in which it was
retrieved, the error cannot always be detected; either err_wrong_session is
signaled or unpredictable program failures result.

If you dereference such a pointer when there is no current session, you join the
session in which the pointer was retrieved, if the pointer is not currently mapped
into virtual memory. If the pointer is already mapped into virtual memory, either
err_no_session is signaled or unpredictable program failures result. See Setting
and Getting the Current Session on page 76.
Release 6.3 71

Using Pointers Across Sessions
Example Following is an example in which a pointer to a persistent object is retrieved in one
session and dereferenced in another:

os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
os_database *db1;
os_database *db2;
int *countp;
void f()
{
 os_session::set_current(sess_1);
 db1 = os_database::open("testdb");
 OS_BEGIN_TXN(tx1, 0, os_transaction::update)
 os_database_root *a_root = db1->find_root("count");
 countp = (int*) (a_root->get_value());
 ++*countp;
 ...
 OS_END_TXN(tx1)
 ...
}

void g()
{
 os_session::set_current(sess_2);
 db2 = os_database::open("testdb");
 OS_BEGIN_TXN(tx1, 0, os_transaction::update);
 ++*countp; // WRONG -- err_wrong_session, or error not detected
 ...
 OS_END_TXN(tx1)
 ...
}

For two sessions to access the same persistent object, each must retrieve its own
associated pointer to the object:

os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
os_database *db1;
os_database *db2;
int *countp1;
int *countp2;
void f()
{
 os_session::set_current(sess_1);
 db1 = os_database::open("testdb");
 OS_BEGIN_TXN(tx1, 0, os_transaction::read_only)
 os_database_root *a_root = db1->find_root("count");
 countp1 = (int*) (a_root->get_value());
 ++*countp1;
 ...
 OS_END_TXN(tx1)
 ...
}

void g()
{
 os_session::set_current(sess_2);
 db2 = os_database::open("testdb");
 OS_BEGIN_TXN(tx1, 0, os_transaction::read_only);
 os_database_root *a_root = db2->find_root("count");
72 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
 countp2 = (int*) (a_root->get_value());
 ++*countp2;
 ...
 OS_END_TXN(tx1)
 ...
}

Pointers to Transient Non-ObjectStore Objects
Except for pointers to instances of the ObjectStore classes listed in Pointers to
Transient ObjectStore Objects on page 70, pointers to transient memory can be
retrieved inside or outside any session. In addition, such a pointer can be used in any
session.

However, ObjectStore does not automatically synchronize access to transient
memory by different threads. It is the user’s responsibility to ensure that concurrent
access to transient memory does not lead to incorrect results. Following is an
example that is missing the proper synchronization:

Example os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
int count = 0;
int count *countp = &count;

void f()
{
 os_session::set_current(sess_1);
 ++*countp; // DANGER -- no synchronization
 ...
 os_session::set_current(0);
}
void g() // runs in a different thread from f()
{
 os_session::set_current(sess_2);
 ++*countp; // DANGER -- no synchronization
 ...
 os_session::set_current(0);
}

If f() and g() can run concurrently in different threads, their updates can interfere
with one another. The following is one way to provide the proper synchronization,
using the UNIX pthreads library:

os_session *sess_1 = os_session::create("sess_1");
os_session *sess_2 = os_session::create("sess_2");
int count = 0;
int count *countp = &count;
pthread_mutex_t hmCount = PTHREAD_MUTEX_INITIALIZER;

void f()
{
 os_session::set_current(sess_1);
 pthread_lock_mutex(&hmCount);
 ++*count;
 pthread_unlock_mutex(&hmCount)
 ...
 os_session::set_current(0);
}
void g() // runs in a different thread from f()
Release 6.3 73

Cross-Session References
{
 os_session::set_current(sess_2);
 pthread_lock_mutex(&hmCount);
 ++*count;
 pthread_unlock_mutex(&hmCount)
 ...
 os_session::set_current(0);
}

For concurrent access to persistent objects by different sessions, you do not have to
synchronize access; ObjectStore synchronizes the access automatically, just as it does
with access by different ObjectStore clients.

Although ObjectStore detects deadlocks resulting from contention for persistent
data, undetected deadlocks can result from contention involving a combination of
transient and persistent data. Your program is responsible for preventing or
detecting such deadlocks.

Cross-Session References
The ObjectStore API provides cross-session references for referencing persistent
objects across sessions. The classes os_reference_cross_session and os_
Reference_cross_session implement nonparameterized and templated versions,
respectively, of cross-session references.

You can use cross-session references to store a reference to an object in one session,
and then read the reference in other sessions, resolving it to obtain either a void*
pointer or a soft pointer to the referenced object. Cross-session references are
transient and therefore cannot be persistently stored.

Write operations to cross-session references are atomic. That is, the user is not
required to synchronize two different writes to the same cross-session reference.

For more information about cross-session references, see the following sections of
the C++ A P I Reference:

• os_Reference_cross_session<T>

• os_reference_cross_session

Initializing the Sessions Facility
Applications that use multiple sessions must initialize the sessions facility by calling
objectstore::initialize_for_sessions() before creating instances of os_
session. Note that calling initialize_for_sessions() replaces the need call to
objectstore::initialize() that normally must occur in an ObjectStore
application.

In fact, calling objectstore::initialize_for_sessions() after calling
objectstore::initialize() signals the err_misc exception. However, calling
74 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
objectstore::initialize() after objectstore::initialize_for_sessions()
has no effect.

For more information about initializing the sesions facility, see
objectstore::initialize_for_sessions() in the C++ A P I Reference.

Considering Per-Session Costs When Initializing
The objectstore::initialize_for_sessions() function allows you to specify
the number of sessions that you expect to create in the current application. When
deciding on this number, be sure to consider the cost of a session. Each session has
its own cache, address space partition, and commseg. To the extent that an
application’s session caches contain overlapping data sets, the application makes
less efficient use of cache space, address space, and locking resources. Be sure you
choose a small enough number of sessions to allow for sufficient resources for each
one.

Determining Whether the Sessions Facility Has Been Initialized
You can determine whether the sessions facility has been initialized for multisession
use by calling either objectstore::is_multiple_session_mode()or
objectstore::is_single_session_mode(). For information about both functions,
see the following section in the C++ A P I Reference:

• objectstore::is_multiple_session_mode()

• objectstore::is_single_session_mode()

Initializing an Individual Session
Initialization of an individual session (as opposed to initialization of the sessions
facility) can be implicit or explicit:

• Implicit initialization occurs when a thread in that session first accesses a
database.

• Explicit initialization occurs when the application calls os_session::force_
full_initialization(); see os_session::force_full_initialization() in
the C++ A P I Reference for more information.

How Partition Size is Determined
When an individual session is implicitly or explicitly initialized, ObjectStore
determines the size of a session’s address space partition — that is, the portion of the
persistent storage region associated with the session — as follows:

• If objectstore::acquire_address_space() has been called during the session,
the size specified in the last call to that function is used. You must call this function
before the current session is initialized. For more information, see
objectstore::acquire_address_space() in the C++ A P I Reference..
Release 6.3 75

Creating and Deleting Sessions
• Otherwise, if objectstore::set_default_address_space_partition_size()
has been called subsequent to objectstore::initialize_for_sessions(), the
size last passed to set_default_address_space_partition_size() is used. See
objectstore::set_default_address_space_partition_size() in the C++
A P I Reference.

• Otherwise, if the environment variable OS_DEFAULT_AS_PARTITION_SIZE is set,
its value is used; for more information, see OS_DEFAULT_AS_PARTITION_SIZE in
Chapter 3 of the Managing ObjectStore.

• Otherwise, the size is the size of the process-wide persistent storage region
divided by the n_expected_sessions argument of the first call to
objectstore::initialize_for_sessions() (rounded up to the nearest 64 KB).
See Initializing the Sessions Facility on page 74.

When the session is initialized, err_address_space_full is signaled if the session’s
address space partition is too small or if the partition size is too large to fit in any
portion of free space in the process-wide persistent storage region.

Creating and Deleting Sessions
You create a session with the os_session::create() function and delete it with the
os_session::operator delete() function. Calling the
objectstore::shutdown() function deletes all sessions and their associated
transient objects (see Using Pointers Across Sessions on page 70).

For more information about these functions, see the following sections in the C++
A P I Reference:

• os_session::create()

• os_session::operator delete()

• objectstore::shutdown()

Setting and Getting the Current Session
There are two ways to establish a session as the current session for a given thread:

• By calling os_session::set_current() in that thread, specifying a pointer to an
os_session object as the argument. For more information, see os_
session::set_current() in the C++ A P I Reference.

• By using thread absorption, if the session allows it. If thread absorption is allowed
and if there is no current session, dereferencing an unmapped pointer to
persistent memory causes the thread to join the session in which the pointer was
retrieved. See Thread Absorption on page 77.

To retrieve a pointer to the current session, call os_session::get_current(), as
described in os_session::get_current() in the C++ A P I Reference.
76 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
Note that, if there is a current session, it is an error to use pointers to persistent
memory that were retrieved in different sessions. ObjectStore signals the err_
wrong_session exception if you dereference such a pointer and the pointer is not
mapped into virtual memory. Whether or not there is a current session, if you
dereference a pointer to persistent memory that was retrieved in a different session
and the pointer is mapped into virtual memory, the error cannot always be detected;
either err_wrong_session or err_no_session is signaled, or unpredictable
program failures result.

Mapping
pointers into
virtual memory

A pointer is not mapped into virtual memory until the first time it is dereferenced in
a given process. It is unmapped at the end of each transaction. Each time an
unmapped pointer is dereferenced, it is mapped into virtual memory.

Thread Absorption
If a pointer to persistent memory has been retrieved in a given session and is not yet
mapped into virtual memory, a thread can join the session by dereferencing the
pointer if the thread has no current session. This operation is called thread absorption.
You can use the os_session::set_thread_absorption() function to specify
whether or not an individual session allows thread absorption.

If a session does not allow thread absorption, when dereferencing an unmapped
pointer while there are multiple threads in the session, only those threads that are in
the session will be suspended; threads in other sessions (or outside of all sessions)
will continue normal execution.

If a session allows thread absorption (the default setting), when dereferencing an
unmapped pointer, all threads in the process, regardless of what session they are in,
will be suspended for the duration.

For information about the functions that control thread absorption, see the following
sections in the C++ A P I Reference:

• os_session::set_thread_absorption()

• os_session::get_thread_absorption()

Getting the Session of Pointers to Objects
You can get a pointer to the session in which a pointer to one the following objects
was retrieved:

• One of the following transient ObjectStore objects:

- Databases (os_database)

- Segments (os_segment)

- Clusters (os_cluster)

- Transactions (os_transaction)
Release 6.3 77

Getting the Session of Pointers to Objects
• Persistent objects

Retrieving the Session for an ObjectStore Object
To get a pointer to the session in which a transient ObjectStore object was retrieved,
you use the session_of() function, which is defined for the os_database, os_
segment, os_cluster, and os_transaction classes. You call this function with a
pointer to the ObjectStore object as the this argument. The function returns a
pointer to the session in which the this argument was retrieved.

Retrieving the Session for a Persistent Object
To get a pointer to the session in which a pointer to a persistent object was retrieved,
use the os_session::of() function. This function is useful when working multiple
sessions and your application uses pointers to persistent objects across session
boundaries. It allows you to get the session in which the pointer was retrieved,
establish that session as the current session, and then dereference the pointer.
(Dereferencing the pointer in a session other than the one in which the pointer was
retrieved results in the err_wrong_session exception; see Pointers to Persistent
Objects on page 71.)

The following example shows you how to use os_session::of() get the session in
which a pointer was retrieved and establish that session as the current session:

foo *ptr;
. . .
os_session::set_current(os_session::of(ptr));

If the sessions facility is not initialized for multisession use (see Initializing the
Sessions Facility on page 74), os_session::of() returns a pointer to a session
named Global Session.

For more information, see the following sections of the C++ A P I Reference:

• os_cluster::session_of()

• os_database::session_of()

• os_segment::session_of()

• os_transaction::session_of()

• os_session::of()
78 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
Using Collections in a Multisession
Environment

The collections facility must be used only within a session. All collection APIs access
session-specific state, with the following two exceptions:

• To initialize the collections facility, you must call os_
collection::initialize() within a session. The call initializes the collections
facility for the entire process. Calling os_collection::initialize() outside
any session has no effect.

• To register a rank or hash function, you must call the os_index_key() macro
within a session. The call registers a rank or hash function for the entire process.
Calling os_index_key() outside any session has no effect.

Setting and Getting Session Defaults and
Session-Specific State

In addition to the collections functions described in Using Collections in a
Multisession Environment on page 79, several functions defined by the
objectstore class can be used for setting and getting either session defaults or
session-specific state. These are described in the following sections.

Dual-Purpose Functions
A number of the objectstore functions serve a dual purpose, depending on when
they are called:

• They set or get session defaults if called before objectstore::initialize_for_
sessions().

• They set or get session-specific state if called after objectstore::initialize_
for_sessions().

If called before initialize_for_sessions(), these dual-purpose functions set or
get default values to be used for newly created sessions. If called after initialize_
for_sessions(), they set or get state for the current session or signal err_no_
session if there is no current session.

For example, calling objectstore::set_cache_size() before calling
objectstore::initialize_for_sessions() sets the default cache size, that is, the
size of the cache assigned to a newly created session. After initialize_for_
sessions() is called, set_cache_size() sets the size for the current session or
signals err_no_session if there is no current session.

If there are multiple threads before initialization of the sessions facility, you must
synchronize their use of these functions. ObjectStore does not provide thread locking
before initialization — that is, before a call to objectstore::initialize() or
objectstore::initialize_for_sessions().
Release 6.3 79

Setting and Getting Session Defaults and Session-Specific State
Following are the dual-purpose set functionsof the objectstore class:

• set_allocation_strategy()

• set_always_null_illegal_pointers()

• set_auto_load_DLLs_function()

• set_auto_open_mode()

• set_cache_size()

• set_current_schema_key()

• set_fetch_policy()

• set_incremental_schema_installation()

• set_suppress_invalid_hard_pointer_errors()

• set_lock_option()

• set_lock_timeout()

• set_null_illegal_pointers()

• set_simple_auth_ui()

• set_suppress_invalid_hard_pointer_errors()

• set_transaction_max_retries()

• set_transaction_priority()

Following are the dual-purpose get functions:

• get_allocation_strategy()

• get_always_null_illegal_pointers()

• get_autoload_DLLs_function()

• get_auto_open_mode()

• get_fetch_policy()

• get_incremental_schema_installation()

• get_lock_option()

• get_lock_timeout()

• get_null_illegal_pointers()

• get_simple_auth_ui()

• get_suppress_invalid_hard_pointer_errors()

• get_transaction_max_retries()

• get_transaction_priority()

Single-Purpose Functions
The following members of objectstore always set or get process-wide state:

• embedded_server_available()

• get_application_server_pathname()

• get_cache_size()
80 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
• get_locator_file()

• get_log_file()

• get_page_size()

• get_thread_locking()

• get_transient_delete_function()

• is_multiple_session_mode()

• is_single_session_mode()

• network_servers_available()

• propagate_log()

• release_maintenance()

• release_major()

• release_minor()

• release_name()

• set_client_name()

• set_default_address_space_partition_size()

• set_thread_locking()

• set_transient_delete_function()

• shutdown()

• which_product()

All other objectstore members access process-specific state or signal err_no_
session if there is no current session.

Example
This section discusses an example of a simplified application server that uses two
sessions, one for update requests and one for MVCC read requests. The update
session uses a single thread while the MVCC session uses multiple threads. The
MVCC view is refreshed after a specified latency. The source code for this example
is available in $OS_ROOTDIR/examples/sessions.

main()
The main() function, in app_server.cpp, performs the following tasks:

• Initializes the sessions facility

• Creates sessions

• Initializes the application

• Starts up update processing

• Starts up MVCC processing

• Routes requests
Release 6.3 81

Example
• Cleans up update processing

• Cleans up MVCC processing

• Deletes sessions

Most of these tasks are performed by static members of the class app_server, which
is never instantiated. (A real application server might make these functions nonstatic
and instantiate the class, enabling a server to route requests to other servers as well
as to a session within its own process space.)

Request Execution
The requests are executed by app_server::view_seats() and app_server::buy_
seats(). In a ticketing application, a request to view the available seats for a
specified performance might be handled as an MVCC request; a request to buy
specified seats to a specified performance might be handled as an isolated update
request.

(A real application server might allow the functions for executing requests to be
registered by a separate DLL, along with the associated setup and cleanup
functions.)

init()
The function to initialize the application, app_sever::init(), creates two queues,
one for scheduling requests to be handled by the update session, and the other for
scheduling requests to be handled by the MVCC session. It also creates a database
with a persistent integer. The update and MVCC operations access this persistent
data. (With a real application server, the operations would access more complex
data, and the database might already exist.)

Start-up Procedures
The start-up procedures, app_server::startup_mvcc_processing() and app_
server::startup_update_processing(), do the following:

• Set the current session.

• For MVCC start up, record the time just before the database is opened for MVCC.
This is used to determine when to refresh the MVCC view with os_
transaction::checkpoint().

• Set up the update or MVCC operation (open the database, retrieve the root).

• For MVCC start-up, start a shared transaction. This transaction is committed in
app_server::cleanup_mvcc_processing().

• Create worker threads, the threads to which to route requests.

• Unset the current session (that is, set it to 0).

Each start-up function sets the current session before calling the setup function. Each
setup function opens the same database and retrieves a pointer to the same persistent
object. However, each opens the database for a different type of access and each has
its own associated database pointer and integer pointer.
82 Advanced C++ A P I User Guide

Chapter 3: Multithread and Multisession Applications
Thread Functions
The thread functions for the worker threads, app_server::service_update_
requests() and app_server::service_mvcc_requests(), have the following
structure:

• Set the current session.

• Repeat: {

• Get a request from app_server::mvcc_queue or app_server::update_queue.

• For MVCC threads, perform a refresh, if necessary.

• For the update thread, start a transaction.

• Execute the request against the database.

• For the update thread, end the transaction.

• Send the reply.

• } Stop repeating when there is an “end” request.

• Unset the session.

buy_seats() and view_seats()
buy_seats() increments a persistent integer, and view_seats() simply reads it.
Each function replies with the integer’s value together with the arguments that were
passed to it.

send_reply()
app_server::send_reply() simulates sending a reply to an end-user process by
sending the values returned by view_seats() or buy_seats() to standard output.
send_reply() assumes that exactly three values are always returned, two floats
and a string. (In a real application server, each operation might have an associated
reply_format object, which would allow send_reply() to be more flexible.)

refresh_if_needed()
The function app_server::refresh_if_needed() performs a refresh if the
required latency (specified on the command line) has been exceeded. If the latency
has been exceeded, this function waits until there is no persistent access, and then
refreshes the MVCC view with os_transaction::checkpoint(). (When one
thread performs checkpoint(), there can be no concurrent persistent access by
other threads in the same session.) The mutex hmRefresh (locked in service_mvcc_
requests()) provides a barrier so that refresh_if_needed() cannot wait forever.

The mutex hmPersAccess synchronizes access to the variable mvcc_persistent_
access. After refresh_if_needed() determines that there is no persistent access, it
performs checkpoint(). Retaining hmPersAccess until after checkpoint() returns
ensures that no MVCC thread initiates persistent access during the refresh. While
one thread is in refresh_if_needed(), other MVCC threads can decrement mvcc_
refresh_if_needed, but they can increment it at most once.
Release 6.3 83

Example
get_request()
The function get_request() simulates receiving a request from an end-user process
by generating requests consisting of a request type (buy, view, or end), an argument
list, and a transaction type (MVCC or update — the type of transaction in which the
request should be executed). The argument list consists of a count (which get_
request() increments each time it generates a request) and a string, the name of the
request type.
84 Advanced C++ A P I User Guide

Chapter 4
Data Integrity

The first section in this chapter introduces three data integrity facilities: inverse data
members, illegal pointer detection, and protected references. The rest of the chapter
covers inverse data members in detail.

Data Integrity Facilities 85

Inverse Data Members 86

Inverse Member End-User Interface 87

Defining Relationships 88

Relationship Examples 89

Duplicates and Many-Valued Inverse Relationships 95

Use of Parameterized Types 96

Deletion Propagation and Required Relationships 97

Indexable Inverse Members 98

Data Integrity Facilities
Many design applications create and manipulate large amounts of complex
persistent data. Frequently, this data is jointly accessed by a set of cooperative
applications, each of which carries the data through some well-defined
transformation. Because the data is shared, and because it is more permanent and
more valuable than any particular run of an application, maintaining the data’s
integrity becomes a major concern and requires special database support.

ObjectStore provides facilities to help deal with three of the most common integrity
maintenance problems:

• Keeping inverse data members synchronized with each other

• Detecting illegal cross-database pointers or pointers to persistent memory

• Detecting references to deleted objects

Inverse Members
One integrity control problem concerns pairs of data members that are used to model
binary relationships. ObjectStore allows you to declare two data members as inverses
of one another, so they stay synchronized with each other according to the semantics
Release 6.3 85

Inverse Data Members
of binary relationships. This works for pairs of data members that represent one-to-
one, one-to-many, and many-to-many relationships. See Inverse Data Members on
page 86.

Illegal Pointers
Another integrity control problem concerns illegal pointers. ObjectStore can detect
two kinds of illegal pointers:

• Pointers from persistent memory to transient memory

• Illegal cross-database pointers

ObjectStore provides facilities that automatically detect such pointers upon
transaction commit. You can control the way ObjectStore responds when illegal
pointers are encountered; ObjectStore can either raise an exception or change the
illegal pointers to 0 (null). See objectstore::set_null_illegal_pointers() in
the C++ A P I Reference.

References to Deleted Objects
Use an instance of os_Reference_protected<T> instead of a pointer when you
want ObjectStore to detect references to deleted objects. os_Reference_
protected<T> has an interface like os_soft_pointer<T>. See Using ObjectStore
Soft Pointers on page 22.

After the object referred to by an os_Reference_protected is deleted, resolution of
the os_Reference_protected causes an err_reference_not_found exception to
be signaled. If the referent database has been deleted, err_database_not_found is
signaled.

See os_Reference_protected in the C++ A P I Reference.

Inverse Data Members
ObjectStore allows you to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointers) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks.

The ObjectStore class library contains the necessary relationship and collection
classes, as well as a set of macros to simplify the use of these classes. In general, when
you use a class that has inverse members, you can access these members as if they
were simple data members. The code that manipulates the instances need not be
aware of the inverse maintenance that is occurring, because this is entirely hidden by
the relationship class implementation.

To use ObjectStore’s relationship facility, you must include the files
<ostore/relat.hh> along with <ostore/ostore.hh> and <ostore/coll.hh>. The
86 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
#include line must place <ostore/relat.hh> after the other two, in the following
order:

ostore/ostore.hh, ostore/coll.hh, ostore/relat.hh

Inverse Member End-User Interface
As a relationship definer (that is, the definer of the class that contains relationships),
you have a number of options for presenting the relationship to that class’s users.
Suppose, for example, that the class part has a single-valued relationship container
that points to the part that contains this one. Then the end user of the part class can
be presented with any of the following interfaces for getting and setting this
relationship:

Getting
relationships

otherpart = somepart->container; /* simple data member */
otherpart = somepart->container.getvalue(); /* relationship *
otherpart = somepart->get_container();/*functional interface */

Setting
relationships

somepart->container = otherpart; /* simple data member */
somepart->container.setvalue(otherpart); /* relationship */
somepart->set_container(otherpart); /* functional interface */

Simple data
member
interface

The first style of interface is called simple data member because the end user interacts
with the relationship exactly as if it were a simple data member of type part*. The
end user need not be aware that special inverse-update processing is occurring.

Relationship
interface

The second style of interface is called relationship because it treats the container data
member as an object in its own right (that is, a relationship object). In other words, if
somepart refers to a part, then somepart->container refers to a relationship
instance and somepart->container.getvalue() returns the value of the
relationship.

Functional
interface

The third style of interface is called functional because it encapsulates all access to the
relationship inside functions defined on the class part.

Note that it is completely up to the class definer to decide which of these interfaces
to export to the class’s end users. The underlying ObjectStore library interface to
relationships supports all of them and, in fact, a class definer could choose to export
more than one. It might do so, for example, so that the end user could do either of
the following:

p->set_container(q)

or

p->container.setvalue(q)

Similarly, for the many-valued relationship contents, which lists a part’s subparts,
any of the following interfaces could be presented to the end user:

Getting
contents

os_collection* subparts;
subparts = somepart->contents; /* simple data member */
subparts = somepart->contents.getvalue(); /* relationship */
subparts = somepart->get_contents(); /* functional interface */
Release 6.3 87

Defining Relationships
Setting contents somepart->contents.insert(otherpart); /* simple data member */
/* relationship* /
somepart->contents.getvalue().insert(otherpart);
somepart->insert_contents(otherpart); /*functional interface*/

Again, deciding which of these interfaces to export to the end user is under the
control of the class definer. The ObjectStore library interface to relationships
supports all three.

About m side of
relationships

The size of an os_relationship m data member is 8 bytes, 4 bytes for the pointer to
the os_collection and 4 bytes for the vtbl.

The collection for an m side of an os_relationship data member is created upon the
first insertion into the collection.

You control the size and placement of the collection by calling os_
relationship::create_coll() in the constructor of the class that contains the os_
relationship m data member.

Presizing the collection yields the best performance in terms of eliminating
mutations as the collection grows and in terms of clustering.

Defining Relationships
To define a class that has relationships, you define a data member by using the
appropriate relationship macro. This relationship macro defines the appropriate
access functions for getting and setting the relationship. You then instantiate the
bodies of these functions by using another macro. Because most of the access
functions have inline implementations, they incur negligible run-time overhead.

The relationship macros wrap a class around the data member; this adds no
additional storage to the data member. The wrapper simply implements the
functions to perform the inverse operations. The m side of a relationship is an
embedded collection that is 8 bytes. It mutates to an out-of-line representation
automatically upon the insertion of the first element.

Relationship Macros
There are four relationship member macros to choose from:

• os_relationship_1_1() — for one-to-one relationships

• os_relationship_1_m() — for one-to-many relationships

• os_relationship_m_1() — for many-to-one relationships

• os_relationship_m_m() — for many-to-many relationships

The corresponding function body macros are

• os_rel_1_1_body() — for one-to-one relationships

• os_rel_1_m_body() — for one-to-many relationships

• os_rel_m_1_body() — for many-to-one relationships
88 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
• os_rel_m_m_body() — for many-to-many relationships

Descriptions of all of these macros can be found in the C++ Collections Guide and
Reference.

Note that these macros always come in fours. Each use of a member macro to define
one side of a relationship must be paired with another member macro to define the
other side of the relationship, and each member macro must have a corresponding
body macro to provide the implementations for the relationship’s accessor functions.
This means that a one-to-many relationship member must also have a one-to-many
relationship body and a many-to-one inverse member, which itself must have a
many-to-one relationship body.

Macro Arguments
The member macros always have five arguments:

• Name of the class defining the member

• Name of the member

• Name of the class defining the inverse member

• Name of the inverse member

• Type signature of the member’s value

By scanning just the last argument and the member name, you can quickly grasp the
externally visible interface to the data member. For example:

os_relationship_1_m (person,employer,company,employees,
 company*) employer;

defines a company* employer data member, which is part of a relationship.

The function body macros have just four arguments. For each function body macro,
the arguments are the same as those of the corresponding member macro, but
without the last argument, as shown in the examples that follow.

Compiler
caution

The first four macro arguments are used (among other things) to concatenate unique
names for the embedded relationship class and its accessor functions. The details of
macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation works correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments. All the examples that follow adhere to this important
convention and should, therefore, work with any C++ compiler.

Relationship Examples
Example: Single-Valued Relationships

Consider an example in which a class node is defined that has single-valued inverse
relationship members next and previous (as in a node in a list structure). This uses
Release 6.3 89

Relationship Examples
the os_relationship_1_1 and os_rel_1_1_body macros. Note that both the simple
data member and relationship style of interfaces are supported automatically.

See the C++ Collections Guide and Reference for descriptions of the os_relationship_
1_1() and os_rel_1_1_body() macros.

/* C++ Note Program - Header File */

#include <fstream.h>
#include <string.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class author;

/* A simple class that records a note entered by the user. */
class note {

 public:
 /* Public Member functions */
 note(const char*, int);
 ~note();
 void display(ostream& = cout);
 static os_typespec* get_os_typespec();

 /* Public Data members */
 os_backptr bkptr;
 char* user_text;
 os_indexable_member(note,priority,int) priority;
 os_relationship_1_m(
 note,the_author,author,notes,author*)
 the_author;
};

#include <ostore/relat.hh>

class node {

 public:
 os_relationship_1_1(node,next,node,previous,node*) next;
 os_relationship_1_1(node,previous,node,next,
 node*) previous;
 node() {};
};

os_rel_1_1_body(node,next,node,previous);
os_rel_1_1_body(node,previous,node,next);

main() {
 OS_ESTABLISH_FAULT_HANDLER

 /* show the end users use of these relationships */
 objectstore::initialize();
 os_collection::initialize();

 node* n1 = new node();
 node* n2 = new node();
90 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
 n1->next = n2;

 /* this also automatically updates n2->previous */
 printf("n1 (%x) --> (%x)\n",
 n1, n1->next.getvalue());
 printf("n2 (%x) --> (%x)\n",
 n2, n2->previous.getvalue());

 OS_END_FAULT_HANDLER
}

Compiler
caution

While the simple data member style of access normally allows you to treat a single-
valued relationship as a normal pointer-valued data member in most situations, this
capability depends upon the operator=() (to set the value) and coercion operators
(to get the value). Thus, the following simple assignment,

n1->next = n2->next;

actually is interpreted by the C++ compiler as

n1->next.operator=(n2->next.operator node* ());

Example:
incorrect use of
the coercion
operator

The coercion operator operator node* () is used to get the value of the relationship
in the right-hand-side expression, and the assignment operator operator=() is used
to set the value of the relationship in the left-hand-side expression. Be aware that the
compiler only applies the coercion operator if it knows that the desired type of the
expression is a node* pointer. The following does not work correctly:

printf("The value of the relationship is %x \n", n1->next);

This does not work because printf() does not have prototype information for its
arguments, so the compiler does not know to apply a coercion. In this case, either of
the following would be a suitable alternative:

Example:
avoiding
coercion errors

printf("The value of the relationship is %x \n",
 n1->next.getvalue());

printf("The value of the relationship is %x \n",
 (node*)n1->next);

Example:
private
declarations of
relationships

The next example defines a class node as the previous one did, but presents to the
end user a functional-style interface. This is done exactly as before, except that the
relationships themselves are declared private so that the user cannot directly access
them by way of the simple data member or relationship styles of interfaces, and the
class definer writes simple inline member functions to extend a functional-style
interface instead. Note that in this example the two relationship members are
defined by the same class, node. This does not have to be the case. Even if they were
defined by different classes, node and arc for example, they could still be made
private because the relationship macros define the relationship implementation
classes as friends.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {
 private:
 os_relationship_1_1(node,next,node,previous,
Release 6.3 91

Relationship Examples
 node*) next;
 os_relationship_1_1(node,previous,node,next,
 node*) previous;
 public:
 node* get_next() {return next.getvalue();};
 void set_next(node* val) {next.setvalue(val);};

 node* get_previous() {
 return previous.getvalue();};
 void set_previous(node* val) {
 previous.setvalue(val);};
 node() {};
};

os_rel_1_1_body(node,next,node,previous);
os_rel_1_1_body(node,previous,node,next);

main() {
OS_ESTABLISH_FAULT_HANDLER

/* show the end users use of these relationships */
 objectstore::initialize();
 os_collection::initialize();
 node* n1 = new node();
 node* n2 = new node();

 n1->set_next(n2);
 /* this automatically also updates n2->prev */
 printf("n1 (%x) --> (%x)\n",n1, n1->get_next());
 printf("n2 (%x) --> (%x)\n",n2, n2->get_prev());

OS_END_FAULT_HANDLER
}

Example: Many-Valued Relationships
The os_rel_m_m_body and os_rel_m_1_body macros should not be used in
include files that are included in more than one source file used in a given
application. This is because these macros define the bodies for virtual functions.
Using these macros in a header file that is included in more than one place can result
in redundant definitions of the virtual table that is generated by the compiler to
implement virtual function calling.

See the C++ Collections Guide and Reference for descriptions of the os_rel_m_m_
body(), os_rel_m_1_body(), and os_relationship_m_m() macros.

Following is an example in which a class node is defined with a pair of many-to-
many relationships, ancestors and descendents (as in a node in a graph structure):

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {
 public:
 os_relationship_m_m(node,ancestors,node,descendents,
 os_collection) ancestors;
 os_relationship_m_m(node,descendents,node,ancestors,
 os_collection) descendents;
92 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
 node() {};
};

os_rel_m_m_body(node,ancestors,node,descendents);
os_rel_m_m_body(node,descendents,node,ancestors);

main() {
 OS_ESTABLISH_FAULT_HANDLER

 /* show the end users use of these relationships */
 objectstore::initialize(); os_collection::initialize();
 node* n1 = new node(); node* n2 = new node();
 n1->ancestors.insert(n2);
 /* this also updates n2->descendents */

 node* n;
 printf("n1 (%x)\n",n1);
 printf(" has %d descendents: ", n1->descendents->size ()); {
 os_cursor c(n1->descendents);
 for (n = (node*) c.first(); n; n = (node*) c.next())
 printf("(%x) ",n);
 printf("\n");
 }

 printf(" and %d ancestors: ", n1->ancestors->size ()) {
 os_cursor c(n1->ancestors);
 for (n = (node*) c.first(); n; n = (node*) c.next())
 printf("(%x) ", n);
 printf("\n");
 }

 printf("n2 (%x)\n",n2);
 printf(" has %d descendents: ",
 n2->descendents->size ()); {
 os_cursor c(n2->descendents);
 for (n = (node*) c.first(); n; n = (node*) c.next())
 printf("(%x) ", n);
 printf("\n");
 }

 printf(" and %d ancestors: ",
 n2->ancestors->size ()); {
 os_cursor c(n2->ancestors);
 for (n = (node*) c.first(); n; n = (node*) c.next())
 printf("(%x) ", n);
 printf("\n");
 }

OS_END_FAULT_HANDLER
}

Example: One-to-Many and Many-to-One Relationships
Following is an example in which a class node is defined that has a one-to-many
relationship, children, and a many-to-one inverse, parent (as in a node in a tree
structure).
Release 6.3 93

Relationship Examples
See C++ Collections Guide and Reference for descriptions of the os_relationship_1_
m(), os_relationship_m_1(), os_rel_1_m_body(), and os_rel_m_1_body()
macros.

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/relat.hh>

class node {
 public:
 os_relationship_1_m(node,parent,node,children,
 node*) parent;
 os_relationship_m_1(node,children,node,parent,
 os_collection) children;
 node() {};
};

os_rel_1_m_body(node,parent,node,children);
os_rel_m_1_body(node,children,node,parent);

main() {
 OS_ESTABLISH_FAULT_HANDLER

 /* show the end users use of these relationships */

 objectstore::initialize();
 os_collection::initialize();

 node* n1 = new node();
 node* n2 = new node();

 n1->children.insert(n2);
 /* this also updates n2->parent */
 /* NOTE: "n2->parent = n1;" would have had */
 /* identical effect */

 /* etc */

 OS_ESTABLISH_FAULT_HANDLER
}

Following is an example that illustrates a one-to-many relationship involving two
different classes:

#include <ostore/relat.hh>
class person {
 public:
 os_relationship_1_m(person,employer,company,
 employees, company*) employer;
 char* name;
};
class company {
 public:
 os_relationship_m_1(company,employees,person,
 employer, os_collection) employees;
 int gross_revenue;
};
os_rel_1_m_body(person,employer,company,employees);
os_rel_m_1_body(company,employees,person,employer);
94 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
Duplicates and Many-Valued Inverse
Relationships

For most kinds of ObjectStore relationships, an update to one side of the relationship
always triggers a corresponding update to the other side. This is true for the
following kinds of relationships:

• One-to-one relationships

• One-to-many relationships in which the collection involved does not allow
duplicates

• Many-to-many relationships in which the collections involved either both allow
duplicates or both disallow duplicates

For other relationships, an update to one side does not always trigger an update to
the other side.

The following example shows the way ObjectStore handles one-to-many
relationships in which the collection at the many end of the relationship allows
duplicates. It also shows the way ObjectStore handles many-to-many relationships
in which one of the collections involved allows duplicates and the other does not.

Suppose a complex part keeps track of the primitive parts it uses, as well as the
number of times each primitive part is used. (For example, a wheel might be a
primitive part and be used four times in a complex part like a car.) Suppose also that
each primitive part is used in only one complex part. This can be modeled with the
following classes:

Class
definitions

class complex_part {
 os_relationship_m_1(
 complex_part,
 components,
 primitive_part,
 used_by,
 os_Bag<primitive_part*>) components ;
}

class primitive_part {
 os_relationship_1_m(
 primitive_part,
 used_by,
 complex_part,
 components,
 complex_part*) used_by ;
}

Suppose that a certain primitive_part, a_wheel, is used by a particular complex_
part, the_car. If you do

a_wheel->used_by = 0;

ObjectStore removes all occurrences of a_wheel from the_car’s components
because setting used_by to 0 implies that the wheel is not used by the car at all.

Suppose you do
Release 6.3 95

Use of Parameterized Types
the_car->components.remove(a_wheel)

If the car uses four wheels at first, afterward it uses three wheels. a_wheel->used_
by still points to the car because the car still uses the wheel at least once.

Now suppose each primitive part can be used by multiple complex parts.

class complex_part {
 os_relationship_m_1(
 complex_part,
 components,
 primitive_part,
 used_by,
 os_Bag<primitive_part*>
) components ;
}

class primitive_part {
 os_relationship_1_m(
 primitive_part,
 used_by,
 complex_part,
 components,
 os_Set<complex_part*>
) used_by ;
}

And suppose you do

a_wheel->used_by.remove(the_car);

This causes all occurrences of a_wheel to be removed from the_car’s components
because it implies that the wheel is not used by the car at all.

If you do

the_car->components.remove(a_wheel);

ObjectStore removes the_car from the wheel’s used_by set only if it removes the last
occurrence of the wheel from the car’s components, that is, only if the car no longer
uses the wheel at all.

Use of Parameterized Types
Relationships can be used either with or without a compiler that supports
parameterized types. All the previous examples were written without the use of
parameterization. In the case of many-valued relationships, you can obtain a greater
degree of type safety by using a parameterized collection type. This is accomplished
by changing the last parameter to the relationship member macro (recall that the last
parameter always indicates the type of the value). For example:

Example class node {
 public:
 os_relationship_m_m(node,ancestors,node,descendents,
 os_Collection<node*>) ancestors;
 os_relationship_m_m(
 node,descendents,node,ancestors,
96 Advanced C++ A P I User Guide

Chapter 4: Data Integrity
 os_Collection<node*>) descendents;
 node() {};
};

os_rel_m_m_body(node,ancestors,node,descendents);
os_rel_m_m_body(node,descendents,node,ancestors);

In this case, the functions that perform a get value (that is, getvalue()) and the
coercion operator return an os_Collection<node*>& rather than an os_
collection& only.

Deletion Propagation and Required
Relationships

By default, deleting an object that participates in a relationship automatically
updates the other side of the relationship so that there are no dangling pointers to the
deleted object. In some cases, however, the desired behavior is actually to delete the
object on the other side of the relationship (for example, for subsidiary component
objects). You can obtain this behavior by using the relationship body macros:

• os_rel_1_1_body_options()

• os_rel_1_m_body_options()

• os_rel_m_1_body_options()

• os_rel_m_m_body_options()

(Descriptions of all these macros can be found in the C++ Collections Guide and
Reference.)

These macros are like the body macros already discussed, except that they have three
extra arguments, used for specifying various options. The fifth argument (the first
extra argument) can be either os_rel_propagate_delete or os_rel_dont_
propagate_delete, as in

Example os_rel_m_1_body_options(part,subparts,part,container,
 os_rel_propagate_delete, os_auto_index, os_no_index)

The last two arguments are used to indicate whether the current member and its
inverse are indexable. These are described in the next section.
Release 6.3 97

Indexable Inverse Members
Indexable Inverse Members
If you want automatic index maintenance enabled for an inverse data member, you
must use one of the options body macros:

• os_rel_1_1_body_options()

• os_rel_1_m_body_options()

• os_rel_m_1_body_options()

• os_rel_m_m_body_options()

(Descriptions of all these macros can be found in the C++ Collections Guide and
Reference.)

These macros are like the body macros discussed earlier, except that they have three
extra arguments used for specifying various options.

The sixth and seventh arguments (the second and third extra arguments) are used to
specify whether the current member and its inverse, respectively, are indexable. For
nonindexable members, use os_no_index. For indexable members, use a call to the
macro os_index(), indicating the name of the defining class’s os_backptr member.
Such macro calls have the form

Form of the call os_index(class,member)

where class is the name of the class defining the indexable member and member is
the name of the os_backptr-valued data member appearing before indexable
members of the class. Following is an example:

Example os_rel_m_1_body_options(part,subparts,part,container,
 os_propagate_delete,
 os_auto_index, os_index(part,b))

Many-valued members that have an inverse need not be indexable to be used in a
path. For an indexable many-valued relationship, specify os_auto_index.
98 Advanced C++ A P I User Guide

Chapter 5
Metaobject Protocol

The information about metaobject protocol (MOP) is organized in the following
manner:

Metaobject Protocol (MOP) Overview 100

MOP Header Files 100

Attributes of MOP Classes 100

Schema Read Access Compared to Schema Write Access 102

Schema Consistency Requirements 103

Retrieving an Object Representing the Type of a Given Object 103

Retrieving Objects Representing Classes in a Schema 104

The Transient Schema 106

Using MOP for Schema Installation and Evolution 108

The Metatype Hierarchy 109

Class os_type 110

Class os_integral_type 114

Class os_real_type 115

Class os_class_type 116

Class os_base_class 123

Class os_member 126

Class os_member_variable 129

Class os_relationship_member_variable 131

Class os_field_member_variable 133

Class os_access_modifier 134

Class os_enum_type 135

Class os_enumerator_literal 136

Class os_void_type 137

Class os_pointer_type 137

Class os_reference_type 138

Class os_pointer_to_member_type 139

Class os_indirect_type 140

Class os_named_indirect_type 141

Class os_anonymous_indirect_type 142
Release 6.3 99

Metaobject Protocol (MOP) Overview
Class os_array_type 143

Fetch and Store Functions 144

Type Instantiation 146

Example: Schema Read Access 146

Example: Dynamic Type Creation 157

Metaobject Protocol (MOP) Overview
The ObjectStore metaobject protocol (MOP) is a library of classes that allows you to
access ObjectStore schema information. Schema information for ObjectStore
databases and applications is stored in the form of objects that represent C++ types.
These objects are actually instances of ObjectStore metatypes, so called because they
are types whose instances represent types. Every object representing a type is an
instance of a subtype of the metatype os_type. For example, objects representing
classes (as opposed to built-in types such as int) are instances of os_class_type,
which is derived from os_type. (See the hierarchy diagram in The Metatype
Hierarchy on page 109).

There are several classes in the metaobject protocol whose instances represent
schema objects other than types, such as os_base_class and os_member and its
subtypes. These auxiliary classes are part of the MOP but are not metatypes and are
not, therefore, part of the metatype hierarchy. Descriptions of these auxiliary classes
begin at Class os_type on page 110.

In addition to telling you the way to perform run-time read access to ObjectStore
application, compilation, and database schemas, this chapter explains the way to
create classes dynamically and add them to ObjectStore database schemas.

MOP Header Files
Programs using the metaobject protocol must include <ostore/ostore.hh>,
followed by <ostore/coll.hh> (if a collection is being used), followed by
<ostore/mop.hh>.

Attributes of MOP Classes
It is useful to think of classes in the MOP as having attributes, that is, pieces of abstract
state that you can access by using create, get, and set functions.

You initialize an attribute with a create function. You perform read access on an
attribute with a get function. You update an attribute with a set function. Most of the
functions in the MOP are create, get, or set functions, members of the class whose
state they access.
100 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Consider, for example, the class os_class_type, whose instances represent C++
classes. Following is a diagram showing its attributes:

Each arrow represents an attribute and points to the type of values the attribute has.
The arrow’s label is the name of the corresponding attribute. The attribute name, for
example, is string valued. Double arrows indicate a multivalued attribute. For
example, the attribute members has zero or more os_members as its values. These
values, for a given instance of os_class_type, each represent a member of the class
represented by the given os_class_type.

Key to arrow
shades

The shade of the arrows used throughout this chapter indicates the type of access to
the corresponding attribute that is supported. The darkest arrows correspond to
attributes with create, get, and set functions. The arrows of medium shade
correspond to attributes with get and set functions. The lightest arrows correspond
to attributes with get functions only.

create() function
for MOP classes

The create function (or functions) for each class is called create() and is used to
create instances of the class. The get and set functions for each attribute have names
based on the attribute name, as follows. For attributes that are not Boolean valued,
the functions are

• get_attribute-name()

• set_attribute-name()

For Boolean-valued attributes, the get and set functions are, respectively,

• attribute-name()

• set_attribute-name()

os_class_type os_booleanchar*

os_class_kind

os_member

is_forward_definition

is_persistentname

class_kind

members

os_base_class

base_classes

is_template_class

declares_get_os_typespec_function

defines_virtual_functions

create, set and get

set and get

get
Release 6.3 101

Schema Read Access Compared to Schema Write Access
Schema Read Access Compared to Schema
Write Access

Many applications that use the MOP perform only read access on schema
information. A browser application, for example, might allow viewing of schema
information but never perform updates to schemas. Such an application would not
use create or set functions.

Schema Read Access
Read access to schema information always starts in one of two ways:

• By looking up a schema object by name in an application, compilation, or database
schema

• By retrieving the class of which a specified object is an instance

In either case, a pointer to a const object is returned. Other schema objects are the
result of performing get functions on these initial const objects (and the result of
performing get functions on these results, and so on). For class-valued attributes,
these get functions, in turn, return pointers or references to const objects. Because
set functions take only non-const this arguments, direct updates to application,
compilation, and database schemas are prevented (assuming that you use no explicit
casts to non-const).

Schema Write Access
To update a database schema, you must first construct, in the transient schema, the
classes you want to modify or add to the database schema (see The Transient Schema
on page 106). Then you perform installation or evolution on the schema you want to
update, specifying the classes in the transient schema as input to the installation or
evolution process (see Using MOP for Schema Installation and Evolution on
page 108).

Creating a
transient
schema

Creating classes in the transient schema always starts in one of two ways:

• By invoking a create() function

• By copying a class from an application, compilation, or database schema into the
transient schema and then looking up the class by name in the transient schema
(see The Transient Schema on page 106)

In either case, a reference or pointer to a non-const object is returned. The get
functions, when performed on non-const objects, return non-const objects. This is
because, except for get functions that return built-in types, get functions come in
pairs:

• const attribute-value-type &get_attribute-name() const ;
• attribute-value-type &get_attribute-name() ;

or

• const attribute-value-type *get_attribute-name() const ;
102 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
• attribute-value-type *get_attribute-name() ;

Schema Consistency Requirements
Constraints on
database
schemas

Schema objects in a database schema must meet certain consistency requirements
that can be (temporarily) violated by objects in the transient schema. For example, in
a database schema, if an os_class_type, c, has an os_member, m, as a value of the
attribute members, then m must have c as the value for its attribute defining_class.

Flexibility of
database
schemas

To allow flexibility in the construction of schemas, the transient schema has no such
restrictions. Therefore, you can, for example, create an os_member without first
specifying the class that defines it. However, before using classes in the transient
schema as input to installation or evolution, you should ensure that the consistency
requirements are met. ObjectStore checks such an input for consistency before
modifying a database schema and signals err_mop if any requirements are not met.

In the MOP interface, pointer arguments to create and set functions generally
indicate that 0 is an acceptable initial value for the argument’s corresponding
attribute; if 0 is not an acceptable value, a reference (&) argument is used instead of a
pointer argument. Note, however, that a nonnull value for the attribute might have
to be supplied before installation or evolution to meet the consistency requirements.

For an attribute that must have a nonnull value to meet the consistency
requirements, the get functions return a reference type (unless they return a built-in
type). When performed on an object that does not yet have a nonnull value for the
attribute, such a get function returns an unspecified object (see is_unspecified()
function on page 113).

For an attribute that might have a null value and still meet the consistency
requirements, the get functions return a pointer type (unless they return a built-in
type).

Retrieving an Object Representing the Type
of a Given Object
type_at() Function

You can retrieve an instance of os_type that represents the type of a given persistent
object by passing the object’s address to the static member function os_type::type_
at(). This function is declared as follows:

Declaration static const os_type *type_at(const void *p) ;

Note that p must point to persistent memory.

For pointers that point to the beginning of more than one object (that is, pointers that
point to collocated objects), this function returns the type of the outermost object. For
example, consider a pointer typed as a part* that points to a direct instance of
Release 6.3 103

Retrieving Objects Representing Classes in a Schema
mechanical_part, derived from part; and suppose that part has no base types.
Passing this pointer to type_at() results in an os_type representing the class
mechanical_part, unless the object is embedded as a data-member value in the
initial bytes of some other object, in which case the function returns an os_type
representing the other object.

Example Following is an example of the function’s use:

f () {
part *p = ... ;
. . .
const os_type *t = os_type::type_at(p);
. . .
}

type_containing() Function
You can also retrieve the type of the outermost object containing a given persistent
object, using os_type::type_containing().

Declaration static const os_type *type_containing(
 const void *p,
 const void*& p_container,
 os_unsigned_int32& element_count
);

Unlike type_at(), the object whose type is returned does not necessarily begin at
the specified address; that is, the argument p might point to a subobject or data-
member value embedded in the middle of the object whose type is returned.

The address of the object whose type is returned, the outermost object containing the
specified object, is referred to by p_container when the function returns.

Arrays are handled specially by type_containing(). If the outermost containing
object is an array, the element type of the array is returned, and element_count is
set to refer to the array’s size. If the containing object is not an array, element_count
is set to 0.

Retrieving Objects Representing Classes in a
Schema

ObjectStore schemas are represented by instances of classes derived from os_
schema.

os_app_schema os_database_schema

os_schema

os_comp_schema
104 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Instances of these classes represent ObjectStore schemas.

Retrieving
database
schema

You can retrieve the compilation, application, or database schema in a given
database with the static member functions os_comp_schema::get(), os_app_
schema::get(), and os_database_schema::get().

static const os_app_schema &os_app_schema::get(
 const database& db);

static const os_comp_schema &os_comp_schema::get(
 const database& db);

static const os_database_schema &os_database_schema::get(
 const database& db);

Retrieving
application
schema

You can also retrieve the application schema for the current application with

static const os_app_schema &os_app_schema::get();

Retrieving
classes in a
given schema

You can retrieve objects representing the classes in a given schema with os_
schema::get_classes().

os_Collection<const os_class_type*>
 os_schema::get_classes() const;

You can also retrieve the class with a given name in a given schema with os_
schema::find_type().

const os_type *os_schema::find_type(
 const char* type_name) const;

Retrieving class
types

You can retrieve the os_class_types in a given compilation schema as follows. The
examples in this chapter use the parameterized collection classes; if your compiler
does not support class templates, use the nonparameterized collection classes
instead.

f () {
 os_database *my_db =
 os_database::open("/foo/bar/comp_schema");

 os_Collection<const os_class_type*> the_classes =
 os_comp_schema::get(*my_db).get_classes();
. . .
}

You can retrieve the os_class_types in a given application schema in the following
way:

f () {
 os_database *my_db =
 os_database::open("/foo/bar/app_schema");

 os_Collection<const os_class_type*> the_classes =
 os_app_schema::get(*my_db).get_classes();
. . .
}

You can retrieve the types in a database schema in the following way:

f () {
 os_database *my_db = os_database::open("/foo/bar/db1");
Release 6.3 105

The Transient Schema
 os_Collection<const os_class_type*> the_classes =
 os_database_schema::get(*my_db).get_classes();
 . . .
}

Finally, you can retrieve the class with a given name in a given schema in the
following way:

f () {
 os_database *my_db = os_database::open("/foo/bar/db1");

 const os_type *the_type =
 os_database_schema::get(*my_db).find_type("part");
 . . .
}

See the entries for the classes os_schema, os_comp_schema, os_app_schema, and os_
database_schema in Chapter 2 of the C++ A P I Reference.

The Transient Schema
The MOP lets you programmatically update a database’s schema. All modification
of database schemas, however, is mediated by the transient schema. As described
earlier, to update a database schema, you must first construct, in the transient
schema, the classes you want to modify or add to the database schema. Then you
perform installation or evolution on the database schema, specifying the classes in
the transient schema as input to the installation or evolution process.

Initializing the Transient Schema with initialize()
Before using the transient schema, you must always call os_mop::initialize().

static void initialize() ;

Recall that creating classes in the transient schema always starts in one of two ways:

• By invoking a create() function

• By copying a class from an application, compilation, or database schema into the
transient schema and then looking up the class by name in the transient schema

Copying into the Transient Schema with copy_classes()
To copy classes from a schema into the transient schema, you use the static member
function os_mop::copy_classes().

static void copy_classes(
 const os_schema &schema,
 os_Set<const os_class_type*> &classes
) ;

The first argument is the schema containing the classes to be copied and the second
argument is a set of pointers to the classes to be copied. Thus, before calling this
function, you must perform these steps:
106 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Preparation for
the copy
operation

1 Retrieve the schema from which you want to copy classes. For example, the
following retrieves the application schema for the current application:

 const os_app_schema &the_app_schema =
 os_app_schema::get() ;

2 Before calling copy_classes(), you must create a set to hold the pointers to the
classes you want to copy:

 os_Set<const os_class_type*>
 to_be_copied_to_transient_schema ;

3 For each class you want to copy, follow these steps:

a Look up the class to be copied. For example, the following finds the class os_
collection in the application schema:

 const os_type *the_const_type_os_collection =
 the_app_schema.find_type("os_collection") ;

b The function find_type() can return 0, so check the result:

 if (!the_const_type_os_collection)
 error("Could not find the type os_collection in \
 the app schema") ;

c Dereference the result of find_type() and convert it from a const os_type&
to a const os_class_type&:

 const os_class_type *the_const_class_os_collection =
 *the_const_type_os_collection ;

d Insert the class into the set:

 to_be_copied_to_transient_schema |=
 the_const_class_os_collection ;

4 After this is finished for each class you want to copy, you are ready to call copy_
classes():

 os_mop::copy_classes(
 the_app_schema,
 to_be_copied_to_transient_schema
) ;

Looking Up a Class in the Transient Schema with find_type()
After you copy a class into the transient schema, you can look it up by name in the
transient schema with os_mop::find_type().

static os_type *find_type(const char *name) ;

Note that os_mop::find_type(), unlike os_schema::find_type(), returns a
pointer to a non-const os_type. This means you can modify the os_type by
performing set functions on it, and you can retrieve other modifiable objects by
performing get functions on it. You can also make other objects in the transient
schema refer to the os_type.

For example, if you do

os_type *the_non_const_type_os_collection =
 os_mop::find_type("os_collection") ;
Release 6.3 107

Using MOP for Schema Installation and Evolution
you can then create a collection-valued data member (see Class os_member_variable
on page 129):

assert (the_non_const_type_os_collection) ;

os_member_variable &new_member =
 os_member_variable::create(
 member_name,
 the_non_const_type_os_collection
) ;

Using MOP for Schema Installation and
Evolution
 To install classes from the transient schema into a database schema, you use the

function os_database_schema::install().

void install(os_schema &new_schema) ;

 The actual argument should be a reference to the transient schema. You can retrieve
such a reference with os_mop::get_transient_schema().

static os_schema &get_transient_schema() ;

 The this argument is a pointer to the schema you want to modify. Notice that the
install() function cannot take a const this argument. Thus, you cannot use os_
database_schema::get() to retrieve the schema to be modified. Instead, you use
os_database_schema::get_for_update(), which takes a const database&
argument.

static os_database_schema &get_for_update(
 const os_database& db)

So a call to install() might look like

os_database_schema::get_for_update(*db).install(
 os_mop::get_transient_schema()
) ;

To specify nondefault installation behavior, you can use the alternate overloading of
os_database_schema::install() that takes an os_schema_install_options
argument.

void install(os_schema &new_schema,
 os_schema_install_options
) ;

See os_schema_install_options in Chapter 2 of the C++ A P I Reference for a
description of the specific installation options available.

The os_schema_install_options argument allows you to control whether
member functions are copied into the database schema during installation. The
default behavior is to not copy member functions.

 If you want to modify a database schema in a way that requires evolution, you
should use os_schema_evolution::evolve() rather than install().
108 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
static void evolve(
 const char *workdb_name,
 const char *database_name,
 os_schema &new_schema
) ;

The new_schema argument should be the transient schema. Thus, a call to evolve()
might look like

static void evolve(
 "/example/workdb",
 "/example/partsdb",
 os_mop::get_transient_schema()
) ;

The Metatype Hierarchy
All the types in the C++ type system can be divided into the following categories:
class types, integer types, real types, enumeration types, array types, pointer types,
function types, and the type void. For each of these categories, there is a subclass of
os_type in the metatype hierarchy.

os_
instantiated_
class_type

The class os_instantiated_class_type, derived from os_class_type, represents
the category of template class instantiations. (The class os_Collection<part*>, for
example, is an instantiation of the template class os_Collection.)

How different
types are
represented

Pointer types, such as void* and part*, are represented by direct instances of os_
pointer_type. Reference types, such as part&, are represented by instances of os_
reference_type, derived from os_pointer_type. Pointer-to-member types are
represented by instances of os_pointer_to_member_type, which is also derived
from os_pointer_type.

os_type

os_integral_type os_void_type

os_function_type

os_array_type

os_indirect_type

os_pointer_type

os_named_indirect_type

os_anonymous_indirect_type

os_pointer_to_member_typeos_reference_type

os_instantiated_class_type

os_class_type

os_enum_type

os_real_type
Release 6.3 109

Class os_type
Types with const or volatile specifiers are represented by instances of os_
anonymous_indirect_type and typedefs are represented by instances of os_
named_indirect_type.

All the classes in the metatype hierarchy are documented in Chapter 2, Class Library,
of the C++ A P I Reference. Note that these are not all the types in the metaobject
protocol. There are several classes in the metaobject protocol whose instances
represent schema objects other than types, such as os_base_class (see Class os_
base_class on page 123), and os_member and its subtypes (see Class os_member on
page 126). The rest of this chapter contains a section on each class in the protocol.

Class os_type
The following diagram shows the attributes of the class os_type. Each arrow
represents an attribute and points to its value type. As described in “Key to arrow
shades” on page 101 the darkest arrows have corresponding set functions, get
functions, and create arguments. The medium arrows have corresponding set
functions and get functions. The lightest arrows have corresponding get functions
only.

See os_type in Chapter 2 of the C++ A P I Reference for a complete description of this
class.

Attributes

create() Function
The os_type class defines no create() functions. You always create an instance of
os_type by using a create function defined by one of the subtypes of os_type.

kind Attribute
The kind of an os_type is an enumerator indicating what kind of type is represented
by the os_type. The enumerators are

enclosing_class

os_type

os_type_kind

char*

char*

os_boolean

os_class_type

is_real_type

is_integral_type

is_volatile

is_const

kind_string

string

kind
110 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
kind
enumerators

• os_type::Void

• os_type::Named_indirect

• os_type::Anonymous_indirect

• os_type::Char

• os_type::Unsigned_char

• os_type::Signed_char

• os_type::Unsigned_short

• os_type::Signed_short

• os_type::Integer

• os_type::Unsigned_integer

• os_type::Signed_long

• os_type::Unsigned_long

• os_type::Float

• os_type::Double

• os_type::Long_double

• os_type::Pointer

• os_type::Reference

• os_type::Pointer_to_member

• os_type::Array

• os_type::Class

• os_type::Instantiated_class

• os_type::Enum

• os_type::Function

• os_type::Type

Finding the kind
of an os_type
with get_kind()

The function os_type::get_kind() returns the kind of the specified os_type.

os_type_kind get_kind() const ;

Given an object typed as an os_type, you can use get_kind() to determine the
subtype of os_type that the object is an instance of. Then you can convert the object
to that subtype by using the type-safe conversion operators. See Type-Safe
Conversion Operators on page 113.

Retrieving the kind_string Attribute
There is a static member function that returns the name of a given os_type_kind:

static const char *get_kind_string(os_type_kind) ;

For example, os_type::get_kind_string(os_type::Class) returns Class.
Release 6.3 111

Class os_type
Retrieving the string Attribute
The function os_type::get_string() returns a new string that contains an
expression designating the specified type (such as part or const part).

char *get_string() const ;

Note that this function allocates the returned string on the heap, so you should delete
it when it is no longer needed.

Determining an os_type’s Type and Status
is_const()
function

The function os_type::is_const() returns nonzero if the specified os_type is an
os_anonymous_indirect_type representing a const type (such as const char*).
Returns 0 otherwise.

os_boolean is_const() const ;

is_volatile()
function

The function os_type::is_volatile() returns nonzero if the specified os_type is
an os_anonymous_indirect_type representing a volatile type (such as volatile
short). Returns 0 otherwise.

os_boolean is_volatile() const ;

is_integral_
type() function

The function os_type::is_integral_type() returns nonzero if the specified os_
type is an instance of os_integral_type (such as one representing the type
unsigned int). Returns 0 otherwise.

os_boolean is_integral_type() const ;

is_real_type()
function

The function os_type::is_real_type() returns nonzero if the specified os_type is
an instance of os_real_type (such as one representing the type long double).
Returns 0 otherwise.

os_boolean is_real_type() const ;

enclosing_
class() function

If a class’s definition is nested within that of another class, this other class is the
enclosing class of the nested class.

There is a pair of get_enclosing_class() get functions, one taking const this
and returning a const os_class_type*, and one taking non-const this and
returning an os_class_type*.

• const os_class_type *get_enclosing_class() const ;

• os_class_type *get_enclosing_class() ;

The function returns 0 if there is no enclosing class.

strip_indirect_
types() function

There are also two os_type::strip_indirect_types() functions, declared as
follows:

• const os_type &strip_indirect_types() const ;

• os_type &strip_indirect_types() ;

For types with const or volatile specifiers, this function returns the type being
specified as const or volatile. For example, if the specified os_type represents the
type const int, strip_indirect_types() returns an os_type representing the
112 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
type int. If the specified os_type represents the type char const * const, strip_
indirect_types() returns an os_type representing the type char const *.

For typedefs, this function returns the original type for which the typedef is an
alias.

This function calls itself recursively until the result is not an os_indirect_type.
Consider, for example, an os_named_indirect_type representing

typedef const part const_part

The result of applying strip_indirect_types() to this is an os_class_type
representing the class part (not an os_anonymous_indirect_type representing
const part, which would be the result of os_indirect_type::get_target_
type()).

is_unspecified()
function

Some os_type-valued attributes in the MOP are required to have values in a
consistent schema but might lack values in the transient schema, before schema
installation or evolution is performed. The get function for such an attribute returns
a reference to an os_type or os_class_type. The fact that a reference rather than a
pointer is returned indicates that the value is required in a consistent schema.

In the transient schema, if such an attribute lacks a value (because you have not yet
specified it), the get function returns the unspecified type. This is the only os_type
for which the following predicate returns nonzero:

os_boolean is_unspecified() const ;

Type-Safe Conversion Operators
The class os_type also defines conversion operators for converting an os_type& to
a reference to any of the subtypes of os_type:

• operator os_void_type&() ;

• operator os_named_indirect_type&() ;

• operator os_anonymous_indirect_type&() ;

• operator os_integral_type&() ;

• operator os_real_type&() ;

• operator os_pointer_type&() ;

• operator os_reference_type&() ;

• operator os_pointer_to_member_type&() ;

• operator os_array_type&() ;

• operator os_class_type&() ;

• operator os_instantiated_class_type&() ;

• operator os_enum_type&() ;

• operator os_function_type&() ;

The existence of these operators allows you to supply an expression of type os_type
or os_type& as the actual parameter for a formal parameter of type, for example, os_
integral_type& — if the designated os_type is actually an instance of os_
Release 6.3 113

Class os_integral_type
integral_type. If it is not, err_mop_illegal_cast is signaled. Each of these
operators is type safe in the sense that err_mop_illegal_cast is always signaled if
it is used to perform an inappropriate conversion.

There are also conversion operators for converting a const os_type& to a const
reference to any of the subtypes of os_type:

• operator const os_void_type&() const ;

• operator const os_named_indirect_type&() const ;

• operator const os_anonymous_indirect_type&() const ;

• operator const os_integral_type&() const ;

• operator const os_real_type&() const ;

• operator const os_pointer_type&() const ;

• operator const os_reference_type&() const ;

• operator const os_pointer_to_member_type&() const ;

• operator const os_array_type&() const ;

• operator const os_class_type&() const ;

• operator const os_instantiated_class_type&() const ;

• operator const os_enum_type&() const ;

• operator const os_function_type&() const ;

Class os_integral_type
Instances of this class represent one of the following types:

• int

• unsigned int

• short

• unsigned short

• long

• unsigned long

• char

• signed char

• unsigned char

See os_integral_type in Chapter 2 of the C++ A P I Reference for a complete
description of this class.
114 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Attribute This class defines one attribute, is_signed:

create() Functions
The os_integral_type class has several create() functions for the various kinds
of integer types:

• static os_integral_type &create_signed_char() ;

• static os_integral_type &create_unsigned_char() ;

• static os_integral_type &create_defaulted_char(
 os_boolean is_signed) ;

• static os_integral_type &create_short(os_boolean is_signed);

• static os_integral_type &create_int(os_boolean is_signed) ;

• static os_integral_type &create_long(os_boolean is_signed) ;

Determining a Signed Type with is_signed()
The following function can be used to determine whether the specified type is
signed:

os_boolean is_signed() const ;

Class os_real_type
Instances of this class represent one of the following types:

• float

• double

• long double

See os_real_type in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

create() Functions
The class os_real_type has three create() functions, one for each of the real types
listed previously.

• static os_real_type &create_float() ;

• static os_real_type &create_double() ;

is_signed

os_boolean

os_integral_type
Release 6.3 115

Class os_class_type
• static os_real_type &create_long_double() ;

Class os_class_type
An instance of os_class_type represents a C++ class. In addition to classes declared
with the keyword class, structs and unions are also represented by instances of
os_class_type.

See os_class_type in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

Attributes The diagram shows some of the important pieces of abstract state associated with the
class os_class_type. Each arrow represents a piece of state and points to its value
type. In the case of double arrows, the value type is an os_List, and the type pointed
to by the arrow is the element type of the os_List.

create() Functions
The class os_class_type has two overloadings of the create() function. The first
overloading is

static os_class_type &create(const char *name) ;

The argument specifies the initial value for the name attribute. The initial values for
the remaining attributes are as follows:

os_class_type os_booleanchar*

os_class_kind

os_member

is_forward_definition

is_persistentname

class_kind

members

os_base_class

base_classes

is_template_class

declares_get_os_typespec_function

defines_virtual_functions

Attribute Value

base_classes empty os_List<os_base_class*>

members empty os_List<os_member*>

defines_virtual_functions 0

class_kind os_class_type::Class

defines_get_os_typespec_function 0

is_template_class 0
116 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
The second overloading allows specification of more attribute initial values:

static os_class_type &create(
 const char *name ,
 const os_List<os_base_class*> &base_classes ,
 const os_List<os_member*> &members ,
 os_boolean defines_virtual_functions
) ;

The arguments specify the initial values for the attributes name, base_classes,
members, and defines_virtual_functions. The initial values for the remaining
attributes are as follows:

name Attribute
Getting the
attribute

The name of the class represented by a given instance of os_class_type is returned
by the following function:

const char *get_name() const ;

The returned value points to the beginning of the persistent character array holding
the class’s name.

Setting the
attribute

With the following function you can specify a new character string to serve as a
class’s name:

void set_name(const char* class_type) ;

class_kind Attribute
The value of class_kind for a given os_class_type is an enumerator that indicates
the kind of class specified. The enumerators follow:

class_kind
enumerators

• os_class_type::Class: for a class declared with the keyword class

• os_class_type::Struct: for a struct

• os_class_type::Union: for a named union

• os_class_type::Anonymous_union: for an anonymous union

Getting the
attribute

You can get the class_kind with

is_persistent 0

is_forward_definition 1

Attribute Value

class_kind os_class_type::Class

defines_get_os_typespec_function 0

is_template_class 0

is_persistent 0

is_forward_definition 0

Attribute Value
Release 6.3 117

Class os_class_type
os_unsigned_int32 get_class_kind() const ;

Setting the
attribute

You can set it with

void set_class_kind(os_unsigned_int32) ;

members Attribute
With the MOP, the members (both data members and member functions) of a class
are sometimes manipulated as a group, using an ObjectStore list of either of the
following types:

• os_List<os_member*>

• os_List<const os_member*>

Each instance of os_member represents a member of the class (see Class os_member
on page 126). The order of elements in the os_List signifies the declaration order of
the members.

Getting the
attribute

You can retrieve a list of the members of a specified class by using the following
functions:

• os_List<os_member*> get_members() ;

• os_List<const os_member*> get_members() const ;

These functions signal err_mop_forward_definition if the value of is_forward_
definition is nonzero for the specified os_class_type.

Setting the
attribute

You can specify the members of a class by using

void set_members(const os_List<os_member*>&) ;

This replaces the members of the specified class with the specified members.

You can also initialize the members of a class by using a create() function; see
create() Functions on page 116.

os_base_class Objects
As with members, the os_base_class objects associated with a class are sometimes
manipulated as a group. The list has one of the following two types:

• os_List<os_base_class*>

• os_List<const os_base_class*>

Each instance of os_base_class represents the derivation of one class from another
(see Class os_base_class on page 123). The order of elements in the os_List signifies
the declaration order of the base classes involved.

Retrieving the
objects

You can retrieve a list of the os_base_class objects for a specified class by using the
following functions:

• os_List<os_base_class*> get_base_classes() ;

• os_List<const os_base_class*> get_base_classes() const ;
118 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
These functions signal err_mop_forward_definition if the value of is_forward_
definition is nonzero for the specified os_class_type.

Specifying the
objects

You can specify the os_base_class objects for a class by using

void set_base_classes(const os_List<os_base_class*>&) ;

This replaces the os_base_class objects for the specified class with the specified os_
base_class objects.

Initialization You can also initialize the os_base_class objects for a class by using a create()
function; see create() Functions on page 116.

declares_get_os_typespec_function() Function
You can determine whether a given class declares a get_os_typespec() member
function with

os_boolean declares_get_os_typespec_function() const ;

which returns nonzero if the class does declare such a member function, and 0
otherwise.

set_declares_get_os_typespec_function() Function
You can specify that a given class declares a get_os_typespec() member function
with

void set_declares_get_os_typespec_function(os_boolean) ;

If you supply 1, the class declares such a member function; if you supply 0, it does
not.

defines_virtual_functions Attribute
The value of this attribute for a given class is nonzero if and only if the class has a
field for a pointer to a virtual function table. This value is never computed based on
the functions in members. It is 0 by default, and nonzero only if so initialized or set
by the user.

When you attempt to install a class in a schema, if a function in members is virtual,
defines_virtual_functions must be nonzero, otherwise installation fails.

Getting the
attribute

You can retrieve this value with the following function:

os_boolean defines_virtual_functions() const ;

Setting the
attribute

You can set this attribute with

void set_defines_virtual_functions(os_boolean) ;

Initialization You also can initialize defines_virtual_functions by using a create() function;
see create() Functions on page 116.

introduces_virtual_functions Attribute
The value of this attribute for a given class is nonzero if the class defines a virtual
function but does not inherit any virtual functions.
Release 6.3 119

Class os_class_type
Getting the
attribute

You can retrieve this value with the following function:

os_boolean introduces_virtual_functions() const ;

Setting the
attribute

You can set this attribute with

void set_introduces_virtual_functions(os_boolean) ;

is_forward_definition Attribute
Sometimes a class, C, appears in a schema only as a forward definition because some
other class uses the type C* in its definition (or uses some other pointer type
involving C) but a full-fledged definition for C is not required. For such a class, is_
forward_definition is nonzero.

Getting the
attribute

You can get the value of this attribute with

os_boolean is_forward_definition() const ;

Setting the
attribute

You can set this attribute with

void set_is_forward_definition(os_boolean) ;

is_persistent Attribute
To be installed in a database schema, a class must either be persistent (that is, have a
nonzero (true) value for this attribute) or be reachable from a persistent class.
Making a class persistent is similar to marking it with OS_MARK_SCHEMA_TYPE().

Getting the
attribute

You can get the value of this attribute with

os_boolean is_persistent() const ;

Setting the
attribute

You can set it with

void is_persistent(os_boolean) ;

Finding the Nonvirtual Base Class with find_base_class()
The following functions return the os_base_class representing the derivation of
this from the nonvirtual base class with the specified name.

• const os_base_class *find_base_class(const char *name) const;

• os_base_class *find_base_class(const char *name) ;

The functions return 0 if there is no such base class and signal err_forward_
definition if this is a forward definition.

Finding Base Classes from Which this Inherits with
get_allocated_virtual_base_classes()

The get_allocated_virtual_base_classes() function returns the following base
classes from which this inherits:

• os_List<const os_base_class*>

• get_allocated_virtual_base_classes() const ;

• os_List<os_base_class*> get_allocated_virtual_base_classes();
120 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
The function returns 0 if there are no such base classes and signals err_forward_
definition if this is a forward definition.

Finding Classes from Which this Indirectly Inherits with
get_indirect_virtual_base_classes()

The get_indirect_virtual_base_classes() function returns the following base
classes from which this indirectly and virtually inherits:

• os_List<const os_base_class*>
 get_indirect_virtual_base_classes() const ;

• os_List<os_base_class*> get_indirect_virtual_base_classes();

The function returns 0 if there are no such base classes and signals err_forward_
definition if this is a forward definition.

Finding the Member with a Specified Name with
find_member_variable()

The find_member_variable() function returns the member value of this that has
the specified name:

• const os_member_variable
 *find_member_variable(const char *name) const ;

• os_member_variable *find_member_variable(const char *name) ;

The function returns 0 if there is no such member.

Finding a Containing Object with get_most_derived_class()
The get_most_derived_class() function can be used to determine the object
containing a specified data member value and the class of that object.

static const os_class_type &get_most_derived_class(
 const void *object,
 const void* &most_derived_object
) const ;

If object points to the value of a data member for some other object, o, this function
returns a reference to the most derived class of which o is an instance. A class, c1, is
more derived than another class, c2, if c1 is derived from c2, or derived from a class
derived from c2, and so on. most_derived_object is set to the beginning of the
instance of the most derived class. There is one exception to this behavior.

If object points to an instance of a class, o, but not to one of its data members (for
example, because the memory occupied by the instance begins with a virtual table
pointer rather than a data member value), the function returns a reference to the
most derived class of which o is an instance. most_derived_object is set to the
beginning of the instance of the most derived class. There is one exception to this
behavior.
Release 6.3 121

Class os_class_type
If object does not point to the memory occupied by an instance of a class, most_
derived_object is set to 0 and err_mop is signaled. ObjectStore issues an error
message such as the following:

<err-0008-0010>Unable to get the most derived class in
os_class_type::get_most_derived_class() containing the
 address 0x[[some-address]].

Example Following is an example:

Class and
function
declarations

 class B {
 public:
 int ib ;
 } ;

 class D : public B {
 public:
 int id ;
} ;

 class C {
 public:
 int ic ;
 D cm ;
 } ;

 void baz () {
 C* pC = new (db) C;
 D *pD = &pC->cm ;
 int *pic = &pC->ic, *pid = &pC->cm.id, *pib = &pC->cm.ib ;
 . . .
 }

Function result Invoking get_most_derived_class() on the pointers pic, pid, and pib produces
the results shown in the following table:

The exception to the behavior described previously can occur when a class-valued
data member is collocated with a base class of the class that defines the data member.
If a pointer to such a data member (which is also a pointer to such a base class) is
passed to get_most_derived_class(), a reference to the value type of the data
member is returned and most_derived_object is set to the same value as object.

Example Consider, for example, the following class hierarchy:

Class
definitions

class C0 {
 public:
 int i0;
};

class B0 {
 public:

object most_derived_object os_class_type

pic pC C

pid pD D

pib pD D
122 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 void f0();
};

class B1 : public B0 {
 public:
 virtual void f1();
 C0 c0;
};

class C1 : public B1 {
 public:
 static os_typespec* get_os_typespec();
 int i1;
};

Some compilers optimize B0 so that it has zero size in B1 (and C1). This means the
class-valued data member c0 is collocated with a base class, B0, of the class C1 that
defines the data member.

Given the following,

C1 c1;
C1 * pc1 = & c1;
B0 * pb0 = (B0 *)pc1;
C0 * pc0 = & pc1->c0;

the pointers pb0 and pc0 will have the same value because of this optimization.

Function result In this case, get_most_derived_class() called on the pb0 or pc0 returns a reference
to the os_class_type for C0 (the value types of the data member c0) and sets most_
derived_object to the same value as object.

If B1 is instead defined as

class B1 : public B0 {
 public:
 virtual void f1();
 int i;
 C0 c0;
};

and

int * pi = & pc1->i;

pb0 and pi have the same value because of the optimization, but the base class, B0,
is collocated with an int-valued data member rather than a class-valued data
member. get_most_derived_class() called on pb0 or pi returns a pointer to the
os_class_type for the class C1 and sets most_derived_object to the same value as
pc1.

Class os_base_class
An instance of os_base_class represents the derivation of one class from another.
Such an instance serves to associate the base class with the nature of the derivation
(virtual or nonvirtual, and public, private, or protected).
Release 6.3 123

Class os_base_class
See os_base_class in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

Attributes

os_boolean

os_class_type

os_base_access

is_virtual

class

access

os_base_class
124 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
create() Functions
The class os_base_class has the following create() function:

static os_base_class &create(
 os_unsigned_int32 access_value ,
 os_boolean virtual ,
 os_class_type *associated_class
) ;

Function
arguments

The arguments specify the initial values for the attributes access, is_virtual, and
class.

To represent the derivation of mechanical_part from part, you might create an os_
base_class as follows:

Example: os_
base_class

os_class_type *the_class_part = ...

os_class_type *the_class_mechanical_part = ...
. . .
os_base_class & a_base = os_base_class::create (
 os_base_class::Public ,
 0,
 os_class_type *the_class_part
) ;
os_List<os_base_class*> bases ;
bases |= a_base ;
the_class_mechanical_part->set_base_classes (bases) ;

class Attribute
The class of an os_base_class is the base class for the derivation represented by
the os_base_class. For example, suppose mechanical_part is derived from part.
Performing get_base_classes() on an os_class_type representing mechanical_
part results in a list containing an os_base_class representing the derivation of
mechanical_part from part. Performing get_class() on this os_base_class
object results in an os_class_type representing part.

Getting the
attribute

You can get the class of a given os_base_class with the following functions:

• const os_class_type &get_class() const ;

• os_class_type &get_class() ;

If no class was specified when the os_base_class was created (that is, if the
associated class argument to create() was 0), the unspecified type is returned.
This is the only os_type for which os_type::is_unspecified() returns nonzero
(see is_unspecified() function on page 113).

Setting the
attribute

You can set the class of an os_base_class with

void set_class(os_class_type& base_class) ;

Initialization You can initialize the class attribute with os_base_class::create().
Release 6.3 125

Class os_member
access Attribute
The value of the access attribute for a given os_base_class is one of the following
enumerators:

• os_base_class::Public

• os_base_class::Private

• os_base_class::Protected

Getting the
attribute

You can get the access for an os_base_class with

os_unsigned_int_32 get_access() const ;

Setting the
attribute

You can set the access with

void set_access(os_unsigned_int32) ;

Initialization You can initialize the access attribute with os_base_class::create().

is_virtual Attribute
The value of is_virtual for a given os_base_class is nonzero if the os_base_
class represents a virtual derivation and is 0 otherwise.

Getting the
attribute

The following function returns the value of the is_virtual attribute:

os_boolean is_virtual() const ;

Setting the
attribute

You can set this attribute with

void set_is_virtual(os_boolean) ;

Class os_member
An instance of os_member represents a data member or member function.

See os_member in Chapter 2 of the C++ A P I Reference for a complete description of
this class.

Some member
functions of os_
member

kind

defining_class

access

os_member os_member_type

os_class_type

os_member_access
126 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Class os_
member and its
subclasses

This class has no direct instances. Every instance of os_member is a direct instance of
one of the subclasses of os_member.

create() Functions
Because the class os_member has no direct instances, it has no create() function.
You create an instance of os_member with a create() function for one of the
subclasses of os_member.

access Attribute
Attribute
enumerators

The access of a given os_member is one of the following enumerators:

• os_member::Public

• os_member::Private

• os_member::Protected

Getting the
attribute

You can get the access of an os_member with

os_unsigned_int32 get_access() const ;

Setting the
attribute

You can set the access of an os_member with

void set_access(os_unsigned_int32 access_mode) ;

If the specified access_mode does not have the same value as one of the preceding
enumerators, err_mop is signaled.

Initialization This attribute is initialized to os_member::Public by the create() functions for the
subclasses of os_member.

kind Attribute
Attribute
enumerators

The kind of an os_member is one of the following enumerators:

os_member_function os_access_modifier

os_member_variable os_member_type

os_relationship_member_variable os_field_member_variable

os_member

Enumerator Use

os_member::Variable For data members

os_member::Function For member functions

os_member::Type For nested classes
Release 6.3 127

Class os_member
Each of these enumerators corresponds to a subclass of os_member.

Initialization The value of kind for a given os_member is initialized to the enumerator
corresponding to the subclass of which the os_member is a direct instance. This
initialization is performed by the create() function for the subclass.

Getting the
attribute

You can get the kind of an os_member with

os_unsigned_int32 get_kind() const ;

defining_class Attribute
The defining_class of an os_member is an os_class_type, the class that defines
the os_member.

Getting the
attribute

You can get the defining class of an os_member with

const os_class_type &get_defining_class() const ;

os_class_type &get_defining_class() ;

Initialization This attribute is always initialized by a create() function to a special instance of os_
class_type, the unspecified class (see is_unspecified() function on page 113).

Setting the
attribute

The defining_class of an os_member is set automatically when os_class_
type::set_members() is passed a collection containing a pointer to the os_member.
The os_member’s defining_class is set to the os_class_type for which set_
members() is called.

Type-Safe Conversion Operators
Like the class os_type, os_member defines type-safe conversion operators for
converting const os_members to const references to an instance of a subtype.

• operator const os_member_variable&() const ;

• operator const os_field_member_variable&() const ;

• operator const os_relationship_member_variable&() const ;

• operator const os_member_function&() const ;

• operator const os_access_modifier&() const ;

• operator const os_member_type&() const ;

There are also type-safe conversion operators for converting non-const os_members
to non-const references to an instance of a subtype.

• operator os_member_variable&() ;

• operator os_field_member_variable&() ;

os_member::Access_modifier For access declarations

os_member::Field_variable For bit fields

os_member::Relationship For ObjectStore inverse members

Enumerator Use
128 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
• operator os_relationship_member_variable&() ;

• operator os_member_function&() ;

• operator os_access_modifier&() ;

• operator os_member_type&() ;

If an attempt is made to perform an inappropriate conversion, err_mop_illegal_
cast is signaled.

Class os_member_variable
Attributes The diagram shows some of the important attributes of os_member_variable.

See os_member_variable in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
Thes class os_member_variable has one create() function:

static os_member_variable &create(
 const char *unqualified_name ,
 os_type *value_type
) ;

Function
arguments

The arguments specify the initial values for the attributes name and type.

The initial values for the remaining attributes are as follows:

os_booleanchar*

os_type

is_static

is_persistent

is_field

name

type

os_unsigned_int32

storage_class

os_member_variable

Attribute Value

storage_class os_member_variable::Regular

is_field 0

is_static 0

is_persistent 0
Release 6.3 129

Class os_member_variable
name Attribute
The name of an os_member_variable is its unqualified name (for example,
components rather than part::components).

Getting the
attribute

You can get the value of name with

const char *get_name() const ;

Setting the
attribute

You can set the value of name with

void set_name(const char *name) ;

Initialization You can initialize name with os_member_variable::create().

type Attribute
The type of a given os_member_variable is its value type.

Getting the
attribute

You can retrieve an os_member_variable’s type with

• const os_type &get_type() const ;

• os_type &get_type() ;

Setting the
attribute

You can set the type with

void set_type(os_type& val_type) ;

Initialization You can initialize type with os_member_variable::create().

storage_class Attribute
The value of storage_class for a given os_member_variable is one of the
following enumerators:

• os_member_variable::Regular

• os_member_variable::Persistent

• os_member_variable::Static

Initialization This attribute is initialized to os_member_variable::Regular by os_member_
variable::create().

Getting the
attribute

You can get the value of storage_class with

os_unsigned_int32 get_storage_class() const ;

Setting the
attribute

You can set storage_class with

void set_storage_class(os_unsigned_int32 storage_class) ;

is_field Attribute
This attribute is nonzero (true) for all and only instances of os_field_member_
variable.

Initialization It is initialized to nonzero by os_field_member_variable::create(), and is
initialized to 0 by os_member_variable::create() and os_relationship_
member_variable::create().
130 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Getting the
attribute

You can retrieve the value of is_field with

os_boolean is_field() const ;

is_static Attribute
The attribute is_static indicates whether a given os_member_variable is static.

Initialization Initializing or setting the attribute storage_class causes is_static to be set
automatically.

Getting the
attribute

You can retrieve the value of is_static with

os_boolean is_static() const ;

is_persistent Attribute
The attribute is_persistent indicates whether a given os_member_variable is a
persistent data member.

Initialization Initializing or setting the attribute storage_class causes is_persistent to be set
automatically.

Getting the
attribute

You can retrieve the value of is_persistent with

os_boolean is_persistent() const ;

Type-Safe Conversion Operators
The class os_member_variable defines type-safe conversion operators for
converting const os_member_variables to const references to an instance of a
subtype.

• operator const os_field_member_variable&() const ;

• operator const os_relationship_member_variable&() const ;

There are also type-safe conversion operators for converting non-const os_member_
variables to non-const references to an instance of a subtype.

• operator os_field_member_variable&() ;

• operator os_relationship_member_variable&() ;

These functions signal err_mop_illegal_cast if an attempt is made to perform an
inappropriate conversion.

Class os_relationship_member_variable
Attributes The diagram shows some of the important members of os_relationship_member_

variable. Attributes inherited from os_member_variable and os_member are not
shown.
Release 6.3 131

Class os_relationship_member_variable
See os_relationship_member_variable in Chapter 2 of the C++ A P I Reference for
a complete description of this class.

create() Function
The class os_relationship_member_variable has the following create()
function:

static os_relationship_member_variable &create(
 const char *name,
 const os_type *type,
 const os_class_type *related_class,
 const os_relationship_member_variable *related_member
);

Function
arguments

The arguments specify the initial values for the attributes name, type, related_
class, and related_member.

The initial values for the remaining attributes are as described for os_member_
variable::create().

related_class Attribute
The related_class of a given os_relationship_member_variable is the class
defining the inverse of the given member.

Getting the
attribute

You can get the related_class with

• const os_class_type &get_related_class() const ;

• os_class_type &get_related_class() ;

Setting the
attribute

You can set the related_class with

void set_related_class(os_class_type&) ;

related_member Attribute
The related_member of a given os_relationship_member_variable is the inverse
member of the given member.

Getting the
attribute

You can get the value of this attribute with

• const os_relationship_member_variable &
 get_related_member() const ;

• os_relationship_member_variable &get_related_member() ;

related_class

related_member

os_class_type

os_relationship_member_variable
132 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Setting the
attribute

You can set the related_member with

void set_related_member(os_relationship_member_variable&) ;

Class os_field_member_variable
Attribute The diagram shows the attributes of os_field_member_variable. Attributes

inherited from os_member_variable and os_member are not shown.

See os_field_member_variable in Chapter 2 of the C++ A P I Reference for a
complete description of this class.

create() Function
The class os_field_member_variable has the following create() function:

static os_field_member_variable &create(
 const char *name,
 const os_type *value_type,
 os_unsigned_int8 size_in_bits
) ;

Function
arguments

The arguments specify the initial values for the attributes name, type, and size. If
value_type is not 0, a pointer to an os_integral_type, or a pointer to an os_enum_
type, err_mop is signaled.

The initial values for the remaining attributes are as described for os_member_
variable::create().

size Attribute
The size of a given os_field_member_variable is the number of bits in the value of
the given member.

Getting the
attribute

You can get the size with

os_unsigned_int8 get_size() const ;

Setting the
attribute

You can set the size with

void set_size(os_unsigned_int8 size_in_bits) ;

size

os_field_member_variable

os_unsigned_int8
Release 6.3 133

Class os_access_modifier
Class os_access_modifier
Attribute An os_access_modifier represents an access modification performed by a class on

an inherited member. Attributes inherited from os_member are not shown.

See os_access_modifier in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
The class os_access_modifier has the following create() function:

static os_access_modifier &create(os_member* mem) ;

Function
argument

The argument is used to initialize the base_member attribute.

base_member Attribute
The base_member of a given os_access_modifier is the member whose access is
being modified.

Getting the
attribute

You can get base_member with

• const os_member &get_base_member() const ;

• os_member &get_base_member() ;

Setting the
attribute

You can set base_member with

void set_base_member(os_member& mem) ;

base_member

os_member

os_access_modifier
134 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Class os_enum_type
Attributes The diagram shows the attributes of os_enum_type. Attributes inherited from os_

type are not shown.

See os_enum_type in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

create() Function
The class os_enum_type has the following create() function:

static os_enum_type &create(
 const char *name,
 const os_List<os_enumerator_literal*> &enumerators
) ;

Function
arguments

The arguments initialize the name and enumerators attributes.

name Attribute
The value of this attribute for an os_enum_type is the os_enum_type’s name.

Getting the
attribute

You can get this attribute with

const char *get_name() const ;

Setting the
attribute

You can set the attribute with

void set_name(const char *name) ;

enumerators Attribute
The value of this attribute for a given os_enum_type is a list of the enumerators of
the given type, that is, an os_List<os_enumerator_literal*>.

Getting the
attribute

You can get the value with

• os_List<const os_enumerator_literal*> get_enumerators() const ;

• os_List<os_enumerator_literal*> get_enumerators() ;

enumerators

name

char*

os_enumerator_literal

os_enum_type
Release 6.3 135

Class os_enumerator_literal
Setting the
attribute

You can set the value with

void set_enumerators(const os_List<os_enumerator_literal*>&) ;

Class os_enumerator_literal
Attributes Instances of this class represent enumerators. The following diagram shows the

attributes of os_enumerator_literal:

See os_enumerator_literal in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
The class os_enumerator_literal has the following create() function:

static os_enumerator_literal &create(
 const char *name,
 os_int32 value
) ;

Function
arguments

The arguments specify the initial values for the name and value attributes.

name Attribute
The value of name for a given os_enumerator_literal is its unqualified name (for
example, ordered rather than os_collection::ordered).

Getting the
attribute

You can get name with

const char *get_name() const ;

Setting the
attribute

You can set name with

void set_name(const char *name) ;

Initialization The name attribute is initialized by the create() function.

os_enumerator_literal

os_int32

value

char*

name
136 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Class os_void_type
Instances of this class represent the type void, which can be used as a return type for
functions or can be used in conjunction with os_pointer_type to form the type
void*.

See os_void_type in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

create() Function
This class os_void_type has the following create() function is

static os_void_type &create() ;

Class os_pointer_type
Attribute Instances of this class are used to represent pointer types.

See os_pointer_type in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
The create() function for the class os_pointer_type is

static os_pointer_type &create(os_type *target_type) ;

Function
argument

The argument is used to initialize the attribute target_type.

target_type Attribute
The value of this attribute for a given os_pointer_type is the type of object pointed
to by instances of the given pointer type. For example, the target_type of an os_
pointer_type representing part* is an os_type representing the type part.

Getting the
attribute

You can get the target_type of a given os_pointer_type with

• const os_type &get_target_type() const ;

• os_type &get_target_type() ;

os_pointer_type

os_type

target_type
Release 6.3 137

Class os_reference_type
If no type was specified when the os_pointer_type was created (that is, if the class
argument to create() was 0), the unspecified type is returned. This is the only os_
type for which os_type::is_unspecified() returns nonzero (see is_
unspecified() function on page 113).

Setting the
attribute

You can set the target_type with

void set_target_type(os_type& target_type) ;

This attribute is initialized with the create() function.

Type-Safe Conversion Operators
The class os_pointer_type defines type-safe conversion operators for converting
const os_pointer_types to const references to an instance of a subtype.

• operator const os_pointer_to_member_type&() const ;

• operator const os_reference_type&() const ;

There are also type-safe conversion operators for converting non-const os_
pointer_types to non-const references to an instance of a subtype.

• operator os_pointer_to_member_type&() const ;

• operator os_reference_type&() ;

These functions signal err_mop_illegal_cast if an attempt is made to perform an
inappropriate conversion.

Class os_reference_type
Attribute Instances of this class are used to represent reference types. The diagram shows

attributes inherited from os_pointer_type but not those inherited from os_type.

See os_reference_type in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
The create() function for the class os_reference_type is

static os_reference_type &create(os_type *target_type) ;

Function
argument

The argument is used to initialize the attribute target_type.

target_type

os_reference_type

os_type*
138 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
target_type Attribute
The value of this attribute for a given os_reference_type is the type of object
pointed to by instances of the given pointer type. For example, the target_type of
an os_reference_type representing part& is an os_type representing the type
part.

Getting and
setting this
attribute

You can get and set the target_type with functions inherited from os_pointer_
type.

Class os_pointer_to_member_type
Attributes Instances of this class are used to represent pointer-to-member types. The diagram

shows attributes inherited from os_pointer_type but not those inherited from os_
type.

See os_pointer_to_member_type in Chapter 2 of the C++ A P I Reference for a
complete description of this class.

create() Function
The create() function for the class os_pointer_to_member_type is

static os_pointer_to_member_type &create(
 os_type *target_type,
 os_class_type *target_class
) ;

Function
arguments

The arguments are used to initialize the attributes target_class and target_type.

target_type Attribute
The value of this attribute for a given os_pointer_to_member_type is the type of
object referred to by instances of the given pointer type.

Getting and
setting this
attribute

You can get and set the target_type with functions inherited from os_pointer_
type.

target_type

os_class_type

target_class

os_type

os_pointer_to_member_type
Release 6.3 139

Class os_indirect_type
target_class Attribute
The value of this attribute for a given os_pointer_to_member_type is the class
defining the member pointed to.

Getting the
attribute

You can get the target_class of a given os_pointer_to_member_type with

• const os_class_type &get_target_class() const ;

• os_class_type &get_target_class() ;

If no class was specified when the os_pointer_to_member_type was created (that
is, if the target_class argument to create() was 0), the unspecified type is
returned. This is the only os_type for which os_type::is_unspecified() returns
nonzero (see is_unspecified() function on page 113).

Setting the
attribute

You can set the target_class with

void set_target_class(os_class_type& target_class)

Initialization This attribute can be initialized with the create() function as well.

Class os_indirect_type
Attribute Instances of this type are direct instances of either os_indirect_type or os_

anonymous_indirect_type.

See os_named_indirect_type (Class os_named_indirect_type on page 141) and os_
anonymous_indirect_type (Metaobject Protocol (MOP) Overview on page 100).

See also os_indirect_type in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

target_type

os_class_type

os_indirect_type
140 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Class os_named_indirect_type
Attributes An instance of this class represents a C++ typedef. The diagram shows the attribute

target_type, inherited from os_indirect_type, but it does not show attributes
inherited from os_type.

See os_named_indirect_type in Chapter 2 of the C++ A P I Reference for a complete
description of this class.

create() Function
The create() function for the class os_named_indirect_type is

static os_named_indirect_type &create(
 os_type *target_type,
 const char *name
) ;

Function
arguments

The arguments are used to initialize target_type and name.

target_type Attribute
The value of this attribute for a given os_named_indirect_type is the type named
by the typedef.

Getting the
attribute

You can get the target_type of a given os_named_indirect_type with

• const os_type &get_target_type() const ;

• os_type &get_target_type() ;

Setting the
attribute

You can set the target_type with

void set_target_type(os_type& target_type) ;

Initialization This attribute can be initialized with the create() function.

name Attribute
The value of name for a given os_named_indirect_type is the name the typedef
introduces.

os_class_type

target_type

char*

name

os_named_indirect_type
Release 6.3 141

Class os_anonymous_indirect_type
Getting the
attribute

You can get the name with

const char *get_name() const ;

Setting the
attribute

You can set the name with

void set_name(const char *name_value) ;

Initialization name can be initialized by the create() function as well.

Class os_anonymous_indirect_type
Member
functions

An instance of this class represents a const or volatile type. The diagram shows
the attribute target_type, inherited from os_indirect_type, but it does not show
attributes inherited from os_type.

See os_anonymous_indirect_type in Chapter 2 of the C++ A P I Reference for a
complete description of this class.

create() Function
The create() function for the class os_anonymous_indirect_type is

static os_anonymous_indirect_type &create(
 os_type *target_type
) ;

Function
argument

The argument is used to initialize the attribute target_type.

target_type Attribute
The value of this attribute for a given os_anonymous_indirect_type is the type to
which the const or volatile specifier applies. For example, the type const int is
represented as an instance of os_anonymous_indirect_type whose target_type is
an instance of os_integral_type.

Getting the
attribute

You can get the target_type of a given os_anonymous_indirect_type with

• const os_type &get_target_type() const ;

target_type

is_volatileis_const

os_boolean

os_anonymous_indirect_type

os_class_type&
142 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
• os_type &get_target_type() ;

Setting the
attribute

You can set the target_type with

void set_target_type(os_type&) ;

Initialization This attribute can be initialized with the create() function as well.

is_const Attribute
The value of is_const is nonzero for const types and 0 otherwise.

Getting the
attribute

You can get the value with

os_boolean is_const() const ;

Setting the
attribute

You can set the value with

void set_is_const(os_boolean) ;

is_volatile Attribute
The value of is_volatile is nonzero for volatile types and 0 otherwise.

Getting the
attribute

You can get the value with

os_boolean is_volatile() const ;

Setting the
attribute

You can set it with

void set_is_volatile(os_boolean) ;

Class os_array_type
Attributes Instances of this class are used to represent array types. Attributes inherited from

os_type are not shown.

See os_array_type in Chapter 2 of the C++ A P I Reference for a complete description
of this class.

element_type

os_unsigned_int32

number_of_elements

os_array_type

os_type&
Release 6.3 143

Fetch and Store Functions
create() Function
The class os_array_type has the following create() function:

static os_array_type &create(
 os_unsigned_int32 number_of_elements,
 os_type *element_type
) ;

Function
arguments

The arguments initialize the attributes number_of_elements and element_type.

number_of_elements Attribute
The value of this attribute for a given os_array_type is the number of elements that
instances of the array type are declared to accommodate.

Getting the
attribute

You can get this attribute with

os_unsigned_int32 get_number_of_elements() const ;

Setting the
attribute

You can set it with

void set_number_of_elements(os_unsigned_int32) ;

element_type Attribute
The value of this attribute for a given os_array_type is the type of element that
instances of the array type are declared to have.

Getting the
attribute

You can get this type information with

• const os_type &get_element_type() const ;

• os_type &get_element_type() ;

Setting the
attribute

You can set it with

void set_element_type(os_type& elem_type) ;

Fetch and Store Functions
ObjectStore provides a number of global (that is, nonmember) functions that allow
you to fetch the value of a specified data member (specified with an os_member_
variable) for a specified object and to store a specified value in a specified data
member for a specified object. There are different functions for fetching or storing
different types of values.

The first parameter to functions in the os_fetch and os_store classes is a void
pointer to an arbitrary object. This pointer must refer to the closest containing class.
If, for example, the relevant member variable being accessed is part of an inherited
class, you must pass the address of the base class, not the outermost class. If you pass
the wrong pointer, you access the wrong address.
144 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
os_fetch() Functions
The os_fetch() functions store a reference to the fetched value in the argument
value, as well as return the value.

For more information, see ::os_fetch() in Chapter 3 of the C++ A P I Reference.

• void* os_fetch(
const void *p, const os_member_variable& mem, void *&value);

• unsigned long os_fetch(
const void *p, const os_member_variable& mem,
 unsigned long &value);

• long os_fetch(
const void *p, const os_member_variable& mem, long &value);

• unsigned int os_fetch(
const void *p, const os_member_variable& mem,
unsigned int &value);

• int os_fetch(
const void *p, const os_member_variable& mem, int &value);

• unsigned short os_fetch(
const void *p, const os_member_variable& mem,
unsigned short &value);

• short os_fetch(
const void *p, const os_member_variable& mem, short &value);

• unsigned char os_fetch(
const void *p, const os_member_variable& mem,
unsigned char &value);

• char os_fetch(
const void *p, const os_member_variable& mem, char &value);

• float os_fetch(
const void *p, const os_member_variable& mem, float &value);

• double os_fetch(
const void *p, const os_member_variable& mem, double &value);

• long double os_fetch(
const void *p, const os_member_variable& mem,
long double &value);

os_store() Functions
For more information, see ::os_store() in Chapter 3 of the C++ A P I Reference.

• void os_store(
void *p, const os_member_variable& mem, const void *value);

• void os_store(
void *p, const os_member_variable& mem,
const unsigned long value);
Release 6.3 145

Type Instantiation
• void os_store(
void *p, const os_member_variable& mem, const long value);

• void os_store(
void *p, const os_member_variable& mem,
const unsigned int value);

• void os_store(
void *p, const os_member_variable& mem, const int value);

• void os_store(
void *p, const os_member_variable& mem,
const unsigned short value);

• void os_store(
void *p, const os_member_variable& mem, const short value);

• void os_store(
void *p, const os_member_variable& mem,
const unsigned char value);

• void os_store(
void *p, const os_member_variable& mem, const char value);

• void os_store(
void *p, const os_member_variable& mem, const float value);

• void os_store(
void *p, const os_member_variable& mem, const double value);

• void os_store(
void *p, const os_member_variable& mem, const long double value);

Type Instantiation
You can instantiate the class represented by a given os_class_type by calling the
global function ::operator new() without a constructor call. Use the function os_
type::get_size() to supply the size_t argument to ::operator new(). A void*
is returned. For example:

void *a_part_ptr = ::operator new(
 the_class_part.get_size(),
 db,
 &part_typespec
) ;

You can use the function ::os_store() to initialize the new instance.

Example: Schema Read Access
This section presents an example that illustrates the use of the MOP. The example
consists of a routine that prints information about a specified class instance: its class,
its address, and the values of its data members. The routine is generic instead of
146 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
being class specific, so it can operate on an instance of any class. This is what
necessitates the use of the MOP — schema information must be accessed to identify,
at run time, the members of the specified object so that their values can be fetched
and presented. Something like this functionality might be offered by a browser or
debugger.

Top-Level print() Function
The following example involves several functions. The function print() is the top-
level function. As arguments, it takes a pointer to an object and an os_class_type&
representing the object’s type. There are two other arguments, member_prefix and
indentation, that are supplied only when the function calls itself recursively (see
the following example).

print() function
definition

#include <ostore/mop.hh>

const os_unsigned_int32 max_buff_size = 100 ;

static void print(const void* p, const os_class_type& c,
 char* member_prefix = "", os_unsigned_int8 indentation = 0
{
 if (!*member_prefix)
 fprintf(stdout, "\n%sclass %s /* 0x%x */ {\n",
 indent(indentation), c.get_name(), p) ;
 os_Cursor<const os_base_class*> bc(c.get_base_classes()) ;
 for (const os_base_class* b=bc.first();b;b = bc.next()) {
 char buff[1024] ;
 os_strcpy(buff, member_prefix) ;
 os_strcat(buff, b->get_class().get_name()) ;
 os_strcat(buff, "::") ;
 print((void*) ((char*)p+b->get_offset()),b->get_class(),
 buff, indentation) ;
 } /* end of for loop */

 os_Cursor<const os_member*> mc(c.get_members()) ;
 for (const os_member* m=mc.first(); m ; m=mc.next())
 switch (m->kind())
 {
 case os_member::Variable:
 case os_member::Relationship:
 case os_member::Field_variable:
 {
 const os_member_variable& mv = *m ;
 char* type_string = mv.get_type().get_string() ;
 if (mv.is_static() || mv.is_persistent())
 continue ;
 fprintf(stdout, "%s %s\t%s%s = ",
 indent(indentation), type_string,
 member_prefix, mv.get_name()) ;
 print(p, mv, indentation) ;
 fprintf(stdout, " ;\n") ;
 delete [] type_string ;
 break ;
 } /* end of case statement*/
 } /* end of for loop */

 if (!*member_prefix)
Release 6.3 147

Example: Schema Read Access
 fprintf(stdout, "%s}", indent(indentation)) ;
} /* end of print() function */

Following is some sample input that explains the function.

Sample input:
class definitions

Suppose an application uses the classes date, part, and mechanical_part, with the
data members shown in the following definitions:

class date {
 private:
 int day;
 int month;
 int year;
 public:
 date(int dd, int mm, int yy) {
 day = dd; month = mm; year = yy;
 }
 . . .
};

class part {
 private:
 int part_id;
 date date_created;
 public:
 part(int id, date d) {part_id = id; date_created = d;}
 . . .
};

class mechanical_part : public part {
 private:
 mechanical_part *parent;
 public:
 mechanical_part(int id, date d, mechanical_part *p) :
 part(id, d) {parent = p;}
 . . .
};

Creating objects And suppose you create objects such as the following:

date d(1, 15, 1993);

mechanical_part *parent = new(db) mechanical_part(1, d, 0);

mechanical_part *child = new(db) mechanical_part(2, d, parent);

Pass child to
print()

Finally, suppose you pass child to print() as in the following:

print(child, os_type::type_at(child));

print() begins with a check of the argument member_prefix, which defaults to a
pointer to the null character (0). Because this is 0, you have just started printing an
object and the function outputs the name of the object’s class with a call to os_class_
type::get_name():

c.get_name()

The object’s address is also printed.

Sample output For the sample input, the output so far might look like the following:

class mechanical_part /* 0xCB320 */ {
148 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Recursive Execution of print()
Iterating
through the
base types

Next, the function iterates through the collection of the specified type’s base types,
obtained with a call to os_class_type::get_base_classes():

c.get_base_classes()

For each base class, the function prints the portion of the specified object that
corresponds to that base class. It does this by calling itself recursively, specifying the
address of the appropriate subobject, and specifying the base type as its type.

How the object’s
address is
obtained

The address of the appropriate object is obtained by adding the base type’s offset to
p, the address of the original object. The offset is obtained by using os_base_
class::get_offset().

How the object’s
type is obtained

The type is obtained by using os_base_class::get_class(). Remember, an os_
base_class encapsulates information about the derivation of one class from another
(for example, the offset of the base class within instances of the derived class —
which you just used). An os_base_class is not itself an os_class_type. To get the
associated os_class_type object, you use get_class().

For the sample input, the only base class is part, so an os_class_type& representing
part is passed as the second argument in the recursive call to print().

In addition, because this is a recursive call, a member prefix and indentation are
passed as well. The prefix consists of the base type’s name followed by :: (part::
for the sample input). This is used when printing the names of data members defined
by the base type. By using a qualified name for a base class member, the output
identifies the defining class.

During the execution of the recursive call, first the member prefix is tested. Because
it is nonnull, you do not print the header, class class-na /* address */ {.

Iterating
through the
base classes of
the specified
class

Next you iterate through the base classes of the specified class, part in this case. This
takes care of subobjects corresponding to indirect base classes. Because part itself
has no base classes, this loop is null for the sample input.

Iterating
through
members of the
specified class

Then you iterate through the collection of members of the specified class, obtained
with a call to os_class_type::get_members():

c.get_members()

Because you are within the recursive execution, the specified class is part. You test
the kind of each member by using os_member::kind(); and for each nonstatic,
nonpersistent data member, you output the data member’s name (using member_
prefix) and type, and call an overloading of print() that prints data member
values (described in the following paragraphs).

Converting os_
member to os_
member_
variable

This involves first converting the os_member to an os_member_variable:

const os_member_variable &mv = *m;

Recall that there are type-safe conversions from os_member to const os_member_
variable& and to all the other subtypes of os_member.
Release 6.3 149

Example: Schema Read Access
You get the value type of the member by using os_member_variable::get_type()
and you get the name of this type by using os_type::get_string():

char *type_string = mv.get_type().get_string()

Note that get_string() allocates a character array, which is deleted when it is no
longer needed:

delete [] type_string;

Sample output:
first member of
part

For the sample input, the output after retrieving the first member of part might look
like this:

class mechanical_part /* 0xCB320 */ {
 int part::part_id =

print() function
for data
members

Now consider the function print() for data members, which is called in the line

print(p, mv, indentation);

This function is defined as follows:

/* Prints the value at p. It is the value of the data member */
/* indicated by the "m" argument */

static void print(const void* p,
 const os_member_variable& m,
 const os_unsigned_int8 indentation)
{
 const os_type& mt = m.get_type().strip_indirect_types() ;
 if (mt.is_integral_type()) {
 if (((const os_integral_type&)mt).is_signed()) {
 os_int32 value ;
 fprintf(stdout, "%ld", os_fetch(p, m, value)) ;
 } /* end if */

 else {
 os_unsigned_int32 value ;
 fprintf(stdout, "%lu", os_fetch(p, m, value)) ;
 } /* end else */
 return ;
 } /* end if */

 else if (mt.kind()==os_type::Enum) {
 os_int32 value = 0 ;
 const os_enumerator_literal* lit=
 ((os_enum_type&)mt).get_enumerator(
 os_fetch(p, m, value)) ;
 fprintf(stdout, "%ld(%s)", value,
 (lit ? lit->get_name() : "?enum literal?")) ;
 return ;
 } /* end else if */

switch (mt.kind()) {

 case os_type::Float: {
 float value ;
 fprintf(stdout, "%f", os_fetch(p, m, value)) ;
 return ;
 }
150 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 case os_type::Double: {
 double value ;
 fprintf(stdout, "%lg", os_fetch(p, m, value)) ;
 return ;
 }

 case os_type::Long_double: {
 long double value ;
 fprintf(stdout, "%lg", os_fetch(p, m, value)) ;
 return ;
 }

 case os_type::Pointer:
 case os_type::Reference:
 print_a_pointer((char*)p+m.get_offset()) ;
 return ;

 case os_type::Class:
 case os_type::Instantiated_class:
 print((char*)p+m.get_offset(),
 (const os_class_type&)mt, "",
 indentation+1) ;
 return ;

 case os_type::Array:
 print((char*)p+m.get_offset(), (const os_array_type&)mt,
 indentation+1) ;
 return ;

 default:
 /* print its address */
 fprintf(stdout, "*0x%x*", (char*)p + m.get_offset()) ;
 } /* end switch */
}

Behavior of
print() for data
members

The print() function for data members function begins by retrieving the value type
of the specified data member and applying strip_indirect_types(). The result is
an os_type that is not an os_indirect_type. Next, it determines the kind of this
type and acts accordingly.

For the sample input, the member is currently part::part_id and the value type is
int. This is a signed integer type, so the value is printed with the format "%ld". The
value is obtained with os_fetch():

os_fetch(p, m, value);

Sample output:
data members

When this function returns, the output is

class mechanical_part /* 0xCB320 */ {
 int part::part_id = 2

For the next member, part::date_created, the output is supplemented to look like

class mechanical_part /* 0xCB320 */ {
 int part::part_id = 2
 date date_created =

before print() for member values is called again.
Release 6.3 151

Example: Schema Read Access
Next recursion
of print()

Now the value type of part::date_created is determined to be a class, so the
original print() function is called recursively again. This puts you two levels of
recursion down from the top-level execution of print().

print((char*)p+m.get_offset(), (const os_class_type&)mt, "",
 indentation+1) ;

The arguments are a pointer to the data member value (obtained with the help of os_
member_variable::get_offset()) and the member’s value type (which you cast to
a const os_class_type&).

This call to print() supplements the output with a representation of the date object
that serves as the data member value:

class mechanical_part /* 0xCB320 */ {
 int part::part_id = 2
 date part::date_created = class date /* 0xCB324 */ {
 int day = 1
 int month = 1
 int year = 1993
 }

Exit from base
class loop of
print()

Now you have finished the portion of the object corresponding to the base class
part, and you pop up to the top-level print() execution and exit from the base class
loop. Then you handle the members defined by the object’s direct type, mechanical_
part.

Looping through
the class’s
members

This involves looping through that class’s members and presenting the data
members. This class defines one data member, mechanical_part::parent, whose
value type is part*. So print() supplements the output with the member’s name
and type name, as follows,

class mechanical_part /* 0xCB320 */ {
 int part::part_id = 2
 date part::date_created = class date /* 0xCB324 */ {
 int day = 1
 int month = 1
 int year = 1993
 }
 part* parent =

and then calls print() for data members.

print_a_pointer() Function
This function determines that the value type of the current member is a pointer type,
so it calls print_a_pointer() on the data member’s address.

print_a_
pointer()
definition

/* print a pointer value along with as much useful */
/* info as possible */

static void print_a_pointer(const void** p)
{
static os_type::os_type_kind string_char =
 char(0x80) > 0 ? os_type::Signed_char
 os_type::Unsigned_char ;

if (*p)
152 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
{
 const os_type* type = os_type::type_at(*(void**)p) ;
 char* tstr = type ? type->get_string() : os_strdup("???") ;
 fprintf(stdout, "(%s*)%#lx%s",
 tstr, (unsigned long)*(void**)p,
 ((type && (type->kind() == string_char)) ?
 get_string((char*)*p, string_char) : "")) ;
 delete tstr ;
 const void* op = 0 ;
 os_unsigned_int32 ecount = 0 ;
 const os_type* otype = os_type::type_containing(
 *p, op, ecount) ;

 if (op && (op != *p) && (otype != type))
 {
 /* the enclosing object is different */

 if (ecount > 1)
 {
 /* point to the appropriate array element */
 os_unsigned_int32 offset = (char*)op - (char*)*p ;
 os_unsigned_int32 i = offset / otype->get_size() ;
 op = (char*)op + (i * otype->get_size()) ;
 } /* end if */

 char* tstr = type ? otype->get_string() : os_strdup("???");
 fprintf(stdout, " /* enclosing object @ (%s*)%#lx */ ",
 tstr, (unsigned long)op) ;
 delete tstr ;
 } /* end if */
} /* end if */

else fprintf(stdout, "0") ;

} /* end print_a_pointer() */

print_a_pointer() prints the specified pointer’s type and value and, if the pointer
is a char*, it prints up to the first 100 characters of the designated string (with the
help of get_string(), shown in the following paragraph). In addition, if the object
pointed to is embedded in some other object or array, the type and address of the
enclosing object are printed.

Sample output
from print_a_
pointer()

The sample output might look like the following:

class mechanical_part /* 0xCB322 */ {
 int part::part_id = 2
 date part::date_created = class date /* 0xCB326 */ {
 int day = 1
 int month = 1
 int year = 1993
 }
 part* parent = (part*) 0xCB300
}

Other Data-Handling Routines
Array-valued data members are handled with the following routines.
Release 6.3 153

Example: Schema Read Access
get_string()
function

This function builds a printable representation for a char* string and returns it. Only
strings up to max_buff_size are printed. If they are longer, they are truncated and
a trailing . . . %d . . . is used to indicate the true length.

static char* get_string (const char* p, os_type::
 os_type_kind string_char)
{
 const void* op = 0 ; os_unsigned_int32 ecount = 0 ;

 /* Ignore embedded strings for now */
 const os_type* otype =
 os_type::type_containing(p, op, ecount) ;

 /* +5 for the quotes + null character*/
 static char buff[max_buff_size+5];
 char *bp = buff ;
 os_strcpy(bp, " \"") ;
 bp += 2 ;

 if (op && otype && (otype->kind() == string_char)) {
 ecount=ecount-(p-(char*)op);

 /*in case it is pointing into the middle */
 os_unsigned_int32 count =
 (ecount <= max_buff_size)? ecount : max_buff_size ;

 for (; count && (*bp = *p); bp++, p++, count--) ;

 if (*p) {
 /* determine its true length */
 count = ecount - max_buff_size ;
 for (; count && (*p); p++, count--) ;
 ecount -= count ;
 os_sprintf(bp-(3+10+3), "...%d...", ecount) ;
 bp = buff + os_strlen(buff) ;
 } /* end if */

 os_strcpy(bp, "\" ") ;

 } /* end if */

 else buff[0] = 0 ;

 return buff ;

} /* end of get_string() */

print() function
for an array

This function prints the value at p as an array. The array is described by the argument
at.

static void print(const void* p, const os_array_type& at,
 const os_unsigned_int8 indentation)
{
 const os_type& element_type =
 at.get_element_type().strip_indirect_types();
 fprintf(stdout, " { ") ;

 for (int i = 0; i < at.number_of_elements();
 i++, p = (char*)p + element_type.get_size()) {
 print(p, element_type, indentation) ;
154 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 fprintf(stdout,
 "%s", (i+1) == at.number_of_elements() ?
 " }" : ", ") ;
 } /* end of for loop */

}

print() function
for a pointer

This function prints the value indicated by the pointer p, interpreting it as the type
supplied by the argument et.

static void print(const void* p, const os_type& et,
 const os_unsigned_int8 indentation) {

 switch (et.kind()) {
 case os_type::Unsigned_char:
 fprintf(stdout, "%lu", (os_unsigned_int32)*
 (unsigned char*)p) ;
 break ;

 case os_type::Signed_char:
 fprintf(stdout, "%ld", (os_int32)*(char*)p) ;
 break ;

 case os_type::Unsigned_short:
 fprintf(stdout, "%lu", (os_unsigned_int32)*
 (unsigned short*)p) ;
 break ;

 case os_type::Signed_short:
 fprintf(stdout, "%ld", (os_int32)*(short*)p) ;
 break ;

 case os_type::Integer:
 fprintf(stdout, "%ld", (os_int32)*(int*)p) ;
 break ;

 case os_type::Enum:

 case os_type::Unsigned_integer:
 fprintf(stdout, "%lu", (os_unsigned_int32)*
 (unsigned int*)p) ;
 break ;

 case os_type::Signed_long:
 fprintf(stdout, "%ld", (os_int32)*(int*)p) ;
 break ;

 case os_type::Unsigned_long:
 fprintf(stdout, "%lu", (os_unsigned_int32)*
 (unsigned int*)p) ;
 break ;

 case os_type::Float:
 fprintf(stdout, "%f", *(float*)p) ;
 break ;

 case os_type::Double:
 fprintf(stdout, "%lg", *(double *)p) ;
 break ;
Release 6.3 155

Example: Schema Read Access
 case os_type::Long_double:
 fprintf(stdout, "%lg", *(long double *)p) ;
 break ;

 case os_type::Pointer:

 case os_type::Reference:
 print_a_pointer((void**)p) ;
 break ;

 case os_type::Array:
 print(p, (const os_array_type &)et, indentation) ;
 break ;

 case os_type::Class:
 case os_type::Instantiated_class:
 print(p, (const os_class_type&)et, "", indentation+1) ;
 return ;

 default:
 /* a type we do not understand how to print */
 fprintf(stdout, "?%s?", et.kind_string(et.kind())) ;
 break ;

 } /* end of switch */
}

indent() function
for formatting

This function returns a string of blanks corresponding to the indentation specified by
the argument ilevel.

static const char* indent(os_unsigned_int32 ilevel)
{
 static char indent_string[256] ;
 static os_unsigned_int32 maxilevel = 0, cilevel = 0 ;
 const os_unsigned_int32 indent_tab = 3 ;

 if (ilevel > (256/indent_tab)) ilevel = 256/indent_tab ;

 if (ilevel <= maxilevel) {
 indent_string[cilevel*indent_tab]= ‘ ‘ ;
 indent_string[ilevel*indent_tab]= 0 ;
 cilevel = ilevel ;
 return indent_string ;
 } /* end if */

 os_unsigned_int32 limit = ilevel * indent_tab ;

 for (os_unsigned_int32 i = maxilevel*indent_tab;i<limit; i++)
 indent_string[i] = ‘ ‘ ;
 maxilevel = cilevel = ilevel ;
 return indent_string ;

}

156 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
Example: Dynamic Type Creation
Following is an example that uses the MOP to create types and update schemas.

Overview of the gen_schema() Example
The example centers around a function, gen_schema(), that might serve as the back
end of a much-simplified schema designer application. The front end is a tool for
drawing an entity-relationship diagram. An entity-relationship diagram is a graph
in which the nodes represent types and the arcs represent possible relationships
between instances of the types. The schema designer translates such a diagram into
a set of C++ classes, with one or a pair of data members corresponding to each arc in
the diagram.

Entity-
relationship
diagram for the
example

The arcs (represented as arrows in the diagram) have single or double arrows at one
or both ends. The arrows mean the following:

• Each single or double arrow corresponds to a data member.

• Each single arrow points to the node representing the value type of the
corresponding data member.

• Each double arrow corresponds to a collection-valued data member. It points to
the node representing the element type of the collection.

• The data member corresponding to a given single or double arrow is defined by
the class represented by the node at the other end of the arc containing the arrow.

Schema class
definitions for
the example

The entity-relationship diagram represents the following schema:

class part {
 public:
 int part_id ;
 os_collection &components ;
 os_collection &resp_engs ;
 } ;

class employee {
 public:

int
part_idcomponents

emps deptresp_engs

parts_resp_for

head_ofdept_head

part

employee department
Release 6.3 157

Example: Dynamic Type Creation
 department *head_of ;
 department *dept ;
 os_collection &part_resp_for ;
 } ;

class department
{
 public:
 employee *dept_head ;
 os_collection &emps ;
} ;

If a single arrow points to a node with a class name as label, a pointer to that class is
used as the value type of the corresponding data member. This is a simple way to
prevent circular dependencies (assuming that arrays of classes are not used). Double
arrows correspond to data members whose value type is os_collection&. A future
release will support the dynamic creation of parameterized types, so it will be
possible to use, for example, os_Collection<part*>&, instead of os_collection&.

gen_schema() Function
Function
arguments

The function gen_schema() takes as argument an entity-relationship diagram
represented as an os_Collection<arc*>. An arc has two associated nodes and two
associated labels. It also has two associated ends, each of which can have no arrow,
a single arrow, or a double arrow.

node and arc
class definitions

Following are the definitions of the classes node and arc as defined in the graph.hh
header file:

/* graph.hh */

#include <string.h>

enum end_enum { no_arrow, single_arrow, double_arrow } ;

class node {
 public:
 char *label ;
 static os_typespec *get_os_typespec() ;
 node (char *l) ;
};

class arc {
 public:
 node *node_1 ;
 node *node_2 ;
 end_enum end_1 ;
 end_enum end_2 ;
 char *label_1 ;
 char *label_2 ;

 static os_typespec *get_os_typespec() ;

 arc (
 node *n1,
 node *n2,
 end_enum e1,
 end_enum e2,
158 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 char *l1,
 char *l2
) ;
};

node and arc
constructors

Following are the implementations of the node and arc constructors, as defined in
the graph.cc program file:

/* graph.cc */

#include <ostore/ostore.hh>

#include "graph.hh"

arc::arc (
 node *n1,
 node *n2,
 end_enum e1,
 end_enum e2,
 char *l1,
 char *l2
) {
 node_1 = n1;
 node_2 = n2;
 end_1 = e1;
 end_2 = e2;

 if (l1) {
 label_1 = new(
 os_segment::of(this),
 os_typespec::get_char(),
 strlen(l1) + 1
) char[strlen(l1) + 1];
 strcpy(label_1, l1);
 } /* end if */
 else
 label_1 = 0;

 if (l2) {
 label_2 = new(
 os_segment::of(this),
 os_typespec::get_char(),
 strlen(l2) + 1
) char[strlen(l2) + 1];
 strcpy(label_2, l2);
 } /* end if */

 else
 label_2 = 0;
}

node::node (char *l) {
 label = new(
 os_segment::of(this),
 os_typespec::get_char(),
 strlen(l) + 1
) char[strlen(l) + 1];
 strcpy(label, l);
}

Release 6.3 159

Example: Dynamic Type Creation
Supporting Functions for the gen_schema() Application
The function gen_schema() is supported by five other functions:

• ensure_in_trans()

• copy_to_trans()

• add_single_valued_member()

• add_many_valued_member()

• add_member()

The function gen_schema() processes each arc in the diagram one at a time. For
each arc, it first looks at the two associated nodes. Then gen_schema() performs
ensure_in_trans() on each of the two nodes.

ensure_in_trans() determines whether there is a type in the transient schema
whose name is the node’s label. If there is not, it determines whether there is a type
in the application schema whose name is the node’s label. If there is, ensure_in_
trans() copies it to the transient schema (using copy_to_trans()). If there is not,
ensure_in_trans() creates a class with that name. It returns a pointer to the newly
created, copied, or retrieved type.

Copying types from the application schema to the transient schema is the typical
means of getting ObjectStore system-supplied classes into the transient schema.
However, built-in C++ types, such as int, are already present in the transient
schema.

Lookups in the application schema and copying from the application schema must
be performed within a transaction because they are operations on a database (the
application schema database).

Next, gen_schema() determines which of the following eight cases applies to the arc
at hand:

• end_1 has a single arrow and end_2 has no arrow.

• end_1 has no arrow and end_2 has a single arrow.

• end_1 has a double arrow and end_2 has no arrow.

• end_1 has no arrow and end_2 has a double arrow.

• end_1 has a single arrow and end_2 has a single arrow.

• end_1 has a double arrow and end_2 has a single arrow.

• end_1 has a single arrow and end_2 has a double arrow.

• end_1 has a double arrow and end_2 has a double arrow.

In each case, one or two data members are created, depending on whether there are
arrows at one or both ends. A future release will support the dynamic creation of
ObjectStore relationship members, so it will be possible to create relationship
members in the case in which an arc has arrows at both ends. For now, the example
creates regular data members.

Each data member is created and added to the appropriate defining class. This is
accomplished by add_single_valued_data_member() or add_many_valued_
160 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
member(). Each of these functions creates a data member and then calls add_
member(), which adds a specified member to a specified class.

Call Graph of Non-ObjectStore Functions for gen_schema()

After gen_schema() finishes processing all the arcs, the transient schema contains
the schema represented by the diagram.

gen_schema.cc Source File
Following is the code for gen_schema() and its supporting functions, all of which is
contained in the gen_schema.cc file:

/* gen_schema.cc */

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/mop.hh>
#include <stdlib.h>
#include <iostream>
#include <assert.h>

#include "graph.hh"

void error(char *m) {
 cout << m << "\n" ;
 exit (1) ;
}

add_member()
function
definition

This function makes new_member a member of defining_class.

void add_member(os_class_type &defining_class,
 os_member &new_member) {

 os_List<os_member*> members(
 defining_class.get_members()
);

gen_schema()

add_single_valued_member()

ensure_in_trans() add_many_valued_member()

add_member()copy_to_trans()
Release 6.3 161

Example: Dynamic Type Creation
 members |= &new_member ;
 defining_class.set_members(members) ;
}

os_class_type::get_members() returns an os_List<os_member*>. To add or
remove a member, copy the returned list and update the copy. Then pass the list to
os_class_type::set_members().

copy_to_trans()
function
definition

This function copies the class named class_name from the application schema to the
transient schema. It returns a pointer to the new copy. If the class cannot be found,
the function returns 0.

os_type *copy_to_trans(const char *class_name) {

 OS_BEGIN_TXN(tx1, 0, os_transaction::update)

 const os_type *the_const_type_ptr =
 os_app_schema::get().find_type(class_name) ;
 if (!the_const_type_ptr) return 0 ;

 const os_class_type &the_const_class =
 *the_const_type_ptr ;
 os_Set<const os_class_type*>
 to_be_copied_to_transient_schema ;
 to_be_copied_to_transient_schema |= &the_const_class ;
 os_mop::copy_classes (
 os_app_schema::get(),
 to_be_copied_to_transient_schema
) ;

 OS_END_TXN(tx1)
 return os_mop::find_type(class_name) ;
}

os_mop::copy_classes() requires an os_Set<const os_class_type*>. To create
this set with the appropriate contents, this function first retrieves a const os_type*,
dereferences it, and converts it to a const os_class_type&. The const os_class_
type& is then dereferenced and inserted into an os_Set<const os_class_type*>.
Next, this set is passed to os_mop::copy_classes(), which copies the set’s element
into the transient schema.

Finally, os_mop::find_type() is used to retrieve from the transient schema a (non-
const) os_type*, which is returned. The function does not simply return the_
const_type_ptr because copy_to_trans() should return a modifiable object, one
to which you can add members. Looking up a class in any schema except the
transient schema results in a const os_type*. Only a lookup in the transient schema
results in a non-const os_type*.

ensure_in_
trans() function
definition

If no type named type_name is in the transient schema, copy it into the transient
schema from the application schema. If no type named type_name is in the
application schema, create it in the transient schema. The function returns a reference
to type, named type_name, in the transient schema.

os_type &ensure_in_trans(const char *type_name){

 os_type *t = os_mop::find_type(type_name) ;
 if (!t)
162 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 t = copy_to_trans(type_name) ;
 if (!t) {
 os_class_type &c = os_class_type::create(type_name) ;
 c.set_is_forward_definition(0) ;
 c.set_is_persistent(1) ;
 t = &c ;
 } /* end if */

 return *t ;
}

When you create a class, the attribute is_forward_definition defaults to true.
Here it is set to false after creation because gen_schema() generates a class definition
for each node that represents a class. Similarly, is_persistent defaults to false.
Here, it is set to true so the new class can be installed in a database schema.

add_single_
valued_
member()
function
definition

This function creates an os_member_variable with value type value_type and
makes it a member of defining_type. If member_name is null, the function prints an
error and exits. If defining_class is not a class, the exception err_mop_illegal_
cast is signaled.

void add_single_valued_member(
 os_class_type &defining_class,
 os_type &value_type,
 const char *member_name
) {

 if (!member_name)
 error("unspecified member name") ;
 os_member_variable &new_member =
 os_member_variable::create(member_name, &value_type) ;
 add_member(defining_class, new_member) ;
}

While the formal parameter defining_class is of type os_class_type&, the
corresponding actual parameter can be typed as os_type&. If you pass in such an
actual parameter, the MOP invokes os_type::operator os_class_type&(),
which converts the actual parameter to an os_class_type&. If the object designated
by the actual parameter is not really an instance of os_class_type, the operator
signals err_mop_illegal_cast.

add_many_
valued_
member()
function
definition

This function creates an os_member_variable with value type os_collection& and
makes it a member of defining_type. If member_name is null, the function prints an
error and exits. If defining_class is not a class, err_mop_illegal_cast is
signaled.

void add_many_valued_member(
 os_class_type &defining_class,
 const char *member_name
) {
 if (!member_name)
 error("unspecified member name") ;
 os_type *the_type_os_collection_ptr =
 os_mop::find_type("os_collection") ;
 if (!the_type_os_collection_ptr)
 the_type_os_collection_ptr =
 copy_to_trans("os_collection") ;
Release 6.3 163

Example: Dynamic Type Creation
 if (!the_type_os_collection_ptr)
 error("Could not find the class os_collection in the \
 application schema") ;
 os_member_variable &new_member =
 os_member_variable::create(
 member_name,
 &os_reference_type::create(the_type_os_collection_ptr)
) ;

 add_member(defining_class, new_member) ;
}

This function copies the class os_collection from the application schema to the
transient schema if it is not already present in the transient schema.

gen_schema()
function
definition

This function creates classes in the transient schema database based on the graph
specified by the arcs.

void gen_schema(const os_Collection<arc*> &arcs) {

 /* process each arc in the graph */
 os_Cursor<arc*> c(arcs) ;
 for (arc *a = c.first(); a; a = c.next()) {
 os_type &t1 = ensure_in_trans(a->node_1->label) ;
 os_type &t2 = ensure_in_trans(a->node_2->label) ;

 /* handle 1 of 8 cases, depending on arc’s arrows */

 if (a->end_1 == no_arrow && a->end_2 == single_arrow)
 if (t2.get_kind() != os_type::Class)
 add_single_valued_member(
 t1, /* defining type */
 t2,/* value type */
 a->label_2 /* member with value type t2 */
) ;
 else
 add_single_valued_member(
 t1, /* defining type */
 os_pointer_type::create(&t2), /* value type */
 a->label_2 /* of member with value type t2 */
) ;

 else if (a->end_1 == single_arrow && a->end_2 ==
 no_arrow)
 if (t1.get_kind() != os_type::Class)
 add_single_valued_member(
 t2, /* defining type */
 t1, /* value type */
 a->label_1 /* member with value type t1 */
) ;
 else
 add_single_valued_member(
 t2, /* defining type */
 os_pointer_type::create(&t1), /* value type */
 a->label_1 /*member with value type t1 */
) ;

 else if (a->end_1 == no_arrow && a->end_2 ==
 double_arrow)
 add_many_valued_member(
164 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 t1, /* defining type */
 a->label_2 /* name of many-valued member */
) ;

 else if (a->end_1 == double_arrow && a->end_2 ==
 no_arrow)
 add_many_valued_member(
 t2, /* defining type */
 a->label_1 /* name of many-valued member */
) ;

 else if (a->end_1 ==single_arrow && a->end_2 ==
 single_arrow) {
 /* binary relationship */
 add_single_valued_member(
 t1, /* defining type */
 os_pointer_type::create(&t2), /* value type */
 a->label_2 /* member with value type t2 */
) ;
 add_single_valued_member(
 t2, /* defining type */
 os_pointer_type::create(&t1), /* value type */
 a->label_1 /* member with value type t1 */
) ;
 } /* end of else if */

 else if (a->end_1 == single_arrow && a->end_2 ==
 double_arrow) {
 /* binary relationship */
 add_single_valued_member(
 t2, /* defining type */
 os_pointer_type::create(&t1), /* value type */
 a->label_1 /* member with value type t1 */
) ;
 add_many_valued_member(
 t1, /* defining type */
 a->label_2 /* name of many-valued member */
) ;
 } /* end of else if */

 else if (a->end_1 == double_arrow && a->end_2 ==
 single_arrow) {
 /* binary relationship */
 add_single_valued_member(
 t1, /* defining type */
 os_pointer_type::create(&t2), /* value type */
 a->label_2 /* member with value type t2 */
) ;
 add_many_valued_member(
 t2, /* defining type */
 a->label_1 /* name of many-valued member */
) ;
 } /* end of else if */

 else if (a->end_1 == double_arrow && a->end_2 ==
 double_arrow) {
 /* binary relationship */
 add_many_valued_member(
 t1, /* defining type */
 a->label_2 /* name of many-valued member */
Release 6.3 165

Example: Dynamic Type Creation
) ;
 add_many_valued_member(
 t2, /* defining type */
 a->label_1 /* name of many-valued member */
) ;
 } /* end of else if */
 } /* finish processing arcs (for loop)*/
}

Driver Definition
This section describes a driver that creates a graph representing the diagram shown
at Call Graph of Non-ObjectStore Functions for gen_schema() on page 161. It then
passes the graph to gen_schema(), which updates the transient schema. Next, the
driver installs in the schema of a specified database those classes that are in the
transient schema. Finally, it creates an instance of each dynamically created class.

The driver relies on two functions, find_class() and find_member_variable(), to
instantiate the dynamically created classes. These supporting functions are shown
first.

find_class()
function
definition

This function returns a reference to the class in the_schema named class_name. If
the class is not found, the function returns an error. If class_name is not a class, err_
mop_illegal_cast is signaled.

const os_class_type &find_class(
 const char *class_name,
 const os_schema &the_schema
) {

 const os_type *the_type_ptr =
 the_schema.find_type(class_name) ;
 if (!the_type_ptr)
 error("Cannot find class with specified name") ;
 return *the_type_ptr ;
}

find_member_
variable()
function
definition

This function returns a reference to the member of defining_class named member_
name. If member_name is not found, the function returns an error. If member_name is
not a data member, err_mop_illegal_cast is signaled.

const os_member_variable &find_member_variable(
 const os_class_type &defining_class,
 const char *member_name
) {

 const os_member *the_member =
 defining_class.find_member_variable(member_name);
 if (!the_member)
 error("Could not find member with specified name.");
 return *the_member ;
}

Driver main()
function
definition

The following code is the main() function for the dynamic type creation example.

void main(int, char **argv) {

 objectstore::initialize() ;
 os_collection::initialize() ;
166 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
 os_mop::initialize() ;

 if (!argv[1])
 error("null database name\n") ;

/* create a graph representing an entity-relationship diagram */
/* the graph is a collection of arcs */

 os_Collection<arc*> &arcs =
 os_Collection<arc*>::create(
 os_database::get_transient_database()
) ;

 node *part_node = new node("part") ;
 node *employee_node = new node("employee") ;
 node *int_node = new node("int") ;
 node *department_node = new node("department") ;
 arcs |= new arc(
 part_node,
 int_node,
 no_arrow,
 single_arrow,
 0,
 "part_id"
) ;

 arcs |= new arc(
 part_node,
 part_node,
 no_arrow,
 double_arrow,
 0,
 "components"
) ;

 arcs |= new arc(
 employee_node,
 department_node,
 single_arrow,
 single_arrow,
 "dept_head",
 "head_of"
) ;

 arcs |= new arc(
 employee_node,
 department_node,
 double_arrow,
 single_arrow,
 "emps",
 "dept"
) ;

 arcs |= new arc(
 part_node,
 employee_node,
 double_arrow,
 double_arrow,
 "parts_resp_for",
 "resp_engs"
Release 6.3 167

Example: Dynamic Type Creation
) ;

 cout << "Calling gen_schema() ...\n" ;
 gen_schema(arcs) ;
 cout << "Schema generated. Installing schema ...\n" ;
 os_database *db = os_database::open(argv[1], 0, 0664) ;

/* install schema in db */

 OS_BEGIN_TXN(tx1, 0, os_transaction::update)
 os_database_schema::get_for_update(*db).install(
 os_mop::get_transient_schema()
) ;
 OS_END_TXN(tx1)

 OS_BEGIN_TXN(tx2, 0, os_transaction::update)
 /* create a part, an employee, and a department */
 /* and partially initialize them */

 os_typespec part_typespec("part") ;
 os_typespec employee_typespec("employee") ;
 os_typespec department_typespec("department") ;

 const os_database_schema &the_database_schema =
 os_database_schema::get(*db) ;
 const os_class_type &the_class_part = find_class("part",
 the_database_schema) ;
 const os_class_type &the_class_employee = find_class(
 "employee", the_database_schema) ;

 void *a_part_ptr = ::operator new(
 the_class_part.get_size(),
 db,
 &part_typespec
) ;

 void *an_emp_ptr = ::operator new(
 the_class_employee.get_size(),
 db,
 &employee_typespec
) ;

 void *a_dept_ptr = ::operator new(
 find_class("department",
 the_database_schema).get_size()
 db,
 &department_typespec
) ;

 os_collection &the_components_coll =
 os_collection::create(os_segment::of(a_part_ptr)) ;
 os_collection &the_resp_engs_coll =
 os_collection::create(os_segment::of(a_part_ptr)) ;

 the_resp_engs_coll |= an_emp_ptr ;

 os_store(
 a_part_ptr,
 find_member_variable(the_class_part, "part_id"),
 1
168 Advanced C++ A P I User Guide

Chapter 5: Metaobject Protocol
) ;

 os_store(
 a_part_ptr,
 find_member_variable(the_class_part,
 "resp_engs"),
 &the_resp_engs_coll
) ;

 os_store(
 a_part_ptr,
 find_member_variable(the_class_part,
 "components"),
 &the_components_coll
) ;

 os_store(
 an_emp_ptr,
 find_member_variable(the_class_employee,
 "dept"),
 a_dept_ptr
) ;

 db->create_root("part_root")->set_value(
 a_part_ptr, &part_typespec) ;

 OS_END_TXN(tx2)
 db->close() ;
 cout << "Done.\n" ;
}

How the driver
works

The driver performs schema installation by using os_database_
schema::install(). To perform installation on a database schema, you must
retrieve the schema with os_database_schema::get_for_update() instead of os_
database_schema::get(). The function os_database_schema::get() returns a
const os_database_schema& and install() requires a non-const schema&.

The driver instantiates the classes part, employee, and department by calling the
global function ::operator new() without a constructor call. The function os_
type::get_size() is used to supply the size_t argument to ::operator new().
The function ::os_store() is used to partially initialize the instance of part.

You can run this program and use the browser to verify that it produces the class
definitions presented at “Schema class definitions for the example” on page 157.
Release 6.3 169

Example: Dynamic Type Creation
170 Advanced C++ A P I User Guide

Chapter 6
Dump/Load Facility

The ObjectStore dump/load facility allows you to

• Dump to an ASCII file the contents of a database or group of databases

• Generate a loader executable capable of creating, given the ASCII as input, an
equivalent database or group of databases

The dumped ASCII has a compact, human-readable format. You use the ASCII as
input to the loader.

By default, objects are dumped in terms of the primitive values they directly or
indirectly contain. You can use the default dump and load processes or customize
the dumping and loading of particular types of objects. You can, for example, dump
and load objects in terms of sequences of high-level API operations needed to
recreate them, rather than in terms of the primitive values they contain. This is
appropriate for certain location-dependent structures, such as hash tables.

To enhance efficiency during a dump, database traversal is performed in address
order whenever possible. To enhance efficiency during loads, loaders are generated
by the dumper and tailored to the schema involved. This eliminates most run-time
schema lookups during the loading.

Read about the dump/load facility in osdump in Chapter 4 of Managing ObjectStore
before you read the discussion in this chapter. This chapter addresses the following
topics:

When Is Customization Required? 172

Customizing Dumps 173

Customizing Loads 176

Specializing os_Planning_action 177

Specializing os_Dumper_specialization 180

Specializing os_Fixup_dumper 184

Specializing os_Type_info 186

Specializing os_Type_loader 188

Specializing os_Type_fixup_info 194

Specializing os_Type_fixup_loader 195
Release 6.3 171

When Is Customization Required?
When Is Customization Required?
In most cases, customization is unnecessary. The basic types, pointers, ObjectStore
references, collections, indexes, and most instances of classes are handled without
any customization.

However, you might want to use customization to

• Change representation

• Improve locality

• Reduce the size of the dump output file

• Make the dump format more readable

There are also some circumstances when you must take advantage of specialization.
You must customize the dumping and loading of C++ unions. In addition, you might
have to customize the dumping and loading of objects whose structure depends on
the locations of other objects.

A dumped object and its equivalent loaded object do not necessarily have the same
location, that is, the same offsets in their segment. Among the implications of this are
the following:

• Other objects might use different pseudoaddresses (the identifier a segment uses
for an object pointed to by that segment) to refer to the dumped and loaded
objects.

• Their addresses might hash to different values; that is, for example,
objectstore::get_pointer_numbers() might return different values for the
dumped and loaded objects.

The default dumper and loader take into account the first implication, and the loader
automatically adjusts all pointers in loaded databases to use the new locations. The
default dumper and loader also take into account the second implication for
ObjectStore collections with hash-table representations. Because a dumped
collection element hashes to a different value than the corresponding loaded element
does, the dumped and loaded element’s hash-table slots are different. The facility,
then, does not simply dump and load the array of slots based on fundamental values
(which would result in using the same slot for the dumped and loaded objects).

Instead, it dumps the collection in terms of sequences of high-level API operations
(that is, string representations of create() and insert() arguments) that the loader
can use to recreate the collection with the appropriate membership.

The default dumper and loader do not take into account the second implication for
non-ObjectStore classes. If you have collection classes that use hash-table
representations, you must customize their dumping and loading. Any other
location-dependent details of data structures (such as encoded offsets) should also
be dealt with through customization.

Although the facility provides a great deal of flexibility, customization typically
takes the same form as the ObjectStore collection customization previously
described.
172 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
Customizing Dumps
If you want to dump and load a database containing a location-dependent data
structure, you should dump and load the data structure in terms of a sequence of
operations that recreates the data structure. The dumper emits the arguments for
each operation in the sequence, and the loader recreates the data structure by
performing the operations using the arguments in the dumped ASCII.

Creation Stages
Typically, this sequence of operations can be divided into two stages, corresponding
to two stages of loading a data structure:

• Initialization stage: This stage creates an instance of the structure in a location-
independent state. For example, it creates an empty collection. The object created
is called the root of the dumped object.

• Fixup stage: This stage performs operations on the root portion to recreate the
dumped object in the appropriate location-dependent state. For example, this
stage inserts elements into the empty collection. Any additional objects created as
a result of these fixup operations are called nonroot objects.

Because some objects required for the fixup stage might not exist during the
initialization stage, the loader must typically perform the initialization stage, load
other objects, then perform the fixup stage. This means that the dumper must dump
the arguments for the initialization stage, dump all other objects (except nonroot
objects), then dump the arguments for the fixup stage.

For example, when the root of a collection is loaded, the collection elements might
not yet exist, so the loader usually creates an empty collection, loads the elements (as
well as other objects), then inserts the elements. And the dumper usually dumps the
create() arguments, dumps the elements (and all other objects except nonroot
objects), then dumps the insert() arguments.

It is important to distinguish between nonroots of a data structure and objects that
are not part of the data structure at all. For example, if a collection’s elements are
pointers, the pointer objects are nonroots of the collection’s data structure, but the
objects pointed to by the elements are not part of the data structure at all.

Dumper Actions
To accommodate these stages, the dumper operates in three different modes,
performing different kinds of actions in each mode:

• Plan mode: While in plan mode, the dumper invokes type-specific planner actions
to identify the nonroot portions of dumped objects. Planner actions store this
information, which the dumper accesses when in object-dump mode, to avoid
dumping nonroot portions. Because nonroot portions of objects are effectively
dumped in fixup-dump mode, they must be ignored while in object-dump mode.

• Object-dump (object form generation) mode: While in object-dump mode, the
dumper invokes type-specific object-dumper actions, which typically emit strings
Release 6.3 173

Customizing Dumps
from which the loader can reconstruct arguments. The loader creates the root
object by passing the arguments to a high-level API (such as a create() function).
Object dumpers also create fixup dumpers.

• Fixup-dump (fixup form generation) mode: While in fixup-dump mode, the
dumper invokes type-specific fixup-dump actions, which typically emit strings
from which the loader can reconstruct arguments. The loader updates the root
portion and creates the nonroot portion by passing the arguments to a high-level
API (such as an insert() function).

The following pseudocode summarizes the flow of control among modes:

for each database, db, specified on the command line {

 for each segment, seg, in db {

 // plan mode
 for each top-level object, o, in seg
 Invoke the planner for o’s type on o

 // dump mode
 for each top-level object, o, in seg
 Invoke the object dumper for o’s type on o
 If necessary, create a fixup dumper for o, and
 associate it with either seg, db, or the whole dump

 // fixup mode
 for each fixup dumper associated with seg
 Invoke that fixup dumper
 }

 // fixup mode
 for each fixup dumper associated with db
 Invoke that fixup dumper
}

// fixup mode
for each fixup associated with the whole dump
 invoke that fixup dumper

By default, object-dump actions sometimes invoke other object-dump actions on
embedded objects. The following summarizes the behavior of the different object
dump actions invoked by the default dumper for different types of objects:

• If the object is a fundamental value, pointer, or C++ reference, a type-specific
dumper is invoked that dumps the value by using the C++ stream operator.

• If the object is an array, the array dumper, which handles these cases recursively
for each array element, is invoked.

• If the object is an instance of a class, a class-specific dumper is invoked, if there is
one. Otherwise, the generic class-instance dumper is invoked, which handles
these cases recursively for each data member and base class of the class.

• If the object is an instance of an ObjectStore class, it invokes a class-specific
dumper.

Default fixup-dump actions also invoke fixup-dump actions on embedded objects in
the same way.
174 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
For each object form the loader processes, it invokes a type-specific object loader in
a manner similar to that described for the dumper.

Supplying Customized Type-Specific Actions
To customize the dumping of objects of a given type, you specialize base classes
whose instances represent the three kinds of dumper actions:

• Planner classes: one or more subclasses of os_Planning_action that handle
identification of nonroot objects

• Object-dumper class: a subtype of os_Dumper_specialization that handles
generation of object forms

• Fixup-dumper class: a subtype of os_Fixup_dumper that handles generation of
fixup forms

To support planning for a given class, class, choose one of the following
approaches:

• Shallow approach: for each type of nonroot object associated with instances of
class, derive a class from os_Planning_action. For example, if you are
customizing the dump of instances of my_hash_table, derive a class
corresponding to each class of nonroot object that forms a hash table, such as my_
hash_table_slot and my_hash_table_overflow_list.

• Deep approach: derive one class from os_Planning_action. An instance of this
derived class serves as the planner for class. For example, if you are customizing
the dump of instances of my_hash_table, derive the class my_hash_table_
planner.

The invocation operator of a planner corresponding to a given class takes an instance
of the class as argument. For example, my_hash_table_planner::operator ()()
takes an instance of my_hash_table as an argument. With the deep approach, the
invocation function typically navigates from the root object to the nonroots and
creates an ignore record for each nonroot object.

With the shallow approach, the invocation function creates an ignore record for the
argument or does nothing, depending on whether the argument is a nonroot object
of the data structure whose dump is being customized.

The shallow approach has better paging behavior, so use it if possible.

For each derived class supporting object dumping, planning, and fixup dumping,
perform these steps:

• Declare the derived class with certain members (see the following table).

• Implement the members.

In addition, for each derived class supporting object dumping and planning,
perform these steps:

• Define an instance (planner and object dumper only).

• Register the instance (planner and object dumper only).
Release 6.3 175

Customizing Loads
The following table shows the members of each class that you should implement.
Your implementations of these functions specify the objects to be ignored and the
dump formats.

Build the dumper executable, osdump, using a copy of
/etc/dumpload/makefile.w32 (for Windows platforms) or makefile.unx (for
UNIX platforms) in your installation directory. Be sure to set all the macros whose
name begins with USER_.

Customizing Loads
During a load, the loader processes object and fixup forms in the order in which they
were emitted by the dumper. To provide a customized loader for a given type, you
implement functions that support the following tasks:

• Translation of an object form for the given type into the creation of a root object

• Translation of a fixup form for the given type into operations that modify the root
object or recreate the nonroot portion of the object

To do this, derive a class from each of the following base classes:

• os_Type_loader (handles object form translation)

• os_Type_info (holds information about the load of the current object form)

• os_Type_fixup_loader (handles fixup form translation)

• os_Type_fixup_info (holds information about the load of the current fixup
form)

For each derived class, you must perform these steps:

• Declare the class with certain members (see the following table).

• Implement the members.

• Define an instance.

• Register the instance.

Base Class Members

os_Planning_action operator ()()

os_Dumper_specialization operator ()()

should_use_default_constructor()

get_specialization_name()

os_Fixup_dumper Constructor

dump_info()

duplicate()
176 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
The following table shows the members of each class that you should implement:

Build the loader executable, osload, using a copy of /etc/dumpload/makefile.w32
(for Windows platforms) or makefile.unx (for UNIX platforms) in your installation
directory. Be sure to set all the macros whose name begins with USER_.

Specializing os_Planning_action
Your specialization of os_Planning_action handles planning, including the
identification of objects for which object forms should not be generated.

If you are using the shallow approach to planning, for each type, type, of nonroot
object you must define a class that is

• Named type_planner

• Derived from os_Planning_action

For example, if my_table_entry is a type of nonroot object, use the following:

class my_table_entry_planner : public os_Planning_action {...}

If you are using the deep approach to planning, for the type, type, of the root object,
you must define a class that is

• Named type_planner

• Derived from os_Planning_action

For example, if my_hash_table is a type whose dump and load you want to
customize, use the following:

class my_hash_table_planner : public os_Planning_action {...}

Base Class Members

os_Type_info data

Constructor

os_Type_loader operator ()()

load()

create()

fixup()

get()

os_Type_fixup_info fixup_data

Constructor

os_Type_fixup_loader operator ()()

load()

fixup()

get()
Release 6.3 177

Specializing os_Planning_action
The derived class must implement operator ()().

You must also define and register an instance of the derived class.

If a class does not require fixups, it does not require planning. Even if it does require
fixups, it might not require planning. If the fixups do not create any objects that
would be dumped normally without planning, planning might be unnecessary.
However, if you want a dumper to not dump certain objects, for example, the
referent of a pointer for a given class, you should create a planner for the given class
that will mark the referent to be ignored.

Implementing operator ()()
void type_planner::operator () (
 const os_type& actual_type,
 void* object
);

Using shallow
approach

If you are taking the shallow approach to planning, implement type_
planner::operator ()() (where type is one type of nonroot object) to do the
following:

• Do type verification (optional). The actual_type argument is supplied for this
purpose.

• Dereference object and cast the result to type&.

• Determine whether the object should be ignored during object-dump mode. This
is entirely application specific.

If the object should be ignored, do the following:

• Create a stack-based os_Dumper_reference to the object. Use os_Dumper_
reference::os_Dumper_reference(void*). For more information, see os_
Dumper_reference::os_Dumper_reference() in Chapter 2 of the C++ A P I
Reference.

• Retrieve the database table. Use os_Database_table::get().

• Insert the os_Dumper_reference into the database table. Use os_database_
table::insert(os_Dumper_reference&). For more information, see os_
Database_table::insert() in Chapter 2 of the C++ A P I Reference.

Example Following is a typical implementation:

void type_planner::operator () (
 const os_type& actual_type,
 void* object
)
{
 ...
 /* Do type verification (optional) */
 assert_is_type(actual_type, object);
 ...
 type& obj = (type&)*object;
 ...

 if (should_ignore(obj)) {
 Dumper_reference ignored_object(&obj);
178 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
 Database_table::get().insert(ignored_object);
 }
 ...
}

In this example, assert_is_type() and should_ignore() are user defined.

If necessary, you can include application-specific processing in place of the "..."s.

Using deep
approach

If you are using the deep approach to planning, implement type_
:oplanner::operator ()() (where type is the type of the root object) to do the
following:

• Do type verification (optional). The actual_type argument is supplied for this
purpose.

• Dereference object and cast the result to type&.

• Retrieve the database table. Use os_Database_table::get(). For more
information about this function, see os_Database_table::get() in Chapter 2 of
the C++ A P I Reference.

• Find the associated nonroot objects.

For each associated nonroot object, do the following:

• Create a stack-based os_Dumper_reference to the object or set one to refer to the
object. Use os_Dumper_reference::os_Dumper_reference(void*) or os_
Dumper_reference::operator =().

• Insert the os_Dumper_reference into the database table. Use os_Database_
table::insert(os_Dumper_reference&). For more information about this
function, see os_Database_table::insert() in Chapter 2 of the C++ A P I
Reference.

Example Following is a typical implementation:

{
 ...
 /* Do type verification (optional) */
 assert_is_type(actual_type, object);
 ...
 type& obj = (type&)*object;
 ...
 if (should_ignore(obj) {
 Dumper_reference ignored_object(&obj);
 Database_table::get().insert(ignored_object);
 }
 (*reachable_type_planner)(obj.reachable_pointer);
 ...
}

If you can define dump-related members of type, you can use the following
approach:

void <type>_planner::operator () (const os_type& actual_type,
 void* object)
{
 ...
 type& obj = (type&)*object;
Release 6.3 179

Specializing os_Dumper_specialization
 obj.plan_dump();
 ...
}

void type::plan_dump ()
{
 ...
 if (should_ignore(obj) {
 Dumper_reference ignored_object(&obj);
 Database_table::get().insert(ignored_object);
 }
 ...
 /* consider directly reachable objects */
 reachable_pointer->plan_dump();
 ...
}

Defining and Registering the Instance
You must define an instance:

static type_planner the_type_planner;

and register it by including an entry in the global array entries[]:

static os_Planner_registration_entry planner_entries[] = {
 ...
 os_Planner_registration_entry("type", &the_type_planner),
 ...
}

static const unsigned number_planner_registration_entries
 = OS_NUMBER_REGISTRATIONS(
 planner_entries,
 os_Planner_registration_entry
);

static os_Planner_registration_block planner_block(
 planner_entries,
 number_planner_registration_entries,
 __FILE__,
 __LINE__
);

This code should be at top level.

Specializing os_Dumper_specialization
Your specialization of os_Dumper_specialization handles the dumping of object
forms.

To customize the dump and load of instances of a type, type, define a class that is

• Named type_dumper

• Derived from os_Dumper_specialization
180 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
For example, to customize the dump and load of instances of my_collection, use
the following:

class my_collection_dumper : public os_Dumper_specialization {...}

The derived class must implement the following functions:

• operator ()(): handles generation of the value portion of object forms

• should_use_default_constructor(): determines the constructor that is called
in dumper-generated code for constructing embedded objects

Under some circumstances, you must implement type_dumper::get_
specialization_name().

You must also define and register an instance of the derived class.

Implementing operator ()()
void type_dumper::operator () (
 const os_class_type& actual_class,
 void* object
);

An object form has the following structure:

id (Type) value

When you supply an object-form dumper, you are responsible for generation of the
value portion only. The functions that generate the rest of the object form are
inherited from os_Dumper_specialization.

The value portion is generated by operator ()(). Implement operator ()() to
generate ASCII from which a loader can reconstruct function arguments. The
arguments should be those required for recreation of the root portion of the object
being dumped.

Define operator ()() to do the following:

• Dereference the void* argument and cast the result to type. (Optionally, do type
verification first.)

• Output the value portion of the object form.

• Create a type_fixup_dumper on the stack, passing the void* argument and the
os_class_type& argument to the type_fixup_dumper constructor.

• Insert the type_fixup_dumper into the database table.

Inserting a fixup dumper causes the dumper to generate a fixup form for object
after generating all the object forms. When a load processes this kind of fixup form
for object, it adjusts all pointers and C++ references in object so that they refer to
the appropriate newly loaded referent.

If type is a nonarray type, the typical implementation has the following form:

void type_dumper::operator () (
 const os_class_type& actual_class,
 void* object
)

Release 6.3 181

Specializing os_Dumper_specialization
{
 ...
 // optional type verification
 // assert function defined by user
 assert_is_type(actual_class, object);
 ...
 // cast the void*
 type& obj = (<Type&>)*object;
 ...
 // output the value portion of the object form
 get_stream() << obj.get_representation() << ' '
 << obj.get_size() << ' ';
 ...
 // create a Fixup_dumper on the stack
 type_fixup_dumper fixup(
 get_stream(),
 *this,
 actual_class,
 object
);
 // insert a fixup dumper for processing at the end of the dump
 Database_type::get().insert(fixup);
}

This example assumes that the output of type::get_representation() and
type::get_size() provides sufficient information to create the root of object.

You can insert application-specific processing in place of the "..."s, but this is not
required.

You usually need not customize array types because you can customize the element
type of an array type. The default array dumper calls the custom dumper on each
array element.

If you do want to customize the array dumper, implement the following overloading
of the invocation operator:

void type_dumper::operator () (
 const os_class_type& actual_class,
 void* object,
 unsigned number_elements
)
{
 ...
}

Implementing should_use_default_constructor()
os_boolean should_use_default_constructor(
 const os_class_type& class_type
) const;

If there are no instances of type embedded (as a data member value or object
corresponding to a base class) in instances of a noncustomized class, define this
function to return 1. If there are instances of type embedded in instances of a
noncustomized class, you might want to define this function to return 0.

When you customize the dump and load of a type, you supply code to create
instances of the type during a load. See Implementing create() on page 190. This code
182 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
is used for all nonembedded instances of the type. For an instance of the type
embedded in a noncustomized type, the loader calls the customized type’s
constructor automatically, using code generated by the dumper.

For a given customized type, type, you determine which of two constructors is
called in the dumper-generated code:

• The no-argument constructor, type::type()

• The special loader constructor type(type_data&)

See Implementing data on page 187 for information on type_data.

If you implement type_Loader::should_use_default_constructor() to return
0, the dumper-generated code calls the no-argument constructor. If you implement
type_Loader::should_use_default_constructor() to return 1, the dumper-
generated code calls the special loader constructor.

If there are nonembedded instances of type, the constructor you specify with
should_use_default_constructor() must be the same as the constructor you call
in the corresponding loader’s create() function. See Implementing create() on
page 190 for more information.

Implementing get_specialization_name()
char* get_specialization_name(
 const os_class_type& class_type
) const;

You must define this function only if there is a subtype of type such that both of the
following hold:

• In the database to be dumped, an instance of the subtype is embedded in another
object.

• The subtype is not customized.

In this case, define the function to return the character string "type", given an os_
class_type& for each such subtype.

Deleting the returned string is the responsibility of the caller of this function.

Defining and Registering the Dumper Instance
You must define an instance of type_dumper:

static type_dumper the_type_dumper;

and register it by including an entry in the global array entries[]:

static os_Dumper_registration_entry entries[] = {
 ...
 os_Dumper_registration_entry("type", &the_type_dumper),
 ...
};

static const unsigned number_dumper_registration_entries
 = OS_NUMBER_REGISTRATIONS(
 entries,
Release 6.3 183

Specializing os_Fixup_dumper
 os_Dumper_registration_entry
);

static os_Dumper_registration_block block(
 entries,
 number_dumper_registration_entries,
 __FILE__,
 __LINE__
);

This code should be at top level.

Specializing os_Fixup_dumper
The dumper invokes type-specific fixup-dump actions that typically emit strings
from which the loader can reconstruct arguments. Your specialization of os_Fixup_
dumper handles the dumping of fixup forms.

To customize the dump and load of instances of a type, type, define a class that is

• Named type_fixup_dumper

• Derived from os_Fixup_dumper

For example, to customize the dumping and loading of instances of my_collection,
use the following:

class my_collection_fixup_dumper :
 public os_Fixup_Dumper {...}

The derived class must implement the following functions:

• dump_info(): handles generation of the value portion of fixup forms

• duplicate(): supports insertion of an instance of type_fixup_dumper into the
database table

• Constructor: passes arguments to the base type constructor

For a description of the os_Fixup_dumper class and its member functions, see os_
Fixup_dumper in Chapter 2 of the C++ A P I Reference.

Implementing dump_info()
void type_fixup_dumper::dump_info()

A fixup form has the following structure:

fixup id (Type) info

When you supply a fixup-form dumper, you are responsible for generation of the
info portion only. The functions that generate the rest of the fixup form are inherited
from os_Fixup_dumper.

The info portion is generated by dump_info(). Implement dump_info() to generate
ASCII from which a loader can reconstruct function arguments. The arguments
184 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
should be those required for recreation of the nonroot portion of the object being
fixed up.

Where type is the type of object being fixed up, the function should

• Do type verification (optional). Retrieve the type of the object being fixed with os_
Fixup_dumper::get_type(). For information about this function, see os_Fixup_
dumper::get_type() in Chapter 2 of the C++ A P I Reference.

• Retrieve the object being fixed with os_Fixup_dumper::get_object_to_fix().
Cast the result to type&. For information about this function, see os_Fixup_
dumper::get_object_to_fix() in Chapter 2 of the C++ A P I Reference.

• Output the strings from which the loader can reconstruct the arguments.

To dump arguments that are pointers or C++ references, use the os_Dumper_
reference class as follows:

• Use os_Dumper_reference::operator =() to create a stack-based dumper
reference corresponding to the pointer or C++ reference. For information about
this function, see os_Dumper_reference::operator =() in Chapter 2 of the C++
A P I Reference.

• Pass the dumper reference to operator <<(), to add its ASCII to the dump
stream.

For information about this function, see os_Dumper_reference in Chapter 2 of the
C++ A P I Reference.

A loader can reconstruct the dumper reference from the load stream with operator
>>() and get the location of the newly loaded referent with os_Dumper_
reference::resolve(). For more information about this function, see os_Dumper_
reference::resolve() in Chapter 2 of the C++ A P I Reference.

Example For example, a fixup form for a collection might include ASCII from which a dumper
can reconstruct all the collection’s elements:

void type_fixup_dumper::dump_info() const
{
 ...
 const void* object = get_object_to_fix();
 assert_is_type(get_type(), object);
 ...
 type& obj = (type&)*object;
 ...
 os_Dumper_reference ref;
 for (unsigned count = 0; count < obj.get_size(); ++count) {
 element_type& element = obj[count];
 ref = element;
 get_stream() << ref << ' ';
 }
 // info terminator -- assumes no null elements
 ref = 0;
 get_stream() << ref << ' ';
 ...
}

In this example,
Release 6.3 185

Specializing os_Type_info
• element_type is the type of object contained by instances of type (the example
assumes instances of type are collections).

• assert_is_type() type::operator []() and type::operator []() are user
defined.

If necessary, you can include additional application-specific processing in place of
the "..."s.

Implementing duplicate()
Fixup& type_fixup_dumper::duplicate()

Implement duplicate() to allocate a copy of this type_fixup_dumper in the
specified segment. The following example assumes that type_fixup_dumper
defines a copy constructor and a get_os_typespec() function.

Fixup& type_fixup_dumper::duplicate(
 os_segment& segment
) const
{
 return *new(segment, type_fixup_dumper::get_os_typespec())
 type_fixup_dumper(*this);
}

Be sure to include type_fixup_dumper in the application schema of the emitted
loader.

Implementing the Constructor
type_fixup_dumper(
 os_Dumper_stream&,
 os_Dumper&,
 const os_class_type&,
 const os_Dumper_reference object_to_fix,
 unsigned number_elements = 0
);

Implement the constructor to pass the arguments to the base type constructor:

os_Fixup_dumper(
 os_Dumper_stream&,
 os_Dumper&,
 const os_class_type&,
 const os_Dumper_reference object_to_fix,
 unsigned number_elements = 0
);

Specializing os_Type_info
class type_info : public os_Type_info

A type_info holds information about the loading of the object form currently being
processed, as described in os_Type_info in C++ A P I Reference, Chapter 2. The
derived type must:
186 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
• Declare the data member type_info::data: this member points to an instance of
type_data, which holds the information required to construct the object being
loaded.

• Define a type_info constructor: the constructor takes a type_data argument;
passes other arguments to a base type constructor.

• Declare type_loader as a friend class of type_info.

For each instance of type being loaded, type_loader::operator ()() makes an
instance of type_data and an instance of type_info that points to the type_data. It
passes the type_data to load(), which sets the fields of the type_data based on the
contents of the dump stream.

type_loader::operator ()() then passes the type_info to create(), which uses
the information to create the postload object.

Your specialization can add any members you find convenient.

Implementing data
type_data &data;

To implement this public data member, derive a type, type_data, from os_Type_
data (this base class has no members). Define a data member of type_data for each
portion of the object-form value emitted by type_dumper::operator ()(). These
members are set by load() based on information in the load stream and are used
later by create() and fixup() to recreate the object being loaded.

type_data should have a data member for each data member and base class of type.
For pointer and (C++) reference members of type, the type_data member should be
of type os_Fixup_reference. For embedded arrays, the type_data member should
also be of type os_Fixup_reference. For embedded class members, the type should
be embedded_class_data. All data members corresponding to a base class should
have the base class as their value type.

All other data members should have the same value types as the corresponding
members of type. All data members of type_data should have the same names as
the corresponding members or base classes of type.

Implementing the Constructor
type_info(
 type_loader& cur_loader,
 os_Loader_stream& lstr,
 os_Object_info& info,
 type_data& data_arg
);

Implement this function to set type_info::data to data_arg. Pass the first three
arguments to the following os_Type_info constructor:

os_Type_info(
 os_Type_loader& cur_loader,
 os_Loader_stream& lstr,
 os_Object_info& info
);
Release 6.3 187

Specializing os_Type_loader
cur_loader is the loader for the object currently being loaded.

lstr is the dump stream from which the current object form is being processed.

info is the loader information for the object being loaded.

When you call type_info::type_info() from within type_loader::operator
()(),

• Pass *this as cur_loader.

• Pass the stream passed in (as lstr) to operator ()().

• Cast to os_Object_info& the loader information passed in to operator ()().
Pass the result of the cast as info.

You can define this constructor to have additional arguments if they are necessary
for your specialization.

For more information about the constructor, see os_Type_info::os_Type_info()
in Chapter 2 of the C++ A P I Reference .

Specializing os_Type_loader
Your specialization of os_Type_loader handles the loading of object forms.

To customize the dumping and loading of instances of a type, type, define a class
that is

• Named type_loader

• Derived from os_Type_loader

For example, to customize the dumping and loading of instances of my_collection,
use the following:

class my_collection_loader :
 public os_Type_loader {...}

The derived class must implement the following functions:

• operator ()(): calls load() and create().

• load(): reads the value portion of an object form from the load stream.

• create(): creates the postload object based on information set by load(). Also
calls fixup().

• fixup(): inserts fixup records into the database table for pointer or reference
adjustment.

• get(): returns the one and only instance of the derived class.

You must also define and register an instance of the derived class.
188 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
Implementing operator ()()
os_Loader_action* type_loader::operator () (
 os_Loader_stream& stream,
 os_Loader_info& previous_info
)

Implement the invocation operator to do the following:

• Create an instance of type_data on the stack.

• Create a stack-based instance of type_info, passing the type_data and
previous_info to the type_info’s constructor. Cast previous_info to os_
Object_info& before passing it to the os_Type_info() constructor.

• Pass the type_data to load().

• Pass the type_info to create().

Example Following is an example:

Loader_action* type_loader::operator () (
 os_Loader_stream& stream,
 os_Loader_info& previous_info
)
{
 os_Object_info& object_info = previous_info;
 type_data data;
 type_info info(*this, stream, object_info, data);
 load(stream, data, 1);
 create(info);
 return 0;
}

If there are instances of type embedded in instances of a noncustomized type, this
function is not called on those embedded instances. Instead, the loader calls your
load() and fixup() functions directly. Your create() function is not called for
embedded instances; the loader uses a generated constructor call instead.

Implementing load()
Loader_action* type_loader::load(
 os_Loader_stream& stream,
 os_Type_data& given_data,
 os_boolean is_most_derived_class
)

This function is responsible for reading the value portion of the object form from the
load stream and setting the data members of given_data accordingly.

After load() sets the data members of given_data, create() or fixup() uses
given_data to guide recreation of the object being loaded.

The function should do the following:

• Cast given_data to type_data&.

• Input each part of the dumped value; use the current portion of the dumped value
to set a data member of type_data. This value is used by type_
loader::create() to create the object being loaded.
Release 6.3 189

Specializing os_Type_loader
Returns 0 for success.

Example Following is an example:

Loader_action* type_loader::load(
 os_Loader_stream& stream,
 os_Type_data& given_data,
 os_boolean is_most_derived_class
)
{
 type_data& data = (type_data&) given_data;
 ...
 /* Input each part of the dumped value. */
 stream >> data.representation;
 stream >> data.size;
 ...
 return 0;
}

If the current portion of the dumped value is an embedded object form for a class,
embedded_class, retrieve that class’s loader with embedded_class_loader::get()
and call embedded_class_loader::load(), passing stream and the embedded_
class_data embedded in type_data:

/* Load embedded class. */
embedded_type_loader::get().load(
 stream,
 data.member,
 1
);

Implementing create()
void type_loader::create(os_Loader_info& given_info) ;

This function is responsible for creating the persistent object corresponding to the
object form being loaded. Arguments to persistent new can be retrieved from given_
info. Arguments to the object constructor can be retrieved from the type_data
associated with given_info.

The function should

• Cast given_info to type_info&.

• Call os_Type_info::get_replacing_location() on the result of the cast. For
more information about this function, see os_Type_info::get_replacing_
location() in Chapter 2 of the C++ A P I Reference.

• If the result is nonzero, the object being created is an element of a top-level array.
Call top-level operator new with the result of get_replacing_location() as
placement argument.

• If the result of get_replacing_location() is 0, the object is not being created as
an element of a top-level array. Call persistent new with the result of os_Type_
info::get_replacing_segment() as the placement argument; see os_Type_
info::get_replacing_segment() in Chapter 2 of the C++ A P I Reference.
190 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
• In either case, call a type constructor that restores all or part of the state of the
object being loaded. This constructor must not affect any state outside of the object
being loaded.

If the constructor call did not restore the entire state of the object, you must define
fixup() to restore the remaining state.

If there are instances of type embedded (as a data member value or object
corresponding to a base type) in an instance of a noncustomized type, the
constructor called in your create() function must be either a no-argument
constructor or the special loader constructor, type(type_data&).

If you use the special loader constructor, define type_dumper::should_use_
default_constructor() to return 0.

If you use a no-argument constructor, define type_dumper::should_use_default_
constructor() to return 1.

The function must also create a mapping record that records the predump and
postload locations of the object being loaded. To do this, the function must

• Get the type of object being loaded by performing os_Type_info::get_type()
on given_info. For more information about this function, see os_Type_
info::get_type() in Chapter 2 of the C++ A P I Reference.

• Construct a stack-based os_Dumper_reference corresponding to the postload
location of the object being loaded. Pass the location of the newly loaded object
(that is, the pointer returned by new) to the constructor.

• Call os_Type_info::set_replacing_location() on the type_info, passing
the location of the newly loaded object as argument. For more information about
this function, see os_Type_info::set_replacing_location() in Chapter 2 of
the C++ A P I Reference.

• Get the original (that is, predump) location of the loaded object with os_Type_
info::get_original_location(). For more information about this function,
see os_Type_info::get_original_location() in Chapter 2 of the C++ A P I
Reference.

• Retrieve the database table by using os_Database_table::get(). For more
information about this function, see os_Database_table::get() in Chapter 2 of
the C++ A P I Reference.

• Call os_Database_table::insert() on the database table, passing the original
location, the dumper reference, and the type of the dumped object. For more
information about this function, see os_Database_table::insert() in Chapter
2 of the C++ A P I Reference.

Finally, the function must call type_loader::fixup(), passing as arguments the
type_data and the location of the newly loaded object (that is, the pointer returned
by new).
Release 6.3 191

Specializing os_Type_loader
Example Following is an example:

void type_loader::create (os_Loader_info& given_info)
{
 type_info& info = (type_info&) given_info;
 type* value;
 void* location = info.get_replacing_location();

 if (location)
 value = ::new(location) type(info.data);

 else {
 value = new (
 &info.get_replacing_segment(),
 type::get_os_typespec()
) type(info.data);

// Insert a mapping of the constructed object's original
// location to its replacing location into the Database_table.
 const os_type& value_type = info.get_type();
 os_Dumper_reference replacing_location(value);
 info.set_replacing_location(value);
 os_Database_table::get().insert(
 info.get_original_location(),
 replacing_location,
 value_type
);
 }
 fixup(info.data, value, 1);
}

Implementing fixup()
void type_loader::fixup(
 os_Type_data& given_data,
 void* object,
 os_boolean is_most_derived_class
)

The default loader automatically adjusts pointers and references in loaded objects. If
you supply a type-specific loader, type_loader, you must explicitly direct the
loader to make these adjustments for instances of type.

You do this by defining fixup() to insert fixup records into the database table.
Perform one insert for each pointer, C++ reference, or ObjectStore reference
contained directly within instances of type. For each one, do the following:

• Construct a stack-based os_Dumper_reference corresponding to the address of
the pointer or reference contained in object.

• Construct a stack-based os_Dumper_reference corresponding to the predump
value of the pointer or reference contained in object.

• Retrieve the database table by using os_Database_table::get().

• Call os_Database_table::insert() on the database table, passing the
enumerator os_reference_fixup_kind::pointer and the two dumper
references.
192 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
fixup() is also responsible for setting members of the newly loaded object if the
constructor called by create() does not restore the entire state of the object being
loaded. In this case, make type_loader a friend of type to allow fixup() to access
private members of type.

If the constructor called by create() does restore the entire state of the object being
loaded, and instances of type contain no pointers, no C++ references, and no
ObjectStore references, you need not implement this function. You never have to
implement a no-op fixup().

Example Following is a typical implementation:

void type_loader::fixup (
 os_Type_data& given_data,
 void* object,
 os_boolean is_most_derived_class
)
{
 type_data& data = (type_data&) given_data;
 type& obj = type& *object;
 ...
 /* Fixup pointer. */
os_Dumper_reference pointer_location(&obj.pointer);
os_Dumper_reference original_referent_location(data.pointer);
 os_Database_table::get().insert
 (os_Reference_fixup_kind::pointer, pointer_location,
 original_referent_location);
 ...
}

If a portion of the dumped value is an embedded object form for a class, embedded_
class, retrieve that class’s loader with embedded_class_loader::get() and call
embedded_class_loader::fixup(), passing the embedded_class_data embedded
in type_data and the corresponding object embedded in obj:

 /* Fixup embedded object. */
 embedded_type_loader::get().fixup(
 data.member,
 &obj.member
);

Implementing get()
Define a global variable whose value is an instance of type_loader. Define type_
loader::get() to return this instance:

static type_loader the_type_loader;

Type_loader& type_loader::get()
{
 return the_type_loader;
}

Release 6.3 193

Specializing os_Type_fixup_info
Defining and Registering the Instance
You must define an instance:

static type_loder the_type_loader;

and register it by including an entry in the global array entries[]:

static os_Loader_registration_entry entries[] = {
 ...
 os_Loader_registration_entry("type", &the_type_loader),
 ...
}

static const unsigned number_loader_registration_entries =
 OS_NUMBER_REGISTRATIONS(
 entries,
 os_Loader_registration_entry
);

static os_Loader_registration_block block(
 entries,
 number_loader_registration_entries,
 __FILE__,
 __LINE__
);

This code should be at top level.

Specializing os_Type_fixup_info
class type_fixup_info : public os_Type_fixup_info

A type_fixup_info holds information about the loading of the fixup form currently
being processed. os_Type_fixup_info is derived from os_Type_info; see os_
Type_info in C++ A P I Reference, Chapter 2.

type_fixup_info must define two members:

• type_fixup_info::fixup_data: points to an instance of type_fixup_data,
which holds the information required to construct the object being loaded.

• type_fixup_info constructor: passes arguments to a base type constructor.

For each instance of type being loaded, type_fixup_loader::operator ()()
makes an instance of type_fixup_data and an instance of type_fixup_info that
points to the type_fixup_data. It passes the type_fixup_data to load(), which
sets the fields of the type_fixup_data based on the contents of the dump stream.

type_loader::operator ()() then passes the type_fixup_info to fixup(),
which uses the information to create the postload object.

Your specialization can add any members you find convenient.
194 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
Implementing fixup_data
type_fixup_data &fixup_data;

To implement this public data member, derive a type, type_fixup_data, from os_
Type_data. Define a data member of type_fixup_data for each portion of the
object-form value emitted by type_fixup_dumper::dump_info(). These members
are set by load() based on information in the load stream and are used later by
fixup() to recreate the object being loaded.

Implementing the Constructor
type_fixup_info(
 os_Type_fixup_loader cur_fixup_loader,
 os_Loader_stream lstr,
 os_Object_info& info,
 type_fixup_data &data_arg
);

Implement this function to set type_fixup_info::data to data_arg. Pass the first
three arguments to the following os_Type_fixup_info constructor:

os_Type_fixup_info(
 os_Type_loader& cur_loader,
 os_Loader_stream& lstr,
 os_Fixup_info& info
);

cur_loader is the loader for the object currently being fixed up.

lstr is the dump stream from which the current fixup form is being processed.

info is the fixup loader information for the object being fixed up.

When you call type_fixup_info::type_fixup_info() from within type_
loader::operator ()()

• Pass *this as cur_loader.

• Pass the stream passed in (as lstr) to operator ()().

• Cast to os_Fixup_info& the loader information passed in to operator ()(). Pass
the result of the cast as info.

You can define this constructor to have additional arguments if they are necessary
for your specialization.

Specializing os_Type_fixup_loader
Your specialization of os_Type_fixup_loader handles the loading of fixup forms.

To customize the dump and load of instances of type type, define a class that is

• Named type_fixup_loader

• Derived from os_Type_fixup_loader
Release 6.3 195

Specializing os_Type_fixup_loader
For example, to customize the dump and load of instances of my_collection, use
the following:

class my_collection_fixup_loader :
 public os_Type_fixup_loader {...}

The derived class must implement the following functions:

• operator ()(): calls load() and fixup().

• load(): reads the info portion of a fixup form from the load stream.

• fixup(): performs fixup based on information set by load().

• get(): returns the one and only instance of the derived class.

You must also define and register an instance of the derived class.

Implementing operator ()()
os_Loader_action* type_fixup_loader::operator () (
 os_Loader_stream& stream,
 os_Loader_info& previous_info
)

Implement the invocation operator to do the following:

• Create an instance of type_fixup_data on the stack.

• Create a stack-based instance of type_fixup_info, passing the type_fixup_
data and previous_info to the type_fixup_info’s constructor. Cast previous_
info to os_Fixup_info& before passing it to the constructor.

• Pass the type_data to load().

• Pass the type_info to fixup().

This assumes that one call to load() consumes the entire info portion of a fixup
form. You can also implement load() to consume only a part of the info portion and
call load() and fixup() multiple times from operator ()(). The latter approach
makes loaders more scalable for large info portions.

Example Following are examples:

os_Loader_action* type_fixup_loader::operator () (
 os_Loader_stream& stream,
 os_Loader_info& previous_info
)
{
 os_Fixup_info& fixup_info = previous_info;
 type_fixup_data data;
 type_fixup_info info(*this, stream, fixup_info, data);
 load(stream, data, 1);
 fixup(info, 1);
 return 0;
}

You can also call load() and fixup() more than once:

os_Loader_action* type_fixup_loader::operator () (
 os_Loader_stream& stream,
 os_Loader_info& previous_info
196 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
)
{
 os_Fixup_info& fixup_info = previous_info;
 type_fixup_data data;
 for (;;) {
 type_fixup_info info(*this, stream, fixup_info, data);
 if(! load(stream, data, 1))
 break;
 fixup(info, 1);
 }
 return 0;
}

This assumes load() is implemented to return 0 when the entire info portion has
been consumed.

Implementing load()
Loader_action* load(
 Loader_stream& stream,
 Type_data& given_data,
 os_boolean is_most_derived_class
);

This function is responsible for reading the info portion of the fixup form from the
load stream and setting the data members of given_data accordingly. If the
invocation operator calls load() just once, load() must consume all the info
portion. If the invocation operator calls load() multiple times, each call to load()
must consume only part of the info portion.

After load() sets the data members of given_data, fixup() uses given_data to
guide recreation of the nonroot portion of the object being fixed up.

The function should do the following:

• Cast given_data to type_fixup_data&

• Input each part of the dumped value; use the current portion of the dumped value
to set a data member of type_data

If load() consumes the entire info portion, returns 0 for success.

If load() consumes only part of the info portion, you can return 0 when the entire
info portion has been consumed and return nonzero otherwise. You must cast the
return value to os_Loader_action*.

Example Following is an example:

Loader_action* type_fixup_loader::load(
 Loader_stream& stream,
 Type_data& given_data,
 os_boolean is_most_derived_class
)
{
 type_fixup_data& data = (type_fixup_data&) given_data;
 ...
 /* Input one part of the dumped value. */
 os_Dumper_reference original_ref;
 stream >> original_ref;
Release 6.3 197

Specializing os_Type_fixup_loader
 if (original_ref == 0) // info terminator
 return ((os_Loader_action*) 0);
 else {
 data.dumper_ref =
 os_Database_table::get().find_reference(original_ref);
 return ((os_Loader_action*) 1);
 }
}

If a portion of the dumped info is an embedded fixup form for a class, embedded_
class, load it as follows:

• Retrieve that class’s fixup loader with embedded_class_fixup_loader::get().

• Call embedded_class_fixup_loader::load(), passing stream and the
embedded_class_fixup_data embedded in type_fixup_data.

For example:

/* Load embedded class. */
embedded_type_fixup_loader::get().load(
 stream,
 data.member_3,
 1
);

Implementing fixup()
void fixup(
 os_Type_fixup_info& info,
 os_boolean is_most_derived_class
);

This function performs fixup based on the information passed in. For example, if the
object being fixed up is a collection and each portion of the fixup form identifies a
collection element, fixup() inserts an element in the collection.

The function should

• Cast info to type_fixup_info&.

• Construct an os_Dumper_reference to the predump object.

• Construct a dumper reference to the postload object by performing os_Database_
table::find_reference() on the dumper reference to the predump object. For
more information about this function, see os_Database_table::find_
reference() in Chapter 2 of the C++ A P I Reference.

• Cast the dumper reference to the postload object to type*.

• Perform fixup on the postload object based on the information in info.

Example Following is an example:

void type_fixup_loader::fixup (
 os_Type_fixup_info& given_info,
 os_boolean is_most_derived_class
)
{
 type_fixup_info& info = (type_fixup_info&) info;
198 Advanced C++ A P I User Guide

Chapter 6: Dump/Load Facility
 os_Dumper_reference original_location =
 info.get_original_location();
 if (! original_location) {
 // Handle error, there should only be a fixup for an
 // existing object.
 }

 os_Dumper_reference replacing_location =
 os_Database_table::get().find_reference(original_location);
 if (! replacing_location) {
 // Handle error, there should only be a fixup for an
 // existing object.
 }

 type* object = replacing_location;
 ...
/* Do whatever needs to be done to fix the designated object. */
 element_type *the_element = (element_type*) (
 info.fixup_data.dumper_ref.resolve()
);
 object.insert(the_element)
 ...
}

Note that info.fixup_data_.dumper_ref is set by type_fixup_loader::load().

Implementing get()
static os_Type_fixup_loader& get();

Define a global variable whose value is an instance of type_loader. Define the static
function type_loader::get() to return this instance:

static type_fixup_loader the_type_fixup_loader;
os_Type_fixup_loader& type_fixup_loader::get()
{
 return the_type_fixup_loader;
}

Release 6.3 199

Specializing os_Type_fixup_loader
Registering the Fixup Loader
Define an instance of the derived type:

static type_fixup_loader the_type_fixup_loader;

Register the instance of the derived class by including an entry in the global array
fixup_entries[]:

static os_Fixup_registration_entry fixup_entries[] = {
 ...
 os_Fixup_registration_entry("type", &the_type_fixup_loader),
 ...
};

static const unsigned number_fixup_registration_entries =
 OS_NUMBER_REGISTRATIONS(
 fixup_entries,
 os_Fixup_registration_entry
);

static os_Fixup_registration_block fixup_block(
 fixup_entries,
 number_fixup_registration_entries,
 __FILE__,
 __LINE__
);
200 Advanced C++ A P I User Guide

Chapter 7
Advanced Schema Evolution

This chapter provides information about the ObjectStore schema evolution facility.
For a basic understanding of tasks that you must perform to complete a schema
evolution project, see Chapter 9, Schemas, in the C++ A P I User Guide.

The information about schema evolution is organized in the following manner:

Phases of the Schema Evolution Process 202

Instance Initialization 202

Instance Transformation 204

Initiating Schema Evolution 204

Example: Changing the Type of a Data Member, Assignment-compatible Types 207

Using Transformer Functions 209

Example: Changing the Type of a Data Member, Assignment-incompatible Types
210

Example: Changing Inheritance 212

Instance Reclassification 217

Untranslatable Pointers 220

Example: Using Untranslatable Pointer Handlers 222

Obsolete Index and Query Handlers 224

Task List Reporting 225

Instance Initialization Rules 226

Schema Changes Related to Data Members 228

Schema Changes Related to Member Functions 233

Schema Changes Related to Class Inheritance 233

Evolving Schemas That Contain Union Bystanders 240

Evolving or Compacting Very Large Databases 242
Release 6.3 201

Phases of the Schema Evolution Process
Phases of the Schema Evolution Process
The schema evolution process has two phases:

• Schema modification: modification of the schema information associated with the
databases being evolved

• Instance migration: modification of any existing instances of the modified classes

(In this chapter, the term process is used in the ordinary nontechnical sense. The
phrase schema evolution process refers to what the evolution facility does when it is
invoked. This is not a system process separate from the execution of the application
that calls the evolution function.)

Instance migration itself has two phases:

• Instance initialization

• Instance transformation

Instance Initialization
Instance initialization modifies existing instances of modified classes so that their
representations conform to the new class definitions. This might involve adding or
deleting fields or subobjects, changing the type of a field, or deleting entire objects.
This phase of migration also initializes any storage components that have been
added or that have changed type.

In most cases, new fields are initialized with zeros. There is one useful exception to
this, however. In the case in which a field has changed type and the old and new
types are assignment compatible, the new field is initialized by assignment from the
old field value.

The initialization rules are discussed in Instance Initialization Rules on page 226.

Pointers to Modified Objects and Their Subobjects
During schema evolution, the addresses of objects generally change as they are
moved to new locations. This is true for all objects, whether or not they are being
migrated.The original objects and the evolved version of them will be in the same
segment, but their cluster and/or their offset within their cluster might be different.
If an object’s size changes from less than 64 KB to 64 KB or greater, it can move to
another cluster in the same segment.

Because of this, the schema evolution facility automatically translates all pointers to
the instance so that they point to the new modified instance. This is done for all
pointers in the databases being evolved, including pointers contained in instances of
unmodified classes, cross-database pointers, and pointers to subobjects of migrated
instances.
202 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Untranslatable Pointers
During this process of adjusting pointers to modified instances, ObjectStore might
detect various kinds of untranslatable pointers. For example, it might detect a
pointer to the value of a data member that has been removed in the new schema.
Because the data member has been removed, the subobject serving as the value of
that data member is deleted as part of instance initialization. Any pointer to such a
deleted subobject is untranslatable and is detected by ObjectStore.

In such a case, you can provide a special handler object to process the untranslatable
pointer. Handler objects are derived from the class os_untranslatable_pointer_
handler. Each time an untranslatable pointer is detected, the handler function is
executed on the pointer (for example, the handler can change the untranslatable
pointer to null or simply report its presence) and then schema evolution is resumed.
If you do not provide a handler object, an exception is signaled by default when an
untranslatable pointer is encountered.

C++ References
C++ references are treated as a kind of pointer. References to migrated instances are
adjusted exactly as described previously. Untranslatable references are detected and
can be handled as described.

ObjectStore References
In addition, as with pointers, ObjectStore references to migrated instances are
adjusted to refer to the new instance rather than the old.

Untranslatable references are handled exactly the same as untranslatable pointers.
ObjectStore references are just soft pointers.

Untranslatable pointers and references as well as untranslatable pointer and
reference handlers are described in detail in Untranslatable Pointers on page 220.

Obsolete Indexes and Queries
Just as some pointers and references become obsolete after schema evolution, so do
some indexes and persistently stored queries. For example, the selection criterion of
a query or the path of an index might refer to a removed data member. ObjectStore
detects all such queries and indexes. In the case of an obsolete query, ObjectStore by
default signals an error that aborts schema evolution. However, you can provide an
obsolete query handler function that internally marks the query so that schema
evolution can continue.

You can handle obsolete queries or indexes by providing a special handler function
for each. An obsolete index handler, for example, might create a new index using a
path that is valid under the new schema. If you do not supply handlers, ObjectStore
signals an exception when an obsolete query or index is encountered.

Handlers for obsolete indexes and queries are discussed in Obsolete Index and
Query Handlers on page 224.
Release 6.3 203

Instance Transformation
Task List Reporting
To help you get an overall picture of the operations involved in instance initialization
for a particular evolution, the schema evolution facility allows you to obtain a task
list describing the process. The task list consists of function definitions indicating the
way the migrated instances of each modified class are to be initialized. You generate
this list without actually invoking evolution, which allows you to verify your
expectations concerning a particular schema change before migrating the data.

Task list reporting is discussed in Task List Reporting on page 225.

Instance Transformation
For some schema changes, the instance initialization phase is all that is needed. In
other cases, however, further modification of class instances or associated data
structures is required to complete the schema evolution. This further modification is
generally application dependent, so ObjectStore allows you to define your own
functions, transformer functions, to perform the task.

Transformer Functions
You associate exactly one transformer with each class whose instances you want to
be transformed. During the transformation phase of instance migration, the schema
evolution facility invokes each transformer function on each instance of the
function’s associated class, including instances that are subobjects of other objects.
Transformer functions are associated with specific classes using the function os_
schema_evolution::augment_pre_evol_transformers() or os_schema_
evolution::augment_post_evol_transformers(). Use augment_pre_evol_
transformers() to modify objects before any objects are moved or evolved; use
augment_post_evol_transformers() to modify objects after all objects have been
moved and evolved.

Transformers are useful for updating data structures that depend on the addresses
of migrated instances. A hash table, for example, that hashes on addresses should be
rebuilt using a transformer. Note that you need not rebuild a data structure if the
position of an entry in the structure does not depend on the address of an object
pointed to by the entry but depends instead, for example, on the value of some field
of the object pointed to. Such data structures are still correct after the instance
initialization phase.

Using transformers is discussed in Using Transformer Functions on page 209.

Initiating Schema Evolution
To perform schema evolution, you make and execute an application dedicated to the
schema evolution process; the schema evolution API should not be used in an
application that is used for normal database access. To perform schema evolution,
204 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
the schema application must invoke the member functions of os_schema_
evolution in the following order:

1 Call os_schema_evolution::initialize() first before using any transient
collections or ObjectStore features.

2 Call the various os_schema_evolution::set_xxx functions that are appropriate
for your schema evolution. Examples are set_address_space_release_
interval() and set_untranslatable_pointer_handler(). You also specify
transformer functions during this step.

3 Specify the name of the application schema, if necessary. This is the new schema
and is specifyied by making a call to os_schema_evolution::set_evolved_
schema_db_name() and/or os_schema_evolution::augment_dll_schema_db_
names(). If you do not call either of these functions, the application schema used
is the application schema of the schema evolution application itself.

4 Call os_schema_evolution::evolve() to initiate the schema evolution.

The evolve() function has two overloadings, declared as follows:

 static void evolve(
 const char *workdb_name,
 const char *db_to_evolve
);

 static void evolve(
 const char *workdb_name,
 const os_collection &dbs_to_evolve
);

The evolution process depends on three parameters:

- Databases to evolve

- Schema modifications

- Work database

5 Call os_schema_evolution::shutdown()

These functions must be called outside the dynamic scope of a transaction. The
application must include the header file ostore/schmevol.hh and link with the
libraries listed in the following table. Note that for Windows there is only one library,
ostore.lib.

Library UNIX Link Option Windows Library

Metaobject Protocol -losmop ostore.lib

Schema Evolution -losse ostore.lib

Collections -loscol ostore.lib

Queries -losqry ostore.lib

Basic ObjectStore Libraries -los ostore.lib

Threads -losthr ostore.lib
Release 6.3 205

Initiating Schema Evolution
Databases to Evolve
You specify the database or databases to be evolved as the second argument to
evolve(). If you are evolving a single database, you supply a char* that denotes the
pathname of the database. If you are evolving more than one database, you supply
an os_collection& or os_Collection<char*>& that denotes a set containing the
pathnames of the databases.

If you do not specify any database to evolve (that is, if you supply 0 for the first
overloading, or an empty collection for the second overloading), err_schema_
evolution is signaled.

The schema modifications are, by default, specified by the schema of the application
that calls evolve(). Thus, the schema source file for this executable should contain
a new class definition for each class that you want to modify.

If you want, you can specify the schema modifications with a call to the static
member function os_schema_evolution::set_evolved_schema_db_name()
before calling evolve(). This function takes a const char* as argument, the
pathname of a compilation or application schema database (the compilation or
application schema database for some other application).

Removed Classes
You must also specify the classes that are to be removed from the schema, that is, the
classes present in the old schema but not in the new schema. (Removing a class from
a schema results in deletion of all of its instances.) You do this with one call to the
static member function os_schema_evolution::augment_classes_to_be_
removed() for each removed class. This function is declared as follows:

static void augment_classes_to_be_removed(
 const char *name_of_class_to_be_removed
);

The calls should precede the call to evolve().

You can also call this function once for all the classes to be removed if you pass an
os_Collection<char*> containing the names of all the classes to be removed. In
this case, you use the overloading

static void augment_classes_to_be_removed(
 const os_Collection<char*>
 &names_of_classes_to_be_removed
);

Again, this call should precede the call to evolve().

Note that when you remove a class, C, you must also remove or modify any class that
mentions C in its definition. Otherwise err_se_cannot_delete_class is signaled.

Work Database
In addition, you specify, also as an argument to evolve(), the pathname of the work
database — a database to be created by the schema evolution facility and used
internally as a scratch pad. This database holds the intermediate results of the
206 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
evolution process, allowing it to be restartable in case of interruption (due to
network or system failure, or due to detection of an untranslatable pointer; see
Untranslatable Pointers on page 220).

When evolution is interrupted, the work database records a consistent intermediate
state of the evolution process. Subsequently calling evolve() by using the same
work database causes evolution to be resumed from the point of interruption.

After evolution completes successfully, you should delete the work database.

Example: Changing the Type of a Data
Member, Assignment-compatible Types

Consider an example that involves changing the value type of a data member where
the types are assignment-compatible.

Suppose the schema for the database /example/partsdb starts out with the
following definition of the class part:

Existing part
class definition

class part {
 public:
 short part_id;
 part(short id) { part_id = id; }
 static os_typespec *get_os_typespec();
}

And you want to change the definition to be as follows:

New part class
definition

class part {
 public:
 long part_id;
 part(long id) { part_id = id; }
 static os_typespec *get_os_typespec();
}

The value type of the data member part_id has changed from short to long. The
constructor’s argument type has also changed. Because C++ provides a standard
conversion from short to long, migrated instances of the class part have their
part_id fields initialized by assignment from the value of part_id in the
corresponding old unmigrated instance.

Example:
schema
evolution
application
program

The application program that invokes the evolution process might look like the
following:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part1new.hh" /* the new definition */

main() {
 os_schema_evolution::initialize(0,0,0);
 os_schema_evolution::evolve(
 "/example/workdb",
Release 6.3 207

Example: Changing the Type of a Data Member, Assignment-compatible Types
 "/example/partsdb"
 os_schema_evolution::shutdown();
);
}

Note that the header file ostore/schmevol.hh is included.

The argument /example/workdb is a name for the scratch pad database and the
argument /example/partsdb specifies the database to be evolved.

Example:
evolution
program for
multiple
databases

An application that evolves several databases might look like the following:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>

#include "part1new.hh" /* the new definition */

main() {
 os_schema_evolution::initialize(0,0,0);
 os_Collection<char*> the_dbs_to_evolve;

 the_dbs_to_evolve |= "/example/partsdb1";
 the_dbs_to_evolve |= "/example/partsdb2";
 the_dbs_to_evolve |= "/example/partsdb3";

 os_schema_evolution::evolve(
 "/example/workdb",
 the_dbs_to_evolve
);
 os_schema_evolution::shutdown();
}

Note that both versions of the main() program include the new definition of the
modified class. The schema source file for this executable should also contain the
new definition of the class part.

Schema source
file with new
definition of part
class

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>

#include "part1new.hh" /* this contains the new definition */

OS_MARK_SCHEMA_TYPE(part);

The instance migration phase of the schema evolution process migrates the parts in
/example/partsdb (for the first version of main()), changing the size of the part_
id field from the size of an int to the size of a long. As mentioned, the instance
migration process also initializes the field by assignment from the preevolution
value. This happens for all instances of the class part.

Note that the constructor for the new version of the class has no bearing on the
initialization of migrated instances. The existing instances of the modified class are
initialized according to the rules of default initialization described in these
paragraphs. The new constructor initializes only those instances of the class that are
created after evolution has occurred.
208 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Using ossevol for Simple Schema Evolution
For a simple evolution such as this one, one that involves no transformers or user-
defined handler functions, you can also use the ObjectStore utility ossevol instead
of an application program. The utility takes arguments for the pathname of a work
database, the pathname of a compilation or application schema database specifying
the new schema, and the pathnames of the databases to evolve. For example:

ossevol /example/workdb /example/part.adb /example/partsdb

For information on the ossevol utility, see Using ossevol in Chapter 9, of the C++
A P I User Guide.

Using Transformer Functions
The instance initialization phase leaves migrated instances in a well-defined state.
However, if you want to perform further application-specific processing on these
instances as part of the migration process, you can supply transformer functions to
accomplish this.

To do this, you define a transformer function for each class whose instances are to be
transformed, then you associate the function with the class on whose instances the
function will operate (see Associating a Transformer with a Class on page 209).

As part of the instance migration process, the ObjectStore schema evolution facility
invokes each transformer function on each instance of its associated class. This
includes each instance that is embedded in some other object, either as the value of
a data member or as the subobject corresponding to a base class of the object’s class.

The order of execution of transformers on embedded objects follows the same
pattern as that of constructors. When the transformer for a given class is invoked, the
transformers for base classes of the given class are executed first (in declaration
order), followed by the transformers for class-valued members of the given class (in
declaration order), after which the transformer for the given class itself is executed.

Signature of Transformer Functions
Transformers are functions with no return value and one argument of type void*.
This argument is a pointer to the object being transformed, an instance of the new
class.

Form of the call void my_transform_function(void *the_new_obj)

Pre-evol transformer functions modify objects before any objects are moved or
evolved; post-evol transformer functions modify objects after all objects are moved
and evolved.

Associating a Transformer with a Class
With the transform function defined, you can associate the function with a class and
invoke the evolution process. You make the association by calling the static member
functions os_schema_evolution::augment_pre_evol_transformers() or os_
Release 6.3 209

Example: Changing the Type of a Data Member, Assignment-incompatible Types
schema_evolution::augment_post_evol_transformers() in the application
performing evolution. The call should be made before the call to os_schema_
evolution::evolve().

The function augment_pre_evol_transformers() has the following two
overloadings:

static void
 os_schema_evolution::augment_pre_evol_transformers(
 const os_transformer_binding&
);

static void
 os_schema_evolution::augment_pre_evol_transformers(
 const os_Collection<os_transformer_binding*>&
);

The function augment_post_evol_transformers() also has two overloadings:

static void
 os_schema_evolution::augment_post_evol_transformers(
 const os_transformer_binding&
);

static void
 os_schema_evolution::augment_post_evol_transformers(
 const os_Collection<os_transformer_binding*>&
);

You can construct an instance of os_transformer_binding by supplying a class
name and a function pointer as arguments to the constructor:

os_transformer_binding("part", part_transform)

A typical call to augment_post_evol_transformers() would be

os_schema_evolution::augment_post_evol_transformers (
 os_transformer_binding("part", part_transform)
);

Example: Changing the Type of a Data
Member, Assignment-incompatible Types

Now consider an example that changes the type of a data member to a type that is
not assignment-compatible.

Suppose that you want to change the value type of the data member part_id of the
class part from int to char* so that arbitrary strings can be used for part IDs.

There is no standard C++ conversion from int to char*. For schema evolution, a
three-part sequence is used to add the new data member and copy the value from
the old data member.

1 Perform a schema evolution that adds the new data member and retains the old
data member.
210 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
2 Use a standard ObjectStore application (not a schema evolution application) to
convert and copy the data from the old data member to the new one.

3 Perform a second schema evolution to remove the old data member.

Here are the relevant class definitions:

Existing part
class definition

class part
{
public:
 int part_id;
 part(int id) { part_id = id; }
 static os_typespec *get_os_typespec();
}

Intermediate
part class
definition

For this type of schema evolution you need an intermediate schema that contains
both the new data member as well as the old data member:

class part
{
public:
 int part_id; // old data member
 char * part_id_string; // new data member to replace it

static os_typespec *get_os_typespec();
}

New part class
definition

This is the class definition that includes the new data member, but not the old data
member:

class part
{
public:
 char * part_id_string;
 part(char * id) {
 int len = strlen(id) + 1;
 part_id_string = new(os_cluster::with(this),
 os_typespec::get_char(), len) char[len];
 strcpy(part_id_string, id);
 }
 static os_typespec *get_os_typespec();
}

Here is a standard ObjectStore application that converts and copies the data from the
old data member to the new data member. It does so by iterating through the
database reading the contents of the old data member part_id and copying that
information to the new data member part_id_string.

#include <stdio.h>
#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include "part2int.hh"
#include "dbname2.h"

static void part_transform(part* part_ptr)
{
 /* get the old data member value */
 int the_old_val = part_ptr->part_id;

 /* convert the old value to string form */
 char conv_buf[16];
Release 6.3 211

Example: Changing Inheritance
 sprintf(conv_buf, "%d", the_old_val);

 int len = strlen(conv_buf) + 1;

 /* store it into the new data member */
 part_ptr->part_id_string =
 new(os_cluster::with(part_ptr), os_typespec::get_char(),
 len) char[len];
 strcpy(part_ptr->part_id_string, conv_buf);
}

int main(int, char **)
{
 objectstore::initialize();
 os_collection::initialize();
 OS_ESTABLISH_FAULT_HANDLER

 printf("evolve2: opening database %s\n", example_db2_name);
 os_database *db = os_database::open(example_db2_name);

 printf("evolve2: beginning a transaction\n");
 OS_BEGIN_TXN(txn,0,os_transaction::update)

 printf("evolve2: finding parts database root\n");
 os_database_root * parts_root =
 os_database_root::find("parts", db);
 os_typespec parts_typespec("os_Collection<part*>");

 printf("evolve2: walking through parts collection\n");
 os_Collection<part*> &parts =
 (os_Collection<part>*)
 parts_root->get_value(&parts_typespec);
 os_Cursor<part*> cursor(parts);
 for (
 part * p = cursor.first(); cursor.more(); p = cursor.next())
 part_transform(p);

 printf("evolve2: ending transaction\n");
 OS_END_TXN(txn)

 printf("evolve2: closing database %s\n\n", example_db2_name);
 db->close();

 OS_END_FAULT_HANDLER

 objectstore::shutdown();

 return 0;
}

Example: Changing Inheritance
Following is an example that involves deleting some data members from a class and
changing the class to inherit from a new base class.
212 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Consider a database schema that uses the classes epart, for electrical part, and
mpart, for mechanical part, and suppose that both these classes have data members
for part_id and responsible_engineer. The following example shows the way to
add a common base class, part, to these two classes, and how to move the common
data members out of the definitions of epart and mpart and into the definition of
part.

This schema change involves redefining epart and mpart by

• Deleting the members epart::part_id, epart::responsible_engineer,
mpart::part_id, and mpart::responsible_engineer

• Making the classes inherit from the new class part, which has members
part::part_id and part::responsible_engineer

Changing epart
and mpart to
inherit from part

Note that the schema evolution facility does not view the old member epart::part_
id as related to the new member part::part_id (and similarly for
part::responsible_engineer). It would be undesirable for the facility to make any
assumptions about the semantic relationship between the two members based only
on sameness of name, because this is an application-dependent matter.

Consequently, moving a data member from subtype to supertype should be viewed
as deletion of the data member from the subtype together with addition of a new,
distinct data member to the supertype. Similar remarks apply for moving members
the other way, from supertype to subtype.

This schema evolution process takes two schema evolutions;. In order to copy data
from the old members epart::part_id and epart::responsible_engineer to the
new members part::part_id and part::responsible_engineer (and the similar
data members in mpart), the schema evolution process needs an intermediate
schema that contains both the old and new data members. In this example, copying
the data is done in the first schema evolution process using the augment_post_
evol_transformers() function. The second evolution is accomplished with the
ossevol utility; this operation deletes the subtype data members that are no longer
needed.

Following are the old, intermediate and new class definitions:

Old epart class
definition

class epart {
 public:
 int part_id;
 employee *responsible_engineer;
 os_Collection<cell*> cells;
 . . .

mpart

part

part_id
resp_eng

cells boundaries

part_id
resp_eng
cells boundaries

part_id
resp_eng

epart

epart

mpart
Release 6.3 213

Example: Changing Inheritance
 epart(int id, employee *eng) {
 part_id = i;
 responsible_engineer = eng;
 }
}

Old mpart class
definition

class mpart {
 public:
 int part_id;
 employee *responsible_engineer;
 os_Collection<brep*> boundaries;
 . . .
 mpart(int id, employee *eng) {
 part_id = i;
 responsible_engineer = eng;
 }
}

Intermediate
part class
definition

class part
{
 public:
 int part_id;
 employee * responsible_engineer;
 part(int id, employee * eng) {
 part_id = id;
 responsible_engineer = eng;
 }
}

Intermediate
epart class
definition

class epart : public part
{
 public:
 /* next two fields will be deleted in the final schema */
 int part_id;
 employee * responsible_engineer;
 os_Collection<cell*> cells;
 epart(int id, employee * eng) : part(id, eng) {}
 static os_typespec *get_os_typespec();
}

Intermediate
mpart class
definition

class mpart : public part
{
 public:
 /* next two fields will be deleted in the final schema */
 int part_id;
 employee * responsible_engineer;
 os_Collection<brep*> boundaries;
 mpart(int id, employee * eng) : part(id, eng) {}
 static os_typespec *get_os_typespec();
}

New part class
definition

class part {
 public:
 int part_id;
 employee *responsible_engineer;
 part(int id, employee *eng) {
 part_id = i;
 responsible_engineer = eng;
 }
}

214 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
New epart class
definition

class epart : public part {
 public:
 os_Collection<cell*> cells;
 . . .
 epart(int id, employee *eng) : part(id, eng) {}
}

New mpart
class definition

class mpart : public part {
 public:
 os_Collection<brep*> boundaries;
 . . .
 mpart(int id, employee *eng) : part(id, eng) {}
}

New schema
source file

The schema source file for this executable should contain the new definitions of
epart and mpart, as well as the definition of part.

#include <ostore/manschem.hh>

#include "part3int.hh"

OS_MARK_SCHEMA_TYPE(employee);
OS_MARK_SCHEMA_TYPE(epart);
OS_MARK_SCHEMA_TYPE(mpart);

The instance migration phase of the schema evolution process modifies the instances
of epart and mpart by adding to each instance a subobject corresponding to the base
class and initializes it as if by a constructor that initializes each member to 0.

Supplying a
transformer
function for
each derived
class

In order to overwrite the default initialization performed by the schema evolution
facility and initialize part::part_id and part::responsible_engineer for a
migrated instance based on the values of the old part_id and responsible_
engineer fields for the corresponding unmigrated instance, you supply a
transformer function for each derived class — epart and mpart.

static void epart_transform(os_void_p the_new_obj)
{
 /* get the old data member values from the derived class */
 epart * epart_ptr = (epart *)the_new_obj;
 int the_old_id_val = epart_ptr->part_id;
 employee* the_old_resp_eng_val =
 epart_ptr->responsible_engineer;

 /* set the new data member values in the base class */
 part* part_ptr = epart_ptr;
 part_ptr->part_id = the_old_id_val;
 part_ptr->responsible_engineer = the_old_resp_eng_val;
}

static void mpart_transform(os_void_p the_new_obj)
{
 /* get the old data member values from the derived class */
 mpart * mpart_ptr = (mpart *)the_new_obj;
 int the_old_id_val = mpart_ptr->part_id;
 employee* the_old_resp_eng_val =
 mpart_ptr->responsible_engineer;

 /* set the new data member values in the base class */
Release 6.3 215

Example: Changing Inheritance
 part * part_ptr = mpart_ptr;
 part_ptr->part_id = the_old_id_val;
 part_ptr->responsible_engineer = the_old_resp_eng_val;
}

The transformer functions for the two classes need to do essentially the same thing.
Each function retrieves the old values for part_id and responsible_engineer in
the derived class and sets the new values for part::part_id and
part::responsible_engineer accordingly.

If the current evolution calls for the migration of instances of the class employee, the
value of responsible_engineer retrieved from the old instance is a pointer to the
new employee instance corresponding to the original data member value. This is
because pointers to migrated objects are modified during the initialization phase to
point to the new instances. This turns out to be convenient because you are usually
interested in the evolved version of the old data member value.

Example:
associating
transformers
with their
classes and
invoking
evolution

Following is an application that associates the transformers with their classes and
invokes evolution:

int main(int, char **)
{
 os_schema_evolution::initialize(0,0,0);

 /* associate epart_transform with the class epart */
 os_schema_evolution::augment_post_evol_transformers(
 os_transformer_binding("epart", epart_transform));

 /* associate mpart_transform with the class mpart */
 os_schema_evolution::augment_post_evol_transformers(
 os_transformer_binding("mpart", mpart_transform));

 /* perform the evolution process */
 os_schema_evolution::evolve(
 example_wdb3_name,example_db3_name);

 os_schema_evolution::shutdown();

 return 0;
}

Finally, to remove the old data members you use the ossg utility to generate a new
application schema using the new class definition and then run the ossevol utility.
For more information on ossg and ossevol, see Chapter 4, Utilities in Managing
ObjectStore.

For databases undergoing the evolution described in this example, ObjectStore
detects as untranslatable any pointers to eparts or mparts typed as void*. This is
because, for example, before evolution, such a pointer to an epart could also be
interpreted as referring to the value of epart::part_id (because this int object
starts at the same point as the epart), while after evolution it could no longer be
interpreted as referring to that object. For more information on untranslatable
pointers, see Untranslatable Pointers on page 220.
216 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
If the example is modified to include a leftmost base class for epart and mpart, both
before and after evolution, void* pointers to eparts and mparts are not
untranslatable.

Instance Reclassification
The ObjectStore schema evolution facility lets you migrate an instance to a subclass
of its original class. You can do this only when the original class is not a virtual base
class of the new class. Reclassifying an instance is particularly useful when you are
adding a derived class to a schema and this derived class is a more appropriate class
than the base class for existing instances.

To reclassify an instance:

1 Define the new derived class so that it

- Does not define nonstatic data members. This is a temporary restriction. You
can define nonstatic data members in a later step in this procedure.

- Does not define virtual functions. This is a temporary restriction.

- Has the instance’s original class as its base class.

- Has no other base classes. This is a temporary restriction.

These restrictions ensure that the initial storage layout of the derived class is the
same as the storage layout of the original class. In a later reclassification step, you
can change the storage layout.

2 Write and execute a program that

a Visits in the database each object that you want to reclassify

b Applies your application-specific criteria to determine how to reclassify the
instance

c Calls objectstore::change_type() to reclassify the instance. See C++ A P I
Reference, objectstore::change_type().

This program uses a modified application schema that contains the new derived
class. You create this application schema as you would any other application
schema.

After this step, each instance is an instance of the new desired class, but you have
not changed the storage layout.

3 Redefine the new derived class so that it has the data members you want. You can
add virtual functions and additional base classes, virtual or not, to the definition.
Do not change the definition of the base class yet.

4 Run the ossg utility to generate an application schema that contains the new
derived class as well as the other classes in your application.

5 Write and execute a schema evolution program that evolves the database to this
new application schema. Your schema evolution program must define a post-
evolution transformer function that sets the nonstatic data members of the
derived class according to the appropriate data members of the base class.
Release 6.3 217

Instance Reclassification
6 Redefine the base class to remove the data members that have been replaced by
data members of the new derived class.

7 Run the ossg utility to generate an application schema that contains the new base
class, the new derived class, and any other classes in your application.

8 Run the ossevol utility to evolve the database to this new and final application
schema.

9 Modify your application program to use the new and final application schema.

10 Build and test your program.

Example of
Reclassifying
Instances

For example, consider a schema that contains a definition for the part class. The
part class defines two data members:

• cells is a pointer to a collection of subcircuits of an electrical part.

• boundary_rep is a pointer to a geometric representation of the boundary of a
mechanical part.

When a part instance has a nonnull, nonzero value for the cells data member, it
has a value of 0 for the boundary_rep data member. Conversely, when a part
instance has a nonnull, nonzero value for the boundary_rep data member, it has a
value of 0 for the cells data member.

You want to modify this schema to include two new classes that are derived from the
part class:

• The epart (electrical part) class will contain the cells data member.

• The mpart (mechanical part) class will contain the boundary_rep data member.

The part class will no longer define the cells and boundary_rep data members. In
addition to adding the subclasses to the schema, you need to migrate existing
instances of the part class so that

• Instances that have a nonnull, nonzero value for cells are reclassified as
instances of the epart class.

• Instances that have a nonnull, nonzero value for boundary_rep are reclassified as
instances of the mpart class.

To summarize, the schema changes you want to maker are:

• Delete the cells and boundary_rep data members from the part class.

• Derive the epart and mpart classes from the part class.

The following figure illustrates this:

mpart

part
part_id
resp_eng

cells boundary_rep
boundary_rep

part_id
resp_eng epart

part

cells
218 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Sample code that does this is Example 4 in the examples/sevol directory of your
ObjectStore installation directory. The following files make up this example. On
Windows. the source files have a .cpp extension. On other platforms, the source files
have a .cc extension.

db_pop4 Creates the sample database.

part4pre.hh Defines the schema that the db_pop program uses.

part4int.hh Defines the first intermediate version of the modified
schema. That is, it defines the two new derived classes,
epart and mpart, but the class definitions do not include
nonstatic data members.

chtype4 Visits each part instance in the database and invokes the
objectstore::change_type() function to reclassify each
instance as an instance of epart or mpart according to logic
in the chtype4 program.

This program uses a collection cursor to find all part
objects. If the database did not contain a collection of part
objects, a program could use an os_dynamic_extent cursor.

part4int2.hh Defines the second intermediate version of the modified
schema. That is, it defines the two new derived classes,
epart and mpart, so that the definitions include all desired
data members, including nonstatic data members. The
definition of the part class, which is the base class for the
two new derived classes, remains unchanged.

evolve4 Evolves the database to the application schema generated
with the part4int2.hh schema source file.

part4new.hh Defines the final schema of the evolved database. That is,
the part class no longer contains the cells and boundary_
rep data members.

At this point, you run the ossevol utility:

ossevol wdb4.db sch4anew.adb db4.db

Then you would modify your application to use
part4new.hh, and you would build and test your program.

db_read4 Reads the database and displays information about the
objects it finds.
Release 6.3 219

Untranslatable Pointers
Untranslatable Pointers
During the instance initialization phase of schema evolution, ObjectStore adjusts all
pointers and references to instances of modified classes so that they point to the new,
migrated instances of these classes. During this process, ObjectStore might detect
various kinds of untranslatable pointers or references. For example, it might detect a
pointer to the value of a data member that has been removed in the new schema. By
default, an exception is signaled when an untranslatable pointer or reference is
encountered.

Using Handler Objects
Alternatively, you can provide a handler object to handle one or more of the
following categories of untranslatable pointers and references:

• Untranslatable pointers and C++ references to objects

• Untranslatable ObjectStore references

• Untranslatable pointers and C++ references to members

• Untranslatable database root values

Each time an untranslatable pointer or reference is detected, the untranslatable
pointer object handles it and then schema evolution is resumed. A handler object
cannot modify any data in the databases being evolved; however, the object can
return a value that causes the pointer to be retranslated, either to a different path or
to null. The object can also generate text output. For example, you can record the
location of an untranslatable pointer by creating a transient ObjectStore reference to
the untranslatable pointer and then dumping its text representation to a file (see os_
reference_internal::dump() in Chapter 2 of the C++ A P I Reference). This text
representation can be used by a subsequent process to create another ObjectStore
reference to the same untranslatable pointer (see os_Reference<T>::os_
Reference() in Chapter 2 of the C++ A P I Reference).

When you invoke the untranslatable pointer handler for a pointer-to-member type,
you should not call the following functions:

• os_untranslatable_pointer_handler::get_target_segment()

• os_untranslatable_pointer_handler::get_target_cluster()

• os_untranslatable_pointer_handler::get_target_offset()

These functions either do not return valid values or they fail. This is because a
pointer-to-member type does not point to an instance of the owner class. To detect if
the handler was invoked for a pointer-to-member type, call the os_
untranslatable_pointer_handler::isPTOM() function.

Creating a Handler Object
To create a handler object:

• Derive a class from os_untranslatable_pointer_handler.

• Override the class’s handle_xxx functions that are appropriate.
220 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
• Override the class’s clone() function.

• Register the class with a call to the static member function os_schema_
evolution::set_untranslatable_pointer_handler().

The handle_xxx virtual functions you can override are as follows:

• handle_ambiguous_void_pointer()

• handle_deleted_sub_object()

• handle_evolved_to_bit_field()

• handle_evolved_to_incompatible_type()

• handle_evolved_to_smaller()

• handle_evolved_to_static()

• handle_wrong_type_pointer()

For more information on these functions, see os_untranslatable_pointer_
handler in the C++ A P I Reference.

Understanding Untranslatable Pointers
Besides this categorization, there is another, orthogonal way of categorizing
untranslatable pointers and references. This categorization will help you understand
the pointers and references that are counted as untranslatable.

Typed pointers
and references
to deleted
subobjects

The instance migration process deletes subobjects of instances of a given class when
either

• The subobject is the value of a data member that has been removed from the class.

• The subobject corresponds to a class that the given class previously inherited
from, but no longer does.

Any pointer or reference to such a deleted subobject is untranslatable and can signal
the exception err_se_deleted_object or err_se_deleted_component.

void* pointers
and collocation
ambiguities

A void* pointer in an ObjectStore database has an associated set of objects, the
objects collocated at the region of memory it points to. These are all the objects to
which the pointer can be interpreted as referring, instances of the types to which the
pointer can legitimately be cast.

For example, a void* pointer to an instance of the class epart from the preevolution
schema of Example: Changing Inheritance on page 212 also points to the beginning
of memory occupied by an int, the value of the member epart::part_id.

If a void* pointer is associated, before evolution, with an object with which it is not
associated after evolution, the pointer is untranslatable and can signal the exception
err_se_ambiguous_void_pointer.

Consider again Example: Changing Inheritance on page 212. After evolution, the
void* pointer to an instance of epart now also points to a part, as well as an int,
the value of the member part::part_id. However, while before evolution the
pointer could be interpreted as referring to the value of epart::part_id, after
evolution it no longer could be interpreted as referring to this object. Because the
value of epart::part_id is no longer one of the pointer’s associated objects, the
Release 6.3 221

Example: Using Untranslatable Pointer Handlers
pointer becomes untranslatable. (Remember that ObjectStore makes no semantic
connection between epart::part_id and part::part_id.)

Note that void* pointers appear in every database because the values of database
roots are typed as void*. They might be common in some databases because in the
underlying representations of ObjectStore collections, elements are typed as void*.

Pointers and references to transient or freed memory and type-mismatched pointers
and references are untranslatable even before schema evolution; however,
ObjectStore detects them during instance initialization. Pointers and references to
transient objects or to objects that have been deleted are untranslatable. Pointers and
references with particular types that are not actually the addresses of some objects of
that type are also untranslatable.

Example: Using Untranslatable Pointer
Handlers

Consider the schema change made in Example: Changing Inheritance on page 212.

Changing epart
and mpart to
inherit from part

Change epart and mpart to inherit from part, factoring out the common state to the
base type.

As described previously, if a database undergoes this schema change and it contains
void* pointers to eparts or mparts, these pointers are detected as untranslatable
and should be handled with an untranslatable pointer handler.

A void* pointer to (for example) an epart is untranslatable because it could be
interpreted, before evolution, as referring to the value of epart::part_id, which
does not exist after evolution. However, if you know that this interpretation is never
intended, you can use the following untranslatable pointer handler:

Example: using
an untranslatable
pointer handler

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>
#include <ostore/mop.hh>
#include <ostore/osmop/os_path.hh>
#include "part5int.hh"

class my_untranslatable_pointer_handler : public
 os_untranslatable_pointer_handler
{
public:
 virtual os_path_to_data* handle_ambiguous_void_pointer()
 {

mpart

part
part_id
resp_eng

cells boundaries

epart

part_id
resp_eng
cells boundaries

part_id
resp_eng

epart mpart
222 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
 char* path_string = get_target_path().name();

 if (strcmp(path_string, "epart.part_id") == 0
 || strcmp(path_string, "mpart.part_id") == 0) {
 /**
 ** We know that these void * pointers in the pre
 ** evolved world should be void * pointers to parts
 ** in the post evolved world so we set the pointer
 ** to the evolved object.
 **/
 os_path_to_data& new_target_path =
 get_target_path().outer_path();
 new_target_path.pop();
 /* now new_target_path points to epart or mpart */
 delete path_string;
 return &new_target_path;
 } else {
 /* unanticipated ambiguous pointer, signal exception */
 delete path_string;
 return _default_handler();
 }
 }
 virtual os_untranslatable_pointer_handler* clone()
 {
 return new my_untranslatable_pointer_handler(*this);
 }
}

Using
transformers
with
untranslatable
pointer handlers

This example uses the same transformers as the example in Example: Changing the
Type of a Data Member, Assignment-incompatible Types on page 210. Following is
an application that associates the transformers with their classes, registers the
untranslatable pointer handler, and invokes evolution:

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/schmevol.hh>
#include <ostore/mop.hh>
#include <ostore/osmop/os_path.hh>
#include "part5int.hh"

int main(int, char **)
{
 os_schema_evolution::initialize(0,0,0);

 /* register the ambiguous pointer handler */
 os_schema_evolution::set_untranslatable_pointer_handler(
 new my_untranslatable_pointer_handler
);

 /* associate epart_transform with the class epart */
 os_schema_evolution::augment_post_evol_transformers(
 os_transformer_binding("epart", epart_transform)
);

 /* associate mpart_transform with the class mpart */
 os_schema_evolution::augment_post_evol_transformers(
 os_transformer_binding("mpart", mpart_transform)
);

Release 6.3 223

Obsolete Index and Query Handlers
 /* perform the evolution process */
 os_schema_evolution::evolve(
 example_wdb5_name, example_db5_name
);
 os_schema_evolution::shutdown();
 return 0;
}

Handler method
that changes
pointers

The following example recognizes pointers to certain data members and changes one
data member to a null pointer and another data member to a pointer to a different
data member. It shows the use of one handler method.

virtual os_path_to_data* handle_deleted_sub_object() {
 char* source_path_string = get_source_path().name();

 if (strcmp(source_path_string,
 "ThePointers.nulled.deleted_pointer") == 0) {
 /* Change this invalid pointer to a null pointer */

 delete source_path_string;
 return NULL;
 } else if (strcmp(source_path_string,
 "ThePointers.retained.deleted_pointer") == 0) {
 /* Change this invalid pointer to a valid one - substitute
 new_target for deleted_target */

 os_path_to_data* new_path =
 os_path_to_data::make(get_target_path());
 const os_class_type& the_class = new_path->get_root();
 new_path->pop();
 new_path->add(*the_class.find_member_variable("new_target"));

 delete source_path_string;
 return new_path;
 } else {
 /* Unexpected, call the default handler */

 delete source_path_string;
 return _default_handler();
 }
}

Obsolete Index and Query Handlers
When the selection criterion of a query or the path of an index makes reference to a
removed class or data member, or makes incorrect type assumptions in light of a
schema change, the query or index becomes obsolete. ObjectStore detects all obsolete
queries and indexes. As with untranslatable pointers, you can handle obsolete
queries or indexes by providing special handler functions for each purpose. If you
do not supply handlers, ObjectStore signals an exception when it detects an obsolete
query or index. If you supply an obsolete query handler function that allows the
schema evolution to continue when it encounters an obsolete query, ObjectStore
internally marks the query so that subsequent attempts to use it result in the
exception err_os_query_evaluation_error.

To handle obsolete queries or indexes,
224 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
• Define a function with the appropriate signature.

• Register the function with a call to the static member function os_schema_
evolution::set_obsolete_index_handler() or os_schema_
evolution::set_obsolete_query_handler().

The signature for an obsolete query handler is

void function_name(os_coll_query &query,
 const char *query_expr)

A reference to the obsolete query is passed in together with a string expressing the
query’s selection criterion.

The signature for an obsolete index handler is

void function_name(os_collection &coll,
 const char *path_string);

A reference to the collection indexed by the obsolete index is passed in with a string
expressing the index’s path (key).

Task List Reporting
Before initiating evolution for a particular schema change, you might want to
generate a task list to verify your expectations concerning the instance initialization
phase. The task list contains a function definition for each class whose instances are
migrated.

Form of the call Each function has a name of the form

class-name@[1]::initializer()

where class-name names the function’s associated class.

Statements for
data members
and their
classes

Each function definition contains a statement or comment for each data member of
its associated class. For a member with value type T, this statement or comment is
any of

• Assignment statement

• Call to T@[1]::copy_initializer()

• Call to T@[2]::construct_initializer()

• Call to T@[1]::initializer()

• Comment indicating that the field is initialized to 0

Assignment
statements

An assignment statement is used when the old and new value types of the member
are assignment compatible:

• T@[1]::copy_initializer() is used when the member has not been modified
by the schema change and the new value can be copied bit by bit from the old
value.

• T@[2]::construct_initializer() is used when the value type has been
modified and the new value type is a class.
Release 6.3 225

Instance Initialization Rules
• T@[1]::initializer() is used when the member has not been modified by the
schema change, but instances of the value type of the member are migrated.
Definitions for all these functions appear in the task list.

A program to generate a task list is exactly like a program to perform evolution
except that the static member function os_schema_evolution::task_list() is
called instead of os_schema_evolution::evolve().

task_list()
function

The function task_list() has two overloadings analogous to the two overloadings
of evolve(), declared as follows:

static void task_list(
 const char *workdb_name,
 const char *db_to_evolve
);

static void task_list(
 const char *workdb_name,
 const os_collection &dbs_to_evolve
);

Using task_list() Before calling task_list(), you use os_schema_evolution::set_task_list_
file_name() to specify the file to which the task list is to be sent. This function is
declared as follows:

static void set_task_list_file_name(const char *file_name);

As with evolve(), the new schema is, by default, the schema of the application that
calls task_list(); however, you can specify the new schema with os_schema_
evolution::set_evolved_schema_db_name() before calling task_list().

Also, as with evolve(), you must specify the classes that are to be removed from the
schema with os_schema_evolution::augment_classes_to_be_removed(). The
calls should precede the call to task_list().

Instance Initialization Rules
This section starts with a description of the various categories of schema evolution.
Following this discussion, the initialization rules for each category are described.

Kinds of
schema
modifications

The different kinds of schema modification can be divided into three broad (not
entirely disjoint) categories:

• Class creation

• Class redefinition

• Class deletion

Kinds of class
redefinitions

The kinds of class redefinition, in turn, can be divided into three subcategories,
changes relating to

• Inheritance

• Data members

• Member functions
226 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
The following diagram shows the categories and subcategories of schema
modification:

Class Creation
Adding a class to a database’s schema never, by itself, requires the use of the schema
evolution facility. This is because a new class cannot have any previously existing
instances. Because there cannot be any existing instances, instance migration is not
necessary, and adding the class to the database’s schema is handled automatically
when an application using the new class opens the database or when it creates the
first persistent instance of the new class, in incremental schema installation mode.

Inheritance Redefinition
However, although adding a class does not by itself require using the evolution
facility, sometimes adding a class involves also redefining another existing class.
This is the case when you add a new class as a base class of another existing class, for
example. The definition of the existing class must be changed to specify inheritance
from the new class. And the representation of instances of the derived class must be
supplemented with a subobject corresponding to the new base class. Such schema
changes fall under the category of inheritance redefinition.

In general, inheritance redefinition includes changing a class to inherit from a new
or existing class, changing a class so that it no longer inherits from an existing class,
or changing class inheritance from virtual to nonvirtual or the reverse.

Data Member Redefinition
Class redefinition relating to data members includes changing the definition of a
class by adding or deleting members, changing the value type of a data member, and
changing the order of data members. (To change the name of a data member, you
delete it and then add a new one with the desired name.)

Member Function Redefinition
There are only two kinds of member function-related changes that require schema
evolution: changing the definition of a class by adding the first virtual function and

Class Creation Class Redefinition Class Deletion

Data Member

Schema Change

Redefinition
Member Function
Redefinition

Inheritance
Redefinition
Release 6.3 227

Schema Changes Related to Data Members
changing the definition of a class by removing the only virtual function. These
modifications require schema evolution because they change the representation of
any instances of the modified class. Other changes related to member functions have
no effect on the layout of class instances, and so they do not require schema
evolution.

Class Deletion
In the case of class deletion, instance migration consists of the deletion of existing
instances of the deleted classes. Any pointers typed as pointers to a deleted class are
detected before instance initialization and signal an err_schema_evolution
exception. Any void* pointer to an instance of a deleted class (or pointer to a
subobject of such an instance) is detected as an untranslatable pointer.

As with class creation, deleting a class might at the same time involve changing the
inheritance structure of some other class. This is the case, for example, when you
delete a class that serves as a base class of another class that is to remain in the
schema. The definition of the remaining class must be changed so that it no longer
specifies inheritance from the deleted class. And the representation of the remaining
class’s instances must have the subobject corresponding to the base class removed.
Such schema changes fall under the category of inheritance redefinition as well as
class deletion.

Schema Changes Related to Data Members
The sections that follow consider the different types of schema modification related
to data members:

• Adding Data Members

• Deleting Data Members

• Changing the Value Type of a Data Member

• Changing the Order of Data Members

• Moving Data from One Member to Another

• Evolving Schemas That Contain Pointer-to-Member Types

• Summary of Data Member Changes Not Requiring Explicit Evolution

This section is particularly concerned with describing the instance migration phase
of schema evolution for each kind of modification.
228 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Categories of
data member
redefinition

Note that indirect instances of a modified class are migrated just as are direct
instances. That is, if you change the definition of base class B, then instances of class
D, derived from B, are migrated, just as are direct instances (if there are any) of B.

Adding Data Members
When you add a data member to a class, the schema evolution process changes the
representation of any of its instances by adding a field to hold the value of the new
member. The way this field is initialized depends on the value type of the new
member.

If the value type is a built-in nonarray type (integral type, floating type, pointer type,
reference type, enumeration type, or pointer-to-member type), it is initialized with
the appropriate representation of 0. If the value type is a class, the field is initialized
as if by a constructor that initializes each member to 0.

If the value type is an array type, each element of the array is initialized (for arrays
of built-ins) with 0 or (for arrays of class instances) as if by a constructor that
initializes each member to 0 for the array’s element class. For arrays of arrays, these
rules are applied recursively. In other words, an array is initialized by initializing
each of its elements as if it were a separate data member.

As with all modified classes, the class with the new data member can have an
associated transformer function that you supply. If you want, this function can
overwrite these default initializations, supplying a value for the new field in
whatever way meets your needs.

Deleting Data Members
When you delete a data member from a class, the schema evolution process changes
the representation of any of its instances by removing the field that held the value of
the deleted member. Because no new storage is created by this schema change, the
issue of initialization does not arise.

By default, pointers to members being removed result in an untranslatable pointer
exception during evolution. You can, however, supply an untranslatable pointer
handler to process the untranslatable pointer and resume evolution. See
Untranslatable Pointers on page 220.

Changing Deleting

Reordering

Value Type

Adding

Data Member
 Redefinition
Release 6.3 229

Schema Changes Related to Data Members
Changing the Value Type of a Data Member
When you change the value type of a data member, the schema evolution process
changes the representation of any of its instances by adjusting the size of the
member’s associated storage (if necessary) and reinitializing that storage. The way
this storage is initialized depends on the new and old value types.

Consider first the case in which the new value type is not an array type.

Assignment-
compatible
value types

Old and new member declarations with assignment-compatible value types:

int cost; /*old member declaration */

float cost; /*new member declaration */

If the new and old types are assignment compatible, the new field is initialized by
assignment. That is, ObjectStore assigns the value of the old data member to the
storage associated with the new member, applying any standard conversions
defined by the C++ language.

For example, if you change the value type of a data member from int to float, an
old instance with the value (int) (17) for this member is changed to have value
(float) (17.0).

In some cases, schema evolution considers types assignment compatible when C++
would not. For example, if D is derived from B, schema evolution assigns a B* to a
D* if it knows that the B is also an instance of D.

If the new and old types are not assignment compatible, there are two cases.

New value type
is a
built-in

Old and new member declarations with assignment-incompatible value types,
where the new value type is a built-in:

class dollars cost; /*old member declaration */

float cost; /*new member declaration */

If the new value type is a built-in nonarray type (integer type, floating type, pointer
type, reference type, enumeration type, or pointer-to-member type), it is initialized
with 0.

New value type
is a class

Old and new member declarations, where the new value type is a class:

int cost; /*old member declaration */

class dollars cost; /*new member declaration */

If the new value type is a class, the field is initialized as if by a constructor that
initializes each member to 0.

If you change the value type of a data member by changing it from a signed integer
type to an unsigned integer type or the reverse, you need not perform schema
evolution. This is because such a change does not change the size of the associated
field and does not change the way (sufficiently small) positive numbers are
represented.

Array values
with compatible
types

Consider the case in which the new value type is an array type.
230 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Old and new member declarations with array value types whose elements are
assignment compatible:

int cost[10]; /*old member declaration */

float cost[10]; /*new member declaration */

If the old value type is also an array type, and if the element types of the arrays are
assignment compatible, the new field is initialized by assignment. That is,
ObjectStore assigns the value of the ith element of the old array to the ith element of
the new array, applying any standard conversions defined by the C++ language.
This is done for all i between 0 and one less than the size of the smaller array.

If the new array has n more elements than the old array, the trailing n elements of the
new array are initialized with 0 (if the element type is a built-in nonarray type) or as
if by a generated default constructor (if the element type is a class). If the old array
has n more elements than the new array, the trailing n elements of the old array are
ignored.

Array values
with
incompatible
types

Old and new member declarations with array value types whose elements are not
assignment compatible:

class dollars cost[10]; /*old member declaration */

float cost[10]; /*new member declaration */

If the old value type is also an array type but the element types are not assignment
compatible, each element of the new array is initialized with 0 (if the element type is
a built-in nonarray type) or as if by a constructor that initializes each member to 0 (if
the element type is a class).

Nonarray type
to array type

Old and new member declarations; the old value type is a nonarray type and the new
value type is an array type.

int cost; /*old member declaration */

float cost[10]; /*new member declaration */

If the old value type is not an array type, each element of the new array is initialized
with 0 (if the element type is a built-in nonarray type) or as if by a constructor that
initializes each member to 0 (if the element type is a class).

In general, you initialize arrays by initializing each array element as if it were a
separate data member.

For a multidimensional array, these rules apply to the first dimension and
recursively to the other dimensions if the length of each other dimension is not
changed by evolution. If the length of one of these other dimensions changes, every
element of the multidimensional array is initialized with 0 (if the element type is a
built-in) or as if by a constructor that initializes each member to 0 (if the element type
is a class).

As with all modified classes, the class with the modified data member can have an
associated transformer function that you supply. If you want, this function can
overwrite these default initializations, supplying a value for the new field in
whatever way meets your needs.
Release 6.3 231

Schema Changes Related to Data Members
Bit fields are evolved according to the default signed/unsigned rules of the
implementation that built the evolution application. This can lead to unexpected
results when an evolution application built with one default rule evolves a database
originally populated by an application built by an implementation whose default
rule differs. The unexpected results occur when the evolution application attempts
to increase the width of a bit field.

Changing the Order of Data Members
When you change the order of the data members defined by a class (by changing the
order in which their declarations appear within the definition of the class), the
schema evolution process changes the representation of any of its instances by
reordering the storage fields associated with the members. Because there is no new
storage created by this schema change, the issue of initialization does not arise.

Moving Information from One Data Member to Another
If the goal of your schema evolution is to move information from one data member
to another, use the following procedure:

1 Do a schema evolution to add the new data member which will be initialized by
default to zero. Do not remove the old data member in this step. You can use the
ossevol utility for this step.

2 Run a user program that initializes the new data member according to the
contents of the old data member. This program uses ordinary operations, not
meta-object protocol. It finds all the instances of the evolved class in one of the
following ways, the choice is whatever the user prefers:

- Using an object cursor (the slowest but easiest way).

- Navigating through application-specific data structures.

- Incrementally, the first time the application program needs the value of the
new data member. In this case, step 1 might also add a flag data member that
is set nonzero after the new data member has been initialized.

 Zero in the flag means the incremental initialization must be called.

- during the schema evolution in step 1, using an augment_post_evol_
transformer function. Schema evolution will automatically call this function
once on each instance of the evolved class. In this case step 1 and step 2 run in
the same user program and step 1 cannot be done by the ossevol utility.

3 Run a cleanup schema evolution that removes the old data member and (if there
is one) the flag data member. This cleanup can be done at any convenient time
since it makes no logical difference, it only saves storage.

Evolving Schemas That Contain Pointer-to-Member Types
You can evolve a schema that contains pointer-to-member types.

However, support for evolving schemas that contain pointer-to-member-function
types is restricted. When one of the following conditions is met, the schema
evolution facility copies pointer-to-member-function types to the evolved database:
232 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
• You do not evolve the owner class, and you do not evolve the pointer-to-member-
function type so that it points to a member of a base class instead of a member of
a derived class. Likewise, you do not evolve it so that it points to a member of a
derived class instead of a member of a base class.

(The owner class is the class that contains the member that is the target of the
pointer.)

• The value of the pointer-to-member-function type is null.

Summary of Data Member Changes Not Requiring Explicit
Evolution

You need not invoke schema evolution to make the following kinds of data member
modifications:

• Changing the value type of a data member from a signed type to unsigned type
and the reverse

• Changing the access specified for a data member (private, public, or
protected)

• Changing the value type of a data member from a const to non-const type and
the reverse

• Adding or removing static data members

Schema Changes Related to Member
Functions

As mentioned earlier, there are only two kinds of member-function-related changes
that require schema evolution: changing the definition of a class by adding the first
virtual function and changing the definition of a class by removing the only virtual
function. These modifications require schema evolution because they change the
representation of any instances of the modified class. Other changes related to
member functions have no effect on the layout of class instances and, therefore, do
not require schema evolution.

Schema Changes Related to Class
Inheritance

Changes relating to class inheritance include adding base classes, removing base
classes, and changing class inheritance from virtual to nonvirtual, or the reverse.
Each of these is discussed in the following sections:

• Adding Base Classes

• Removing Base Classes
Release 6.3 233

Schema Changes Related to Class Inheritance
• Inserting Base Classes

• Changing Between Virtual and Nonvirtual Inheritance

Adding Base Classes
When you modify a database’s schema by adding a base class (B in the following
figure) to an existing class (D in the following figure), instances of D must be
supplemented with a B part.

Adding a base
class to an
existing class

When the class D is modified to inherit from a base class, B, its instances must be
modified to include a B part.

The instance initialization phase of schema evolution adds the B part to each instance
of D and initializes that part as if by a constructor that initializes each member to 0.

If you provide a transformer function for D, it is run during the instance
transformation phase.

This category of schema change covers more cases than might be suggested by the
previous illustration.

In particular,

• Schema evolution works the same if B is added as a base class to more than one
existing class. Each instance of each existing class must be supplemented with a B
part.

• Indirect as well as direct instances of a class made to inherit from a base class must
be migrated. See When changing a class requires migrations on page 235.

• The class that is added as a base class might or might not be part of the old schema.
In either case, no instance migration need be performed for the base class unless
it too has evolved.

class B

class D

class D

Instance of D
Instance of D

B part

D part
D part
234 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
When changing
a class requires
migrations

When you change the definition of B so that it inherits from A, instances of C
(derived from B) must be migrated.

Removing Base Classes
When you change a class, D, so that it no longer inherits from a given class, B, each
instance of D is migrated by removing the subobject corresponding to B.

Modifying other
instances when
removing a
class

When the class D is modified so that it no longer inherits from a base class, B, its
instances must be modified to remove the B part.

Pointers to the subobject being removed, if they are typed as B* rather than D*, result
in the signaling of an untranslatable pointer exception during evolution. (Pointers
typed as D* are, of course, adjusted automatically to point to the migrated instance
of D.) The same is true for pointers (so typed) to data members of the deleted
subobject.

class A

class B

Instance of C
Instance of C

B part

A part

class C

class A

class B

class C

C part

B part

C part

class B

class D

Instance of D
Instance of D

D part

class B

class D

B part

D part
Release 6.3 235

Schema Changes Related to Class Inheritance
Inserting Base Classes
Sometimes you want to remodularize your classes to introduce a new base class that
stands between an existing base class and its derived classes. For example, suppose
your schema contains a class named Derived that has a class named Base as its base
class. You want to introduce a new class named NewBase whose base class is Base,
and you want to change Derived to have NewBase as its direct base class. Derived
still derives from Base, but now it does so indirectly through NewBase. The following
figure illustrates this:

When you insert NewBase you want to preserve the values of all data members in an
instance of Derived, including data members inherited from Base. If you simply
change the class definition of Derived to derive from NewBase instead of Base,
schema evolution does not preserve the values of the data members of Base in an
instance of Derived. This is because schema evolution does not recognize that you
want the effect of the following inheritances to be the same:

• Base inherited indirectly through NewBase

• Base inherited directly.

However, you cannot use the usual technique of adding the new base class in one
schema evolution, copying the data members into the new base class, and then
deleting the old base class in a second schema evolution. C++ does not allow
Derived to have Base and NewBase as direct base classes simultaneously when
NewBase derives from Base.

To insert NewBase while preserving the values of data members inherited from Base
in instances of Derived, perform the following steps:

1 Define a temporary class to hold the data members of Base. For example, define
the SaveBase class. The SaveBase class

- Has the same data members as Base and its base classes, if any

- Does not have any methods

Temporarily, make all the data members public in Base, its base classes if any, and
SaveBase.

2 Generate a new application schema that

- Contains SaveBase

- Changes Derived to inherit from both Base and SaveBase.

Derived

Base

Derived

Base

NewBase

Before Evolution After Evolution
236 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
3 Write and run a schema evolution program that evolves the database to this new
application schema. The program must include a post-evolution transform
function attached to Derived. This transform function must copy each data
member of Base, and its base classes if any, to the corresponding data member of
SaveBase.

For a transform function to be attached to Derived, call os_schema_
evolution::augment_post_evol_transformers with an os_transformer_
binding that maps the class name Derived to the transformer function.

4 Modify the application schema by

- Adding NewBase

- Making Derived inherit from both NewBase (in place of Base) and SaveBase

5 Run the ossg utility to generate the new application schema.

6 Write and run a schema evolution program that evolves the database to this new
application schema. The program must include a post-evolution transform
function attached to Derived. This transform function must copy each data
member of SaveBase to the corresponding data member of Base, or its base
classes, if any.

The schema evolution program must also include an untranslatable pointer
handler. This handler must redirect pointers that point to the old occurrence of
Base, its base classes, if any, or their data members to point instead to the
corresponding new occurrence.

7 Modify the application schema by

- Removing SaveBase

- Changing Derived to have just NewBase as its base class

- Changing the protection of the data members of Base, and its base classes if
any, from public back to private or protected as desired.

8 Run the ossg utility to generate the final application schema.

9 Run the ossevol utility to evolve the database to the final application schema.

10 Modify your application to use this final application schema.

11 Build and test your application.

For an example of this procedure, see Example 6 in the examples/sevol directory of
your ObjectStore installation directory.

Changing Between Virtual and Nonvirtual Inheritance
Consider a class X that inherits nonvirtually from a class B. If you change X to inherit
virtually from B, instances of X must be migrated. In particular, for each instance of
X, the nonvirtual B subobject is eliminated and a virtual (shared) B subobject is
introduced. Each instance of X has its virtual B subobject initialized as if by a
constructor that sets each member to 0. This applies to all instances of X, including
instances that are subobjects of other objects either as a data member value or as a
subobject corresponding to a base class. The figure shows one such case. In general,
Release 6.3 237

Schema Changes Related to Class Inheritance
every virtual subobject introduced by the inheritance change is initialized as if by a
constructor that sets each field to 0.

Virtual
inheritance

When you change both X and Y to inherit virtually from B, instances of Z (derived
from both X and Y) are migrated so that they have only a single B part.

Similarly, if inheritance is changed from virtual to nonvirtual, every nonvirtual
subobject introduced by the change is initialized as if by a constructor that sets each
field to 0. Therefore, if X has a virtual base class, B, changing X to inherit nonvirtually
from B eliminates a virtual B subobject from each instance of X and introduces a
nonvirtual B subobject that is initialized as if by a constructor that sets each member
to 0.

Nonvirtual
inheritance

When you change either X or Y to inherit nonvirtually from B, instances of Z (derived
from both X and Y) are migrated so that they have two B parts.

Instance of Z

B part
virtual B part

X part
B part
Y part
Z part

Instance of Z

Y part
X part
Z part

class X

class Bclass B

class Z

class B

class Y

class Z

class Yclass X

Instance of Z

B part
Virtual B part

X part
B part
Y part
Z part

Instance of Z

Y part
X part
Z part

class X

class Bclass B

class Z

class B

class Y

class Z

class Yclass X
238 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
Class Deletion
Deletion of a class by using the schema evolution facility results in deletion of all the
class’s instances during the instance initialization phase. Pointers and references to
objects deleted in this way signal err_se_deleted_object.
Release 6.3 239

Evolving Schemas That Contain Union Bystanders
Evolving Schemas That Contain Union
Bystanders

You can use the ossevol utility or the os_schema_evolution class to evolve
schemas that contain unions only when those unions are not directly involved in the
schema evolution. Such unions are referred to as union bystanders. To understand
what a union bystander is, some background information is required.

• In the context of schema evolution of bystander unions, the term class includes
struct and union.

• ObjectStore evolves a class if at least one of the following is true:

- The class’s definition is directly changed in the new schema.

- Any nonstatic data member of the class has a type that is a class that is being
evolved.

- Any base class of the class is being evolved.

• A top-level persistent object

- Is allocated with persistent new.

- Is not a member or base of another object.

- Can be an array element of a top-level array.

- Is evolved if its class is evolved.

• A class contains a union if one of the following is true:

- The class is the union.

- The class has the union as a direct or indirect base class.

- The class has a direct or indirect nonstatic data member whose type is a class
that contains the union.

• A top-level persistent object contains a union if its class contains a union.

• A union contains a pointer if one of the following is true:

- Any variant of the union is a pointer-type value.

- Any variant of the union is a class that has a direct or indirect nonstatic data
member that is a pointer-type value.

A union bystander is a union that exists in the database schema and for which at least
one of the following is true:

• The database contains no persistent instances of any class that contains the union.

• You are using the ossevol -classes_to_be_removed argument to remove the
union.

• All of the following are true:

- You are not evolving a top-level persistent object that contains the union.

- The union does not contain an ambiguous pointer to a top-level persistent
object that is being evolved. A pointer is ambiguous if two variants of the union
contain pointers at the same offset with different types.
240 Advanced C++ A P I User Guide

Chapter 7: Advanced Schema Evolution
- No top-level persistent object that contains the union contains any member of
type pointer to data member where the target of the pointer is directly or
indirectly inside a class that is evolved. The C++ syntax for pointer to data
member is "class::*".

- No top-level persistent object contains two members of type pointer to data
member where one points to a member directly or indirectly inside a class that
is being evolved, and the other points to a member directly or indirectly inside
a class that contains the union.

- The union does not have an evolution transformer function attached to the
union itself or to any class that is a member or base class inside of the union.

If a union is directly involved in the schema evolution, in other words if the above
rules are violated in any way, ObjectStore signals an err_union_evolution
exception with an err-0022-0156 error message that includes a specific explanation
of the violation. ObjectStore reports the first violation that it detects and then
terminates schema evolution.

At this point, schema evolution has progressed far enough so that it is impossible to
use or repair the database. You must do one of the following:

• Remove objects from your database:

a Restore the database from a backup copy.

b Remove the offending object and all similar objects that would also prevent
schema evolution.

c Back up the database.

d Rerun schema evolution.

• Change the new schema to be less different:

a Restore the database from a backup copy.

b Change the new schema to be less different from the old schema. Remove
changes that directly involve unions.

c Back up the database.

d Rerun schema evolution.
Release 6.3 241

Evolving or Compacting Very Large Databases
Evolving or Compacting Very Large
Databases

When you are evolving or compacting a very large database, ObjectStore might run
out of processing space. If it does, it generates err-0019-0007 err_log_data_
segment_full and terminates. To successfully evolve or compact your database, try
the following steps, one at a time, until the error goes away.

• Stop other clients that are using the same ObjectStore server. Retry the
interrupted operation.

• If you are running the oscompact utility, specify the -work_db argument. This lets
ObjectStore compact each cluster in a separate transaction. Retry the interrupted
operation.

• Decrease the number of threads, possibly all the way to 1, by specifying the
-threads option to oscompact or ossevol, or the threads argument to the
initialize() function of os_compact or os_schema_evoluton. Retry the
interrupted operation.

• Decrease the value of -maximum_cluster_size. This requires the compaction or
schema evolution operation to start again from a fresh copy of the database. Be
sure that you retry the operation on a fresh database. That is, before retrying the
operation, you must restore the database from a backup that you performed
before starting compaction or schema evolution the first time.

This step is only for 6.3.0 installations. In older releases, you cannot decrease the
value of the maximum cluster size.

If you did not specify a work database when you ran the oscompact utility, you
do not need to restore your database. Your database will be unchanged because
the transaction in which compaction was done was aborted. When compaction
uses a work database, the operation is done in multiple transactions.
Consequently, the database can be in an inconsistent state when compaction
terminates because of insufficient processing space.

If none of these steps solves the problem, contact technical support.
242 Advanced C++ A P I User Guide

Chapter 8
Using Asian Language String
Encodings

There are many standards for encoding Asian characters. In Japan, for example, five
encodings are in broad use: JIS, SJIS, EUC, Unicode, and UTF-8.

Usually an application uses one encoding for all strings to be stored inside a
database. The encoding chosen is most often the one used in the operating system of
the ObjectStore client.

However, if the application has heterogeneous clients using a variety of encodings,
conversion from one encoding to another is necessary at some point. The clients
could be traditional ObjectStore client processes or thin-client browsers that emit
data in different encodings.

Class Library: os_str_conv
This class library provides conversion facilities for various Japanese language text
encoding methods: EUC, JIS, SJIS, Unicode, and UTF8.

The library provides a facility to detect the encoding of a given string. This is useful
for applications in which a client might send strings in an unknown format, a
common problem for Internet applications.

The most common application of this class is conversion between EUC and SJIS to
provide sharing of data from UNIX <-> Windows applications. JIS is commonly used
for email. Applications normally store data in a homogeneous format inside a
database, and incoming strings are converted as required before they are persistently
allocated. Outgoing strings can also be converted to the client’s native encoding. For
Web applications, this outgoing conversion is usually not necessary since
internationally aware browsers (Netscape 2.0 and above, for example) can
automatically detect and convert various incoming formats themselves.

The class library currently consists of a single class, os_str_conv, instantiated once
for each conversion path required:

os_str_conv(encode_type dest, encode_type src=automatic);

Where

enum encode_type { /* string encode type */
Release 6.3 243

Class Library: os_str_conv
 UNKNOWN=0, /* convert or automatic detect fail */
 AUTOMATIC, /* detect automatically */
 AUTOMATIC_ALLOW_KANA,
 /* detect automatically, allow half-width-kana */
 ASCII, /* ASCII */
 SJIS, /* Shift-JIS */
 EUC, /* EUC */
 UNICODE, /* Unicode (can’t automatic detect) */
 JIS, /* JIS */
 UTF8 /* UTF-8 (can’t automatic detect) */
 /* add new encode type here ! */
};

Example Following is an example. Given an instance of os_str_conv, such as

os_str_conv *sjis_to_euc = new os_str_conv(os_str_conv::EUC,
os_str_conv::SJIS);

A conversion can be done on char* sjis_src:

char *euc_dest = new char[sjis_to_euc->get_converted_size(
 sjis_src)];

sjis_to_euc->convert(euc_dest, sjis_src);

The call to get_converted_size() is not strictly required; it is provided for the
convenience of the user to allocate buffers of appropriate size. Because it requires
examination of the entire source string, time to complete it is proportional to the
source string length.

Automatic Detection of a Source String Encoding
Sometimes it is not possible for an application to know the encoding of a given
source string. os_str_conv provides methods that can analyze a given string and
determine its encoding. For example:

Example os_str_conv *to_euc = new os_str_conv(
 os_str_conv::AUTOMATIC); len =
 to_euc->get_converted_size(unknown_src);
 if (len)
 {
 char *euc_dest =
 new char[to_euc->get_converted_size(unknown_src)];
 to_euc->convert(euc_dest, sjis_src);
 }
 else
 {
// couldn’t convert -- application needs to handle this!
 }

Caution The autodetector is not guaranteed to work in all cases.

If it fails inside get_converted_size, get_converted_size returns 0 to indicate the
failure. Be careful not to allocate strings based on its return value without checking
for failure!

Unfortunately, no automatic detection algorithm can correctly distinguish EUC from
SJIS in all cases because of overlap in their assignment ranges. Clever algorithms
exploit patterns typical of real text. This implementation is reasonably
244 Advanced C++ A P I User Guide

Chapter 8: Using Asian Language String Encodings
straightforward. The most difficult problem (distinguishing between SJIS half-width
kana and EUC) is avoided by asking the user to choose between the two possible
interpretations. In nearly all cases, os_str_conv::AUTOMATIC is the appropriate
setting.

In practice, the problems of ambiguity are not likely to affect applications because,
typically, incoming text is all in the single encoding defined by the operating system
used when generating it. Autodetect can be used only at the beginning of a session
and it is reasonable to assume that it will not change.

As mentioned earlier, there are areas in the EUC and SJIS encodings that overlap,
and so a given string might be valid in either encoding. This makes autodetection
ambiguous.

There are two ambiguous cases:

• The half-width kana of SJIS. It is possible for a string consisting entirely of bytes
in this range to be either SJIS or EUC. This is the most troublesome case.

• An obscure range of SJIS and EUC that overlaps. The characters represented by
this range are rarely used, so it is highly unlikely that a string would consist
entirely of such characters.

Detection is handled according to these rules:

1 The algorithm examines each character of the string in sequence until the
encoding is determined. Therefore, a string beginning with an unambiguous
substring followed by an ambiguous substring is detected according to the first
substring.

2 Strings consisting entirely of the second ambiguous type are handled as
unknown. As mentioned, this case is very unlikely.

3 All SJIS half-width kana are single-byte encodings. Therefore, a string consisting
entirely of an odd number of bytes in the SJIS half-width kana range is considered
SJIS.

4 A string beginning with an even number of bytes in the SJIS half-width kana range
is ambiguous until the following characters are examined according to normal
detection rules.

5 A string beginning with an odd number of bytes in the SJIS half-width kana range
requires special examination of the last character. If this is an EUC first-byte code,
and it is followed by a valid EUC second-byte code, then the string is EUC.
However, if the following code is not a valid EUC second-byte (it might be
ordinary ASCII), then the final character is interpreted as SJIS half-width kana and
the string is interpreted as SJIS.

6 A string consisting entirely of an even number of bytes in the SJIS half-width kana
range is ambiguous. It is quite possible for such a string to appear in real
applications. The os_str_conv::automatic setting causes the autodetector to
interpret this case as SJIS. However, if os_str_conv::automatic_allow_kana,
this case is interpreted as unknown. Technical Support believes that the SJIS
interpretation is correct for most cases.
Release 6.3 245

Class Library: os_str_conv
Japanese developers are aware of the problems in handling the half-width SJIS kana,
and so they try to avoid them by using full-width SJIS kana instead.

Unlike EUC and SJIS, JIS is a modal encoding that uses <Esc> to enter and exit from
multibyte mode. Detecting JIS strings is accomplished by searching for these <Esc>
characters.

How to Instantiate the Converter
The class os_conv_str must be instantiated once for each conversion path required
for your application.

Guidelines for Extensions to os_str_conv
Users can extend this class by inheriting from it. This could be useful for developers
who want to override the existing autodetector.

Additional encodings can be appended to the existing enumeration. Note that os_
str_conv depends on the ordering of the existing encodings, so if you extend os_
str_conv, additional encodings must appear after the ones already provided.

What Are the Different Modes and Their Meanings?
Notes on
encodings

For most purposes, there is a one-to-one mapping for characters to and from each of
these encodings, so no semantic information is lost during conversion. There are four
exceptions to this rule:

• EUC and Unicode are a superset of SJIS and so roundtrip EUC/Unicode<->SJIS is
not possible for all EUC/Unicode Japanese characters.

• There are a handful of cases of pairs of SJIS characters that map to a single
character in Unicode.

The second class of exceptions is considered extremely minor in practice, and is
the result of different editions (1983 and 1990) of the JIS as the basis of SJIS and
Unicode.

• SJIS contains some special characters that are printable on Windows. Although
mappings are defined for EUC, attempts to view them on X-Windows, at least, fail
because the fonts in use do not provide glyphs for those codes. There are no
encodings for these characters in Unicode.

• JIS defines multiple ways to express a character (the base semantic unit), so a
conversion from JIS to another encoding and back to JIS is not guaranteed to
return an identical binary string. However, the meaning of the string (in the sense
of the way it would appear if printed on a screen) is the same.

Variations Among Standard Character Mappings
The Unicode Consortium has published a general mapping from Shift-JIS to
Unicode. However, actual implementations of the standard mapping differ slightly
by platform and vendor. The os_str_conv class is implemented with a default
mapping according to the Unicode Consortium standard and it also provides a
246 Advanced C++ A P I User Guide

Chapter 8: Using Asian Language String Encodings
means by which any mapping entry can be overridden at run time by a client
application.

The deviations in mapping tend to be quite small. For example, following is a table
that shows the incompatibility of the Unicode Consortium standard and the maps
that Microsoft uses in Windows NT:

Instructions on Overriding Particular Mappings
How to modify
standard
encodings

To allow an application to modify the standard encoding on the fly, there is the
following interface:

class os_str_conv {
public:
...
 struct mapping {
 os_unsigned_int32 dest; /* destination code */
 os_unsigned_int32 src; /* source code */
 };
 int change_mapping(mapping table[],size_t table_sz);
 ...
 };

You can modify an existing instance of os_str_conv (whether heap- or stack-
allocated) by calling os_str_conv::change_mapping(). Actually, internal mapping
tables, shared by all instances of os_str_conv, are never modified. The additional
mapping table information is stored to provide override information for future
conversion services associated with that instance.

The override mapping information applies to whatever explicit mapping has been
established for the given os_str_conv instance. Mappings of os_str_conv
instances cannot be overridden by instances using autodetect. Attempts to do so
return -1 from change_mapping() to indicate this error condition.

SJIS Code Unicode Consortium
Mapping

Microsoft Mapping

\ 5C 00A5 YEN SIGN 005C REVERSE SOLIDUS(*)

~ 7E 203E OVERLINE 007E TILDE

^[$B!@(B 81,5F 005C Reverse solidus FF3C FULLWIDTH REVERSE
SOLIDUS

^[$B!A(B 81,60 301C WAVE DASH FF5E FULLWIDTH TILDE

^[$B!B(B 81,61 2016 DOUBLE VERTICAL
LINE

2225 PARALLEL TO

^[$B!](B 81,7C 2212 MINUS SIGN FF0D FULLWIDTH HYPHEN-
MINUS

^[$B!q(B 81,91 00A2 CENT SIGN FFE0 FULLWIDTH CENT SIGN

^[$B!r(B 81,92 00A3 POUND SIGN FFE1 FULLWIDTH POUND
SIGN

^[$B”L^(B 81,CA 00AC NOT SIGN FFE2 FULLWIDTH NOT SIGN
Release 6.3 247

Class Library: os_str_conv
The change_mapping() method takes the following two parameters:

• os_str_conv::mapping_table[]

This is an array of mapping code pairs that can be allocated locally, globally, or on
the heap. If the array is heap-allocated, the user must delete it after calling
change_mapping().

Internally, change_mapping() makes a sorted copy of mapping_table[]. The
sorting provides quick lookup at run time. The internal copy is freed when the os_
str_conv destructor is eventually called.

Note that the mapping pairs are unsigned 32-bit quantities. The LSB is on the
right, so, for example, the single-byte character 0x5C is represented as
0x0000005C, and the 2-byte code 0x81,0x54 is 0x0000815F.

• size_t table_sz

This is the number of elements in the mapping_table. The user should take care
that this is not the number of bytes in the array.

Example
Following is an example of a Microsoft SJIS->Unicode mapping.

os_str_conv::mapping mapping[] = {
 {0x0000005C,0x0000005C},
 {0x0000007E,0x0000007E},
 {0x0000815F,0x0000FF3C},
 {0x00008160,0x0000FF5E},
 {0x00008161,0x00002225},
 {0x0000817C,0x0000FF0D},
 {0x00008191,0x0000FFE0},
 {0x00008192,0x0000FFE1},
 {0x000081CA,0x0000FFE2},
};

void func(char* input,char* output) {
 ...
os_str_conv sjis_uni(os_str_conv::SJIS,os_str_conv::UNICODE);
 sjis_uni.change_mapping(mapping,sizeof(
 mapping)/sizeof(mapping[0]));
 sjis_uni.convert(output,input);
 ...
}

In this example, mapping[] is a global, but a stack allocation would work as well.

Byte Order
Since Unicode is a 16-bit quantity, byte order depends on platform architecture. On
little-endian systems, such as Intel, the low-order byte comes first. On big-endian
systems (Sparc, for example) the high-order byte is first. There are three
overloadings to the os_str_conv::convert() method to provide flexibility for
dealing with this:

• encode_type convert(char* dest, const char* src);
248 Advanced C++ A P I User Guide

Chapter 8: Using Asian Language String Encodings
• encode_type convert(os_unsigned_int16* dest, const char* src);

• encode_type convert(char* dest, const os_unsigned_int16* src);

If a parameter is of char* type, all 16-bit quantities are considered big-endian,
regardless of platform. However, if the type is os_unsigned_int16*, the values
assigned or read are handled according to the platform architecture.

Overhead
Using overrides to the string conversion function incurs the following overhead:

• Some memory is consumed by the sorted override map.

• Some time is consumed when sorting the map at change_mapping time.

• Some time is consumed when you are converting characters because of the
additional lookup.

Restrictions
The following restrictions apply.

• Not all conversion combinations are possible. For example, it is impossible to
convert Unicode to ASCII. This implementation guards against nonsensical
requests, but developers who extend it should take care for such cases. Of course,
Japanese to ASCII conversion is only possible on the ASCII subset of characters in
the Japanese encodings. Attempts to convert Japanese strings to ASCII result in
the return of an error condition.

• Autodetect only detects SJIS, JIS, and EUC. Do not feed the autodetector Unicode
or UTF-8 strings.

• The EUC<->Unicode converter only works for characters in the SJIS set. While
this might sound like a shortcoming, it is reasonable for actual applications since
characters outside the SJIS set are extremely rare.

• Users should be aware that the 0 to 127 range of single-byte SJIS characters is not
ASCII, even though the characters look like ASCII. This range is known as JIS-
Roman. Specifically, the characters {’\’, ’~’ , ’|’} have different meanings. The
practical significance is that the map of characters [0 to 127] from ASCII-
>Unicode->SJIS is not an identity.

Performance Notes
EUC and SJIS are very closely related since they both are based on the JIS ordering.
Therefore, conversion between these requires no table lookup.

JIS conversion requires simple parsing for <Esc> characters. Once stripped of <Esc>
characters, you can convert the multibyte sequences to EUC by setting the highest
bit.
Release 6.3 249

Class Library: os_str_conv
250 Advanced C++ A P I User Guide

Release 6.3
Index
A
abort-only transactions 49
address space

controlling reservation of 19
definition 17, 19
markers 20
releasing 20, 31
reservation 17
soft-pointer decaching 26

Asian characters, detecting encoding 243
attributes, of MOP class 100
augment_classes_to_be_removed()

os_schema_evolution, defined by 206
augment_post_evol_transformers()

os_schema_evolution, defined by 209
augment_pre_evol_transformers()

os_schema_evolution, defined by 209
autodetection

ambiguous cases 245
automatic detection of source string encoding 244
automatic retries 50

B
batch transactions 68
binary relationships

See also inverse data members
bystander unions 240

C
changing data types 210
checkpoint()

os_transaction, defined by 56
checkpoint/refresh for transactions 56
checkpointing transactions 56
chunk 17
classes, system-supplied

os_str_conv 243

clustering
and locking 47

collections
and sessions 79

collocation ambiguities 221
concurrency control

multiversion 51
constructor

implementing for os_Fixup_dumper 186
implementing for os_Type_fixup_info 195
implementing for os_Type_info 187

copy_classes()

os_mop, defined by 106
create function for MOP class 101
create()

implementing for os_Type_loader 190
creating sessions 76
cross-session references 74
current session

getting 76
setting 76

customizing loads 176

D
data

implementing for os_Type_info 187
data integrity 85
data transfer 36
deadlock

and retries 50
victim 50

decaching, soft-pointer 26
default partition size

getting 75
setting 75

deleting sessions 76
dump/load facility

creation stages 173
251

E

dumped ASCII 171
fixup-dump mode 174
object-dump mode 173
ostore/dumpload 172
plan mode 173

dump_info()

implementing for os_Fixup_dumper 184
dumped ASCII

dump/load facility 171
duplicate()

implementing for os_Fixup_dumper 186
dynamic type creation 100

E
encoding, Japanese 243
err_deadlock exception 51
err_mop_illegal_cast exception 114
err_opened_read_only exception 52
err_schema_evolution exception 206
<Esc> characters

detecting JIS strings 246
EUC 243
evolve()

os_schema_evolution, defined by 108, 207
exporting objects 42

F
fetch policy

granularity of data transfer 36
find_reference()

os_Database_table, defined by 198
find_type()

os_mop, defined by 107
fixup form 176
fixup()

implementing for os_Type_fixup_loader 198
implementing for os_Type_loader 192

fixup_data

implementing for os_Type_fixup_info 195
fixup-dumper class 175
forward relocation 35

G
get function for MOP class 101
get()

implementing for os_Type_fixup_loader 199

implementing for os_Type_loader 193
os_Database_table, defined by 191

get_for_update()

os_database_schema, defined by 108
get_kind()

os_type, defined by 111
get_object_to_fix()

os_Fixup_dumper, defined by 185
get_original_location()

os_Type_info, defined by 191
get_replacing_location()

os_Type_info, defined by 190
get_replacing_segment()

os_Type_info, defined by 190
get_specialization_name()

implementing for os_Dumper_
specialization 183

get_transient_schema()

os_mop, defined by 108
get_type()

os_Fixup_dumper, defined by 185
os_Type_info, defined by 191

get_union_variant()

objectstore, defined by 39
global transactions

description 58

H
header files

relat.hh 87
relationship 86

I
illegal pointers

defined 86
inbound relocation 34
initializing a session 75
initializing the sessions facility 74
insert()

os_Database_table, defined by 191
install()

os_database_schema, defined by 108
instance

defining and registering for os_Planning_
action 180

defining and registering for os_Type_fixup_
loader 200
252 Advanced C++ A P I User Guide

Index
defining and registering for os_Type_loader 194
instance initialization 202
instance migration 202
instance transformation 204, 210
integrity control 85
inverse data members

defined 85
function body macros 88
many-valued relationship 92
single-valued relationship 89

is_open_multi_db_mvcc()

os_database, defined by 53
is_open_mvcc()

os_database, defined by 52
is_open_single_db_mvcc()

os_database, defined by 53
isolated transactions 68

J
JIS 243

L
load

customizing 176
load()

implementing for os_Type_fixup_loader 197
implementing for os_Type_loader 189

locking
reducing wait time 47
and transaction length 48

logging
redo 55
undo 55

M
macros, system-supplied

os_index() 98
os_rel_1_1_body() 88
os_rel_1_m_body() 88
os_rel_m_1_body() 88
os_rel_m_m_body() 89
os_relationship_1_1() 88
os_relationship_1_m() 88
os_relationship_m_1() 88
os_relationship_m_m() 88

Max Data Propagation Per Propagate server
parameter 56

Max Data Propagation Threshold server
parameter 56

max_retries

os_transaction, defined by 50
metaobject protocol

defined 100
metatypes

defined 100
hierarchy 109

MOP
See metaobject protocol

multisession applications 65
multithreading 65
multiversion concurrency control

implementation 53
and multiple databases 52
and serializability 52
snapshots 51

MVCC
See multiversion concurrency control

N
nested transactions 48

O
object form 176
object-dumper class 175
objects

unspecified 103
ObjectStore

registering as resource manager 59
objectstore, the class

get_union_variant() 39
release_persistent_addresses() 31
retain_persistent_addresses() 31
set_union_variant() 39

ObjectStore_xa_switch data structure 60
obsolete index handlers 203, 224
obsolete indexes 203, 224
obsolete queries 203, 224
obsolete query handlers 203, 224
OMG Object Transaction Service (OTS) 58
open_multi_db_mvcc()

os_database, defined by 52
open_mvcc()

os_database, defined by 52
operator 185
Release 6.3 253

P

operator ()()

implementing for os_Dumper_
specialization 181

implementing for os_Planning_action
using deep approach 179
using shallow approach 178

implementing for os_Type_fixup_loader 196
implementing for os_Type_loader 189

operators
type-safe conversion 113

optimizing relocation 35
os_address_space_marker, the class 20
os_database, the class

is_open_multi_db_mvcc() 53
is_open_mvcc() 52
is_open_single_db_mvcc() 53
open_multi_db_mvcc() 52
open_mvcc() 52

os_database_schema, the class
get_for_update() 108
install() 108

os_Database_table, the class
find_reference() 198
get() 191
insert() 191

os_Dumper_reference, the class
operator =() 185
resolve() 185

os_Dumper_specialization

specialization 180
os_fetch_page fetch policy 37

when to use 38
os_fetch_segment fetch policy 37
os_fetch_stream fetch policy 37

when to use 38
os_Fixup_dumper, the class

get_object_to_fix() 185
get_type() 185
specialization 184

os_index(), the macro 98
os_mop, the class

copy_classes() 106
find_type() 107
get_transient_schema() 108

os_Planning_action

specialization 177
os_Reference_cross_session, the class 74
os_reference_cross_session, the class 74

os_rel_1_1_body(), the macro 88
os_rel_1_m_body(), the macro 88
os_rel_m_1_body(), the macro 88
os_rel_m_m_body(), the macro 89
os_relationship_1_1(), the macro 88
os_relationship_1_m(), the macro 88
os_relationship_m_1(), the macro 88
os_relationship_m_m(), the macro 88
os_retain_address, the class 28
os_schema_evolution, the class

augment_classes_to_be_removed() 206
augment_post_evol_transformers() 209
augment_pre_evol_transformers() 209
evolve() 108, 207
set_obsolete_index_handler() 225
set_obsolete_query_handler() 225
set_task_list_file_name() 226
task_list() 226

os_str_conv class library 243
os_str_conv, the class 243
os_transaction, the class

checkpoint() 56
max_retries 50

os_type, the class
get_kind() 111

os_Type_fixup_info

specialization 194
os_Type_fixup_loader

specialization 195
os_Type_info()

os_Type_info, defined by 187
os_Type_info, the class

get_original_location() 191
get_replacing_location() 190
get_replacing_segment() 190
get_type() 191
os_Type_info() 187
set_replacing_location() 191
specialization 186

os_Type_loader

specialization 188
<ostore/relat.hh> header file 86
outbound relocation 35

P
persistence

across transaction boundary 31
persistent unions 39
254 Advanced C++ A P I User Guide

Index
planner classes 175
pointer swizzling 34
pointer validity

releasing 31
retaining 20, 21, 31

pointers
getting session of 77
how mapped into virtual memory 77
validity across transaction boundary 31

propagation
Max Data Propagation Per Propagate server

parameter 56
Max Data Propagation Threshold server

parameter 56
Propagation Sleep Time server parameter 56
transaction log 55

Propagation Sleep Time server parameter 56

R
random access 38
reference policies 40
references

cross-session 74
to migrated instances 203

referent type parameter 25
registering ObjectStore 59
relat.hh header file 87
relationship header files 86
relationship macros 88
relationships

defining 88
many-to-one 93
many-valued 92
one-to-many 93
and parameterized types 96
single-valued 89

release_persistent_addresses()

objectstore, defined by 31
releasing address space 20, 31

soft-pointer decaching 26
releasing pointer validity 31
releasing variable validity 28
relocation

forward 35
inbound 34
optimizing 35
outbound 35

reservation chunk 17

resolve()

os_Dumper_reference, defined by 185
resolving soft pointers 24
resource manager 58
retain_persistent_addresses()

objectstore, defined by 31
retaining pointer validity 20, 21, 31
retaining variable validity 27
retries

transaction 50
root object 176

S
schema access, programmatic

const object 102
initiating read access 102
initiating type creation 102, 106
MOP 100
pointers compared to references 103
type-safe conversion operators

os_member 128
os_member_variable 131
os_pointer_type 138
os_type 113

schema evolution
assignment compatibility 207
categories of 226
changing data types 210
class creation 227
class deletion 228, 239
collocation ambiguities 221
data member redefinition

adding data members 229
changes not requiring evolution 233
changing name 227
changing order 232
changing value type 230
deleting data members 229

deleted subobjects 221
detecting untranslatable pointers 203
inheritance redefinition

adding base classes 234
removing base classes 235
schema changes that represent 227
virtual and nonvirtual 237

initiating 204, 207
instance initialization 202, 226
instance migration 202
instance transformation 204, 210
Release 6.3 255

T

member function redefinition 227, 233
obsolete index 203, 224
obsolete index handler 203, 224
obsolete query 203, 224
obsolete query handler 203, 224
phases of 202
schema modification 202
subobjects deleted 221
task lists 204, 225
transformer functions 204, 209
unions 240
untranslatable ObjectStore reference 203
untranslatable ObjectStore reference handler 203
untranslatable pointer handler 203, 220, 222
untranslatable pointers

collocation ambiguities 221
using MOP 108

schema modification 202
schemas

See also schema access, programmatic
See also transient schemas
consistency requirements 103
installation

using MOP 108
modification 202

segment reference policies 40
sequential access 38
serializability 52
server parameters

Max Data Propagation Per Propagate 56
Max Data Propagation Threshold 56
Propagation Sleep Time 56

sessions 65
and default partition size 75
creating 76
cross-session references 74
deleting 76
example 81
getting 77
getting defaults 79
initializing 75
initializing facility 74
setting current 76
setting defaults 79
using 69
using collections 79
using pointers across 70

set function for MOP class 101

set_obsolete_index_handler()

os_schema_evolution, defined by 225
set_obsolete_query_handler()

os_schema_evolution, defined by 225
set_replacing_location()

os_Type_info, defined by 191
set_task_list_file_name()

os_schema_evolution, defined by 226
set_union_variant()

objectstore, defined by 39
shared transactions 68
SJIS 243
soft pointers 22

automatic database open 26
caching 22
copying 24
decaching 26
example 24
heterogeneity 22
resolving 24

swizzling, pointer 34
synchronizing threads 66

T
task lists 204, 225
task_list()

os_schema_evolution, defined by 226
threads 65

and collections 67
and transactions 66
synchronizing 66

traffic optimization 36
transaction branch 58
transaction manager 57
transactions

abort-only 49
and threads 66
automatic retries of 50
batch 68
checkpoint 56
and deadlock 50
isolated 68
management styles 67
multiversion concurrency control 51
nested 48
priorities 50
sharing 68

transformer functions 204, 209
256 Advanced C++ A P I User Guide

Index
transient schemas
modifying database schema 106
updating database schema 102

two-phase commit 57
type creation, dynamic 100
type_dumper

defining and registering an instance of 183

U
undo record 55
Unicode 243
unions 39

bystander 240
schema evolution 240

untranslatable ObjectStore reference handlers 203
untranslatable ObjectStore references 203
untranslatable pointer handlers 203, 220, 222
untranslatable pointers

detecting 203
in schema evolution 220

UTF-8 243

V
variable validity

releasing 28
retaining 27

victim, deadlock 50

X
XA 57
X/Open Distributed Transaction Processing (DTP)

model 57
Release 6.3 257

X

258 Advanced C++ A P I User Guide

	Advanced C++ A P I User Guide
	Preface
	Advanced Persistence
	Controlling Address Space Reservation
	Purpose of Address Space Reservation
	Controlling Address Space Reservation
	Midtransaction Address-Space Release Must Be User Controlled

	Clustering to Conserve Address Space
	Releasing Address Space
	Example
	Nesting Markers
	Retaining the Validity of Specified Pointers
	Deleting Markers
	Using Other Marker Functions

	Using ObjectStore Soft Pointers
	Softness Is Application Relative
	Specifying the Pointers That Are Soft
	Soft Pointer API
	Example
	Soft Pointer Classes and Macros
	Opening a Database Automatically
	Soft-Pointer Decaching

	Retaining the Validity of a Specified Variable
	Using os_retain_address
	Example

	Retaining and Releasing the Validity of All Pointers
	Persistent Pointers to Transient Objects
	Example

	ObjectStore’s Relocation
	Inbound Relocation
	Outbound Relocation
	Controlling Relocation by Clustering
	Soft-Pointer Decaching and Relocation

	Setting Data Fetch Policies
	os_fetch_cluster Policy
	os_fetch_page Policy
	os_fetch_stream Policy
	When the Fetch Quantum Is Too Large

	Using Persistent Unions
	Union Overhead
	Example

	Setting Segment Reference Policies
	Setting and Getting Segment Reference Policies
	Exporting Objects
	Examining Export IDs
	Example

	Advanced Transactions
	Reducing Wait Time for Locks
	Clustering
	Locking Granularity
	Transaction Length
	Multiversion Concurrency Control (MVCC)
	Abort-Only Transactions
	Lock Timeouts

	Nested Transactions
	Locking and Nesting
	Abort-Only Transactions

	Deadlock
	Deadlock Victim
	Automatic Retries Within Lexical Transactions
	Consequences of Automatic Deadlock Abort
	Deadlocks in Dynamic Transactions

	Multiversion Concurrency Control (MVCC)
	No Waiting for Locks
	Snapshots
	Accessing Multiple Databases in a Transaction
	Serializability
	MVCC API
	MVCC and the Transaction Log
	Handling err_mvcc_incoherent
	Performance Note

	Logging and Propagation
	Transaction Logging
	Propagation

	Performing Transaction Checkpoints
	Checkpointing a Transaction
	Locking and Checkpoints
	Pointer Validity

	Support for the XA Standard for Transaction Processing
	Transactions in the DTP Model
	ObjectStore Clients
	ObjectStore and RDBMS Database
	Registering ObjectStore as a Resource Manager
	Using the Transaction Manager
	Two-Phase Commit and Recovery
	Restrictions

	Transaction Locking Examples
	Simple Waiting Scenario
	Simple Deadlock Scenario
	MVCC and the Simple Waiting Scenario
	MVCC and the Simple Deadlock Scenario
	MVCC Conflict Scenario

	Multithread and Multisession Applications
	What Are Sessions?
	Threads in Different Sessions
	Threads in the Same Session
	Thread Locking and Collections

	Designing Multithreaded Applications
	Transaction Management Styles
	Transaction Sharing
	Batch Transaction Commits and Aborts

	Overview of Using Sessions
	Using Pointers Across Sessions
	Pointers to Transient ObjectStore Objects
	Pointers to Persistent Objects
	Pointers to Transient Non-ObjectStore Objects

	Cross-Session References
	Initializing the Sessions Facility
	Considering Per-Session Costs When Initializing
	Determining Whether the Sessions Facility Has Been Initialized

	Initializing an Individual Session
	How Partition Size is Determined

	Creating and Deleting Sessions
	Setting and Getting the Current Session
	Thread Absorption
	Getting the Session of Pointers to Objects
	Retrieving the Session for an ObjectStore Object
	Retrieving the Session for a Persistent Object

	Using Collections in a Multisession Environment
	Setting and Getting Session Defaults and Session-Specific State
	Dual-Purpose Functions
	Single-Purpose Functions

	Example
	main()
	Request Execution
	init()
	Start-up Procedures
	Thread Functions
	buy_seats() and view_seats()
	send_reply()
	refresh_if_needed()
	get_request()

	Data Integrity
	Data Integrity Facilities
	Inverse Members
	Illegal Pointers
	References to Deleted Objects

	Inverse Data Members
	Inverse Member End-User Interface
	Defining Relationships
	Relationship Macros
	Macro Arguments

	Relationship Examples
	Example: Single-Valued Relationships
	Example: Many-Valued Relationships
	Example: One-to-Many and Many-to-One Relationships

	Duplicates and Many-Valued Inverse Relationships
	Use of Parameterized Types
	Deletion Propagation and Required Relationships
	Indexable Inverse Members

	Metaobject Protocol
	Metaobject Protocol (MOP) Overview
	MOP Header Files
	Attributes of MOP Classes
	Schema Read Access Compared to Schema Write Access
	Schema Read Access
	Schema Write Access

	Schema Consistency Requirements
	Retrieving an Object Representing the Type of a Given Object
	type_at() Function
	type_containing() Function

	Retrieving Objects Representing Classes in a Schema
	The Transient Schema
	Initializing the Transient Schema with initialize()
	Copying into the Transient Schema with copy_classes()
	Looking Up a Class in the Transient Schema with find_type()

	Using MOP for Schema Installation and Evolution
	The Metatype Hierarchy
	Class os_type
	create() Function
	kind Attribute
	Retrieving the kind_string Attribute
	Retrieving the string Attribute
	Determining an os_type’s Type and Status
	Type-Safe Conversion Operators

	Class os_integral_type
	create() Functions
	Determining a Signed Type with is_signed()

	Class os_real_type
	create() Functions

	Class os_class_type
	create() Functions
	name Attribute
	class_kind Attribute
	members Attribute
	os_base_class Objects
	declares_get_os_typespec_function() Function
	set_declares_get_os_typespec_function() Function
	defines_virtual_functions Attribute
	introduces_virtual_functions Attribute
	is_forward_definition Attribute
	is_persistent Attribute
	Finding the Nonvirtual Base Class with find_base_class()
	Finding Base Classes from Which this Inherits with get_allocated_virtual_base_classes()
	Finding Classes from Which this Indirectly Inherits with get_indirect_virtual_base_classes()
	Finding the Member with a Specified Name with find_member_variable()
	Finding a Containing Object with get_most_derived_class()

	Class os_base_class
	create() Functions
	class Attribute
	access Attribute
	is_virtual Attribute

	Class os_member
	create() Functions
	access Attribute
	kind Attribute
	defining_class Attribute
	Type-Safe Conversion Operators

	Class os_member_variable
	create() Function
	name Attribute
	type Attribute
	storage_class Attribute
	is_field Attribute
	is_static Attribute
	is_persistent Attribute
	Type-Safe Conversion Operators

	Class os_relationship_member_variable
	create() Function
	related_class Attribute
	related_member Attribute

	Class os_field_member_variable
	create() Function
	size Attribute

	Class os_access_modifier
	create() Function
	base_member Attribute

	Class os_enum_type
	create() Function
	name Attribute
	enumerators Attribute

	Class os_enumerator_literal
	create() Function
	name Attribute

	Class os_void_type
	create() Function

	Class os_pointer_type
	create() Function
	target_type Attribute
	Type-Safe Conversion Operators

	Class os_reference_type
	create() Function
	target_type Attribute

	Class os_pointer_to_member_type
	create() Function
	target_type Attribute
	target_class Attribute

	Class os_indirect_type
	Class os_named_indirect_type
	create() Function
	target_type Attribute
	name Attribute

	Class os_anonymous_indirect_type
	create() Function
	target_type Attribute
	is_const Attribute
	is_volatile Attribute

	Class os_array_type
	create() Function
	number_of_elements Attribute
	element_type Attribute

	Fetch and Store Functions
	os_fetch() Functions
	os_store() Functions

	Type Instantiation
	Example: Schema Read Access
	Top-Level print() Function
	Recursive Execution of print()
	print_a_pointer() Function
	Other Data-Handling Routines

	Example: Dynamic Type Creation
	Overview of the gen_schema() Example
	gen_schema() Function
	Supporting Functions for the gen_schema() Application
	Call Graph of Non-ObjectStore Functions for gen_schema()
	gen_schema.cc Source File
	Driver Definition

	Dump/Load Facility
	When Is Customization Required?
	Customizing Dumps
	Creation Stages
	Dumper Actions
	Supplying Customized Type-Specific Actions

	Customizing Loads
	Specializing os_Planning_action
	Implementing operator ()()
	Defining and Registering the Instance

	Specializing os_Dumper_specialization
	Implementing operator ()()
	Implementing should_use_default_constructor()
	Implementing get_specialization_name()
	Defining and Registering the Dumper Instance

	Specializing os_Fixup_dumper
	Implementing dump_info()
	Implementing duplicate()
	Implementing the Constructor

	Specializing os_Type_info
	Implementing data
	Implementing the Constructor

	Specializing os_Type_loader
	Implementing operator ()()
	Implementing load()
	Implementing create()
	Implementing fixup()
	Implementing get()
	Defining and Registering the Instance

	Specializing os_Type_fixup_info
	Implementing fixup_data
	Implementing the Constructor

	Specializing os_Type_fixup_loader
	Implementing operator ()()
	Implementing load()
	Implementing fixup()
	Implementing get()
	Registering the Fixup Loader

	Advanced Schema Evolution
	Phases of the Schema Evolution Process
	Instance Initialization
	Pointers to Modified Objects and Their Subobjects
	Untranslatable Pointers
	C++ References
	ObjectStore References
	Obsolete Indexes and Queries
	Task List Reporting

	Instance Transformation
	Transformer Functions

	Initiating Schema Evolution
	Databases to Evolve
	Removed Classes
	Work Database

	Example: Changing the Type of a Data Member, Assignment-compatible Types
	Using ossevol for Simple Schema Evolution

	Using Transformer Functions
	Signature of Transformer Functions
	Associating a Transformer with a Class

	Example: Changing the Type of a Data Member, Assignment-incompatible Types
	Example: Changing Inheritance
	Instance Reclassification
	Untranslatable Pointers
	Using Handler Objects
	Creating a Handler Object
	Understanding Untranslatable Pointers

	Example: Using Untranslatable Pointer Handlers
	Obsolete Index and Query Handlers
	Task List Reporting
	Instance Initialization Rules
	Class Creation
	Inheritance Redefinition
	Data Member Redefinition
	Member Function Redefinition
	Class Deletion

	Schema Changes Related to Data Members
	Adding Data Members
	Deleting Data Members
	Changing the Value Type of a Data Member
	Changing the Order of Data Members
	Moving Information from One Data Member to Another
	Evolving Schemas That Contain Pointer-to-Member Types
	Summary of Data Member Changes Not Requiring Explicit Evolution

	Schema Changes Related to Member Functions
	Schema Changes Related to Class Inheritance
	Adding Base Classes
	Removing Base Classes
	Inserting Base Classes
	Changing Between Virtual and Nonvirtual Inheritance
	Class Deletion

	Evolving Schemas That Contain Union Bystanders
	Evolving or Compacting Very Large Databases

	Using Asian Language String Encodings
	Class Library: os_str_conv
	Automatic Detection of a Source String Encoding
	How to Instantiate the Converter
	Guidelines for Extensions to os_str_conv
	What Are the Different Modes and Their Meanings?
	Variations Among Standard Character Mappings
	Instructions on Overriding Particular Mappings
	Example
	Byte Order
	Overhead
	Restrictions
	Performance Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

