
Writing Applications with
PSE Pro for C++

A Guide for the First-Time User

Release 6.3

Copyright

Writing Applications with PSE Pro for C++, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom,,
IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered by Progress, Progress,
Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress
OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and design), ProCare, Progress en Partners,
Progress in Progress, Progress Profiles, Progress Results, Progress Software Developers Network, ProtoSpeed, ProVision,
SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries
or affiliates in the U.S. and/or other countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen,
ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect
XQuery, DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or
one of its subsidiaries or affiliates in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or trade names contained herein
are the property of their respective owners.

September 2005

Contents

Preface . 5

Writing PSE Pro for C++ Applications 9

The PSE Pro API . 10

Database Management . 11

Database Roots . 11

Persistent Objects. 11

Transaction Management. 12

A Checklist of PSE Pro Operations . 12

Flaws in the iostreams Version . 19

PSE Pro Version . 19

Building PSE Pro Applications . 26

Generating Schemas . 26

Compiling and Linking . 27

Using the Collections Facility . 28

An Example . 29

Building the Collections Example . 34

Compiler Options . 36

get_os_typespec() . 36

objectstore::initialize() . 37

::operator delete() . 37

os_collection::initialize() . 38

os_database::close() . 38

os_database::create_root() . 39

os_database::of(). 39

os_database::open(). 39

os_database_root::get_value() . 40

os_database_root::set_value() . 40

os_Dictionary::pick() . 40

OS_PSE_END_FAULT_HANDLER . 41

OS_PSE_ESTABLISH_FAULT_HANDLER . 41

OS_MARK_DICTIONARY() . 41
Release 6.3 3

Contents
4

OS_MARK_SCHEMA_TYPE(). .41

os_transaction::begin() .42

os_transaction::commit() .42

os_typespec::get_char() .42

pssg .43

Index. .45
4 Writing Applications with PSE Pro for C++

Preface

Purpose Writing Applications with PSE Pro for C++ shows how to write and build simple
database applications that use basic features of the PSE Pro for C++ application
programming interface (API), including the collections facility.

Audience This manual is written for C++ programmers with little or no experience with PSE
Pro.

Release This manual supports PSE Pro for C++ Release 6.3.

How This Book Is Organized
The book is organized in sections, as follows:

• Making Complex Objects Persistent on page 10 discusses the benefits of using PSE
Pro to make objects persistent.

• Basic PSE Pro Operations on page 11 describes the basic operations that any PSE
Pro application must perform.

• A Checklist of PSE Pro Operations on page 12 lists the PSE Pro operations that you
must implement in your application and the APIs that you use to implement
them.

• Using PSE Pro: An Example Application on page 14 presents and compares two
versions of an example program — one using iostreams and the other using PSE
Pro.

• Building PSE Pro Applications on page 26 describes how to build an PSE Pro
application. It uses the program presented in the previous section as an example.

• Using the Collections Facility on page 28 provides an overview of the collections
facility and shows how to use some of its features. It uses a revised version of the
PSE Pro program presented earlier to illustrate how to implement the collections
facility.

• An Abbreviated PSE Pro Reference on page 36 provides a summary reference of
all features of the API mentioned in this Guide. For detailed and complete
information, refer to thePSE Pro for C++ A P I User Guide and to the PSE Pro for C++
Collections Guide and Reference.

Example Programs
The example programs discussed in this manual are available online in the directory
examples\restaurant located in the PSE Pro installation directory, which by
default on Windows platforms is \odi\PSEPROC63. On UNIX platforms, the default
PSE Pro installation directory is /opt/ODI/PSEPROC63.
Release 6.3 5

Preface
The restaurant directory consists of subdirectories that contain the source files for
each program, as well as README files, makefiles, and scripts for building and
running the programs. Each program is in its own subdirectory.

The example programs are not intended to be performance models but rather to
illustrate how to use basic features of PSE Pro. For example, none of the programs
executes more than one transaction at run time. But PSE Pro’s hot cache architecture
achieves its best performance as the application processes more and more
transactions. Realistic applications would be designed to take advantage of this
architecture.

Notation Conventions
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.
6 Writing Applications with PSE Pro for C++

Preface
• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 7

Preface
8 Writing Applications with PSE Pro for C++

Writing PSE Pro for C++
Applications

This Guide explains how to write simple PSE Pro applications in C++, focusing on
the fundamental concepts and features of PSE Pro. You will learn the basics of

• Persistence

• Basic PSE Pro operations, such as transactions and database management

• Writing and building a PSE Pro application

• Using the collections facility

Note One purpose of this Guide is to expose the details of how you write simple PSE Pro
applications. The Guide therefore does not include information about automating
development with the make utility. However, the on-line directories that contain the
source files for the example programs also include makefiles; for more information,
see Example Programs on page 5.
Release 6.3 9

Making Complex Objects Persistent
Making Complex Objects Persistent
PSE Pro for C++ is one of a broad and varied range of ObjectStore products that meet
your database needs. The core competence of these products, however, is quite
simple: making complex objects persistent. PSE Pro enables an application to store
and retrieve objects in a database in the same form it uses to manipulate transient
objects (that is, objects resident in program memory). When the application accesses
objects stored in a PSE Pro database, they are ready for use and require no mapping
code to move them from disk-resident format to memory-resident format.

The PSE Pro API
To write a PSE Pro application, you use the application programming interface (API)
that is part of PSE Pro. The API consists of C++ classes and macros that perform
certain PSE Pro operations, such as opening a database or defining a transaction.
Using the API does not require learning another programming language, and your
program source files do not need special preprocessing before compilation. You
write all code in C++.

Many of the classes are designed for specialized tasks and are unnecessary for most
applications. In fact, only a small subset of the functions and macros in the API are
needed to perform the basic operations that are common to most PSE Pro
applications.

This Guide describes the basic PSE Pro operations and shows how to use the API to
implement them. All features of the API mentioned in this Guide are described in the
last section, An Abbreviated PSE Pro Reference on page 36.
10

Writing PSE Pro for C++ Applications
Basic PSE Pro Operations
To use PSE Pro, you must implement these basic operations in your application:

• Create or open the database in which data will be stored

• Create a database root

• Create and destroy objects in persistent memory

• Define transaction boundaries for accessing persistent data

Each of these operations is described in the following sections.

Database Management
The most commonly performed operations on a PSE Pro database are familiar:

• Creating the database

• Opening the database

• Closing the database

What might be less obvious is that a PSE Pro database is really a unit of persistent
storage. This means, for example, that whenever you create a persistent object, you
are creating it in a particular database. Therefore, all manipulations of a persistent
object occur within the context of an open database. It is only when you are finished
working with persistent objects that you can close the database.

Database Roots
In a PSE Pro application, you access the first object in a database by retrieving a
database root. You create the root by using the PSE Pro API, giving it a name that you
can later use to retrieve the root. You then associate the root with an object stored in
your database — the entry-point object. Having the entry-point object gives you access
to other objects, either through some form of associative access (such as by using a
key value) or by navigational means.

Persistent Objects
When creating and destroying objects in persistent memory, you use the same
operators — new and delete — as you would when creating objects in heap-
allocated (that is, transient) memory. The difference is that when you create a
persistent object, you are adding the object to the PSE Pro database, extending its
lifetime beyond the lifetime of the application that created it. And when you destroy
it, you are removing it from the database.

PSE Pro provides an overloading of new to create persistent objects and an overriding
of delete to destroy them. PSE Pro can detect at run time whether you are using new
to create a persistent or a heap-allocated object; likewise, it can detect at run time
whether you are using delete to release persistent or heap-allocated storage. For
information about these operators, see ::operator new() on page 38 and
::operator delete() on page 37.
Release 6.3 11

A Checklist of PSE Pro Operations
Transaction Management
If operations on a database need to be atomic, PSE Pro applications can access
persistent data from within a transaction. Briefly, a transaction is a sequence of
statements in an application that read and write to persistent data. A transaction is
atomic — that is, either all of its changes to the database are recorded or none of
them. If an event prevents a transaction from completing, the transaction aborts, and
all intermediate changes are rolled back to their pretransaction state. If the
transaction successfully completes, all changes to the database are committed and
made permanent.

Using transactions to access persistent data is optional in PSE Pro. The PSE Pro
applications in this Guide use transactions.

A Checklist of PSE Pro Operations
This section lists the items you must implement when you write an application to use
PSE Pro. These items include the major operations described in Basic PSE Pro
Operations on page 11 as well as minor but equally essential items, such as including
PSE Pro header files.

• Include the required PSE Pro header files. All PSE Pro applications must include
ostore.hh. For more specialized features of the API, you might have to include
other PSE Pro header files. The PSE Pro for C++ A P I User Guide lists the required
header files for all classes that require them. For an example, see restaurant.hh
on page 20, line 5.

• Include all code that performs any PSE Pro operation within the following
macros:

- OS_PSE_ESTABLISH_FAULT_HANDLER

- OS_PSE_END_FAULT_HANDLER

PSE Pro uses these macros to detect references to persistent memory.

The simplest way to use these macros is to insert OS_PSE_ESTABLISH_FAULT_
HANDLER at the beginning of main() or WinMain() and to insert OS_PSE_END_
FAULT_HANDLER at the end. For more information about the macros, see OS_PSE_
ESTABLISH_FAULT_HANDLER on page 41. For an example, see init_db.cpp on
page 22, line 11 and line 33.

• Initialize PSE Pro by calling objectstore::initialize() before performing any
PSE Pro operation. The simplest place to call this function is just after the OS_PSE_
ESTABLISH_FAULT_HANDLER macro. For more information, see
objectstore::initialize() on page 37. For an example, see init_db.cpp on
page 22, line 12.

• Perform the necessary database operations, including creating, opening, and
closing a database. We provide the following methods to perform these
operations:
12

Writing PSE Pro for C++ Applications
- os_database::create() on page 39. For an example, see init_db.cpp on
page 22, line 21.

- os_database::open() on page 39. For an example, see main.cpp on page 24,
line 21.

- os_database::close() on page 38. For an example, see main.cpp on page 24,
line 44.

• If your application uses transactions, define the transaction boundaries of each
sequence of statements that operate on persistent data as a logical unit. PSE Pro
defines these boundaries with calls to os_transaction methods, as described in
os_transaction::begin() on page 42 and os_transaction::commit() on
page 42. For an example, see main.cpp on page 24, line 24 and line 43.

• Create and destroy persistent data. To create a persistent object, use the PSE Pro
overloading of operator new, as described in ::operator new() on page 38. For
examples, see restaurant.cpp on page 20, line 25 (an object) and line 52 (a
character array).

PSE Pro overrides operator delete, so the same syntax can be used to destroy
persistent or transient objects; see ::operator delete() on page 37.

• Create a database root and associate it with the entry-point object in your
database. PSE Pro provides the following methods for managing database roots:

- os_database::create_root() on page 39. For an example, see
restaurant.cpp on page 20, line 27.

- os_database::find_root() on page 40. For an example, see
restaurant.cpp on page 20, line 39.

- os_database_root::get_value() on page 40. For an example, see
restaurant.cpp on page 20, line 41.

- os_database_root::set_value() on page 40. For an example, see
restaurant.cpp on page 20, line 29.
Release 6.3 13

Using PSE Pro: An Example Application
Using PSE Pro: An Example Application
To illustrate how to use PSE Pro in an application, this section examines a program
that processes restaurant reservations. The program is implemented in two different
versions:

• An iostreams version, which uses iostreams to store and retrieve data about a
restaurant; see iostreams Version on page 15.

• A PSE Pro version, which uses PSE Pro to make persistent the object that contains
the restaurant data; see PSE Pro Version on page 19.

Both versions are functionally identical: the user invokes the main application
(reserve) and enters the number of persons for the dinner reservation; and the
program either confirms the reservation by displaying the number of tables that
have been reserved or, if there are not enough tables, denies the reservation.
Likewise, both versions use an object of the class Restaurant to hold information
about one restaurant. This information is updated each time reserve is invoked and
successfully makes a reservation.

Each version of the program consists of these source files:

• restaurant.hh, the header file that declares the Restaurant class

• restaurant.cpp, the implementations file that defines the function members of
the Restaurant class

• init_db.cpp, the source file for a utility application (init_db), which initializes
the restaurant data

• main.cpp, the source file for the main application (reserve), which processes
reservations

The similarities between the two versions will help to focus on the key differences in
the PSE Pro version — that is, the basic PSE Pro operations. Commentary on the
programs follows the listings of init_db.cpp and main.cpp for both versions.
14

Writing PSE Pro for C++ Applications
iostreams Version
The iostreams version of the reservations program stores the restaurant data (the
name of the restaurant and the number of available tables) in an ASCII file. The
source files for the program are in the directory examples\restaurant\iostreams
which is located in the PSE Pro installation directory. By default, on Windows
platforms, this is odi\PSEPROC63; on UNIX platforms, /opt/ODI/PSEPROC63.

restaurant.hh Here is the header file for the Restaurant class:

// restaurant.hh: defines the Restaurant class
#include <iostream>
#include <fstream>
#include <string.h>
#include <stdlib.h>

class Restaurant {
private:
 const char* name; // name of restaurant
 int tables; //number of tables available (4 persons per table)
 static const int BUFSIZE;
 static const int PERSONSPERTABLE;
 char* dupl_string(const char* s);
public:
 Restaurant(const char* s, int t);
 ~Restaurant() { delete [] (char*)name; };
 static void create_restaurant(const char* s,int t,ofstream* db);
 static Restaurant* get_restaurant(fstream* db);
 void save_restaurant(fstream* db);
 const char* get_name() { return name; }
 int get_tables() { return tables; }
 void set_tables(int t) { tables = t; }
 int make_reservation(int n_persons);
private:
 // declared but unimplemented functions to prevent
 // inadvertent calls
 Restaurant();
 Restaurant(const Restaurant&);
 Restaurant& operator=(const Restaurant&);
};

restaurant.cpp Here is the implementation file:

// restaurant.cpp: implements members of Restaurant
// and defines globals
#include "restaurant.hh"

#include "dbname.h";

const int Restaurant::BUFSIZE = 100;
const int Restaurant::PERSONSPERTABLE = 4;

// create a Restaurant object
Restaurant::Restaurant(const char* s, int t):
 name(dupl_string(s))
{
 tables = t;
}
Release 6.3 15

Using PSE Pro: An Example Application
// save name of restaurant and the current number of tables
void Restaurant::save_restaurant(fstream* db)
{
 db->seekp(0, ios::beg);
 *db << dec << tables << endl;
 *db << name << endl;
}

// store name of restaurant (s) and initial number of tables (t)
// in the file that db points to
void Restaurant::create_restaurant(const char* s, int t,
 ofstream* db)
{
 *db << dec << t << endl;
 *db << s << endl;
}

// return a pointer to a Restaurant object that is
// initialized from the contents of the database that
// db points to
Restaurant* Restaurant::get_restaurant(fstream* db)
{
 char name_buf[BUFSIZE];
 char table_buf[BUFSIZE];

 db->getline(table_buf, BUFSIZE);
 db->getline(name_buf, BUFSIZE);

 return(Restaurant*)new Restaurant(name_buf,atoi(table_buf));
}

// allocate storage to hold the string in s, copy s to the
// newly allocated storage, and return a pointer to the storage
char* Restaurant::dupl_string(const char* s)
{
 int len = strlen(s)+1;
 char* p = new char [len];
 return strcpy(p, s);
}

// return the number of tables reserved, based on the number of
// persons in the party (n_persons); otherwise, 0
int Restaurant::make_reservation(int n_persons)
{
 int tables_to_reserve = 0;
 int tables_available = get_tables();

 if (!tables_available)
 ; // do nothing, all booked up!
 else if (n_persons <= PERSONSPERTABLE) {
 set_tables(tables_available-1);
 tables_to_reserve = 1;
 }
 else { // figure out how many tables to reserve
 tables_to_reserve = n_persons / PERSONSPERTABLE;
 if (tables_to_reserve*PERSONSPERTABLE < n_persons)
 tables_to_reserve++;
 if (tables_to_reserve > tables_available)
 // not enough tables, so can't make reservation
 tables_to_reserve = 0;
16

Writing PSE Pro for C++ Applications
 else
 // successful reservation
 set_tables(tables_available-tables_to_reserve);
 }
 return tables_to_reserve;
}

init_db.cpp Here is the source file for init_db, the application that creates a streams file and
initializes it with the restaurant name and number of tables specified on the
command line. Commentary follows the listing.

// init_db.cpp: creates a restaurant object and writes its data
// members (name and number of tables) to a file
#include "restaurant.hh"

#include "dbname.h";

int main(int argc, char** argv)
{
 int n_tables;

 // check for missing or bad arguments
 if (argc != 3 || !(n_tables = atoi(argv[2]))) {
 cerr << "USAGE: init_db <restaurant-name> <n-tables>\n";
 return 1;
 }

 // create file for storing restaurant data
 ofstream db(DB_NAME);

 // create a restaurant
 Restaurant::create_restaurant(argv[1], n_tables, &db);

 db.close();

 return 0;
}

Commentary on
init_db.cpp

The init_db application does the following:

1 Creates a streams file named restaurants.db.

2 Calls create_restaurant() to store information about the restaurant in the file. The
information to be stored is supplied on the command line. The create_
restaurant() function does not create a Restaurant object, which would only
be destroyed once init_db finishes executing.

3 Closes the file.

Command lines
for compiling,
linking, and
running

Here are the command lines for compiling and linking init_db on Windows
platforms:

cl /c init_db.cpp restaurant.cpp
cl /Feinit_db.exe init_db.obj restaurant.obj

The following command line creates the file restaurants.db and stores the two
arguments, Il Falchetto and 10:

init_db "Il Falchetto" 10
Release 6.3 17

Using PSE Pro: An Example Application
main.cpp Here is the source file for the main application (reserve), which processes restaurant
reservations. Commentary follows the listing.

// main.cpp: processes restaurant reservations
#include "restaurant.hh"

#include "dbname.h";

int main(int argc, char** argv)
{
 int tables_reserved, n_persons;

 // check for missing or bad arguments
 if (argc != 2 || !(n_persons = atoi(argv[1]))) {
 cerr << "USAGE: reserve <n-persons>\n";
 return 1;
 }

 // open file for reading restaurant data and writing
 // updated data
 fstream db(DB_NAME, ios::in|ios::out);

 // get a Restaurant object, initialize it from values in file
 Restaurant* restaurant = Restaurant::get_restaurant(&db);

 // book a reservation
 tables_reserved = restaurant->make_reservation(n_persons);

 // confirm or deny reservation
 if (tables_reserved)
 cout << "Reserved " << tables_reserved << " tables";
 else
 cout << "Sorry, all booked";
 cout << " at " << restaurant->get_name() << endl;

 // save restaurant data, then delete restaurant object
 restaurant->save_restaurant(&db);
 delete restaurant;

 db.close();

 return 0;
}

Commentary on
main.cpp

The main application (reserve) does the following:

1 Opens restaurants.db for reading and writing.

2 Calls get_restaurant() to return a pointer to the object that has been
constructed from the information stored in restaurants.db. This step invokes
the constructor, Restaurant(), which also assigns its file pointer argument (db)
to the database member. The destructor needs this member to update the file
with the information supplied from the tables and name data members.

3 Calls make_reservation() with the number of persons for which the reservation
is being made. This method also updates the tables member of the Restaurant
object.
18

Writing PSE Pro for C++ Applications
4 Confirms or denies the reservation based on the availability of a sufficient number
of tables.

5 Calls save_restaurant(), which writes the updated number of tables as well as
the restaurant name back out to file. The call to fstream::seekp() inside save_
restaurant() ensures that the updates overwrite the file rather than append to
its end.

6 Closes restaurants.db.

Command lines
for compiling,
linking, and
running

Here are the command lines to compile and link the main application:

cl /c main.cpp restaurant.cpp
cl /Fereserve.exe main.obj restaurant.obj

The following is a sample run:

C:\> reserve 11
Reserved 3 tables at Il Falchetto

Flaws in the iostreams Version
There are several serious flaws in the iostreams version of the restaurant
reservations program. These flaws become more apparent as we revise the program
to make it more realistic — for example, by adding more data members to the
Restaurant class or by modifying the program to manage reservations for more
than one restaurant:

• The program is not fail-safe. An exception or any other abnormal condition that
causes the program to crash will prevent save_restaurant() from updating
restaurants.db.

• As more classes are added to the program — classes with data members might
have to be stored and retrieved — writing code to serialize and deserialize the
objects becomes more complicated and cumbersome. This limitation also becomes
more apparent as more data members are added to the Restaurant class and as
the relationships between objects become more complex.

• The program does not scale. If the program were required to process thousands
of Restaurant objects, relying on iostreams to store, retrieve, and update
Restaurant data members would slow performance to the point of making the
program unusable.

In the next section, we take the first steps toward making the program more usable
by implementing it to use PSE Pro.

PSE Pro Version
The PSE Pro version of the reservations program makes an object of the class
Restaurant persistent. The reserve application does not construct a Restaurant
object each time it is invoked. Rather, it opens the database and accesses the object
that is already there, ready for use. Any updates that the application makes to the
tables data member are persistent because they are updates to the object, which is
itself persistent.
Release 6.3 19

Using PSE Pro: An Example Application
The source files for the program are in the directory examples\restaurant\basic_
oswhich is located in the PSE Pro installation directory. By default, this is
odi\PSEPROC63.

restaurant.hh Here is the header file about the program for the Restaurant class. (Line numbers
are included in this file and in the remaining files for the convenience of cross-
referencing.)

01 // restaurant.hh: defines the Restaurant class
02 #include <iostream>
03 #include <string.h>
04 #include <stdlib.h>
05 #include <os_pse/ostore.hh>
06
07 class Restaurant {
08 private:
09 const char* name; // name of restaurant
10 int tables; //number of tables available (4 persons per table)
11 static const int PERSONSPERTABLE;
12 static const char* DB_ROOT; // name of database root
13 char* dupl_string(const char* s);
14 public:
15 Restaurant(const char* s, int t);
16 ~Restaurant() { delete [] (char*)name; }
17 static void create_restaurant(const char* s, int t,
18 os_database* db);
19 static Restaurant* get_restaurant(os_database* db);
20 const char* get_name() { return name; }
21 int get_tables() { return tables; }
22 void set_tables(int t) { tables = t; }
23 int make_reservation(int n_persons);
24
25 // retrieve a pointer to the Restaurant typespec object
26 static os_typespec* get_os_typespec(){ return os_ts<Restaurant>::get(); }
27
28 private:
29 // declared but unimplemented functions to prevent
30 // inadvertent calls
31 Restaurant();
32 Restaurant(const Restaurant&);
33 Restaurant& operator=(const Restaurant&);
34 };

restaurant.cpp Here is the implementation file.

01 // restaurant.cpp: implements members of Restaurant
02 // and defines globals
03 #include "restaurant.hh"
04
05 #include "dbname.h";
06
07 const int Restaurant::PERSONSPERTABLE = 4;
08 const char* Restaurant::DB_ROOT = "restaurant_root";
09
10 // create a Restaurant object
11 Restaurant::Restaurant(const char* s, int t):
12 name(dupl_string(s))
20

Writing PSE Pro for C++ Applications
13 {
14 tables = t;
15 }
16
17 // create a Restaurant object and a database root, and associate
18 // the two
19 void Restaurant::create_restaurant(const char* s, int t,
20 os_database* db)
21 {
22 // get a pointer to typespec for Restaurant class
23 os_typespec* ts = Restaurant::get_os_typespec();
24 // create Restaurant object
25 Restaurant* restaurant = new(db, ts) Restaurant(s, t);
26 // create database root
27 os_database_root* db_root = db->create_root(DB_ROOT);
28 // associate root with object
29 db_root->set_value(restaurant, ts);
30
31
32 }
33
34 // return a pointer to the Restaurant object that is associated with
35 // the database root
36 Restaurant* Restaurant::get_restaurant(os_database* db)
37 {
38 // find root
39 os_database_root* db_root = db->find_root(DB_ROOT);
40 // retrieve and return associated object
41 return (Restaurant*)db_root->get_value(
42 Restaurant::get_os_typespec());
43
44
45 }
46
47 // allocate storage to hold the string in s, copy s to the
48 // newly allocated storage, and return a pointer to the storage
49 char* Restaurant::dupl_string(const char* s)
50 {
51 int len = strlen(s)+1;
52 char* p = new (os_database::of(this),
53 os_typespec::get_char(), len) char [len];
54 return strcpy(p, s);
55 }
56
57 // return the number of tables reserved, based on the number of
58 // persons in the party; otherwise, 0
59 int Restaurant::make_reservation(int n_persons)
60 {
61 int tables_to_reserve = 0;
62 int tables_available = get_tables();
63
64 if (!tables_available)
65 ; // do nothing, all booked up!
66 else if (n_persons <= PERSONSPERTABLE) {
67 set_tables(tables_available-1);
68 tables_to_reserve = 1;
69 }
Release 6.3 21

Using PSE Pro: An Example Application
70 else { // figure out how many tables to reserve
71 tables_to_reserve = n_persons / PERSONSPERTABLE;
72 if (tables_to_reserve*PERSONSPERTABLE < n_persons)
73 tables_to_reserve++;
74 if (tables_to_reserve > tables_available)
75 // not enough tables, so can't make reservation
76 tables_to_reserve = 0;
77 else
78 // successful reservation
79 set_tables(tables_available-tables_to_reserve);
80 }
81 return tables_to_reserve;
82 }

init_db.cpp Here is the source file for init_db, the application that creates a Restaurant object
and makes it persistent. Commentary follows the listing.

01 // init_db.cpp: creates database for restaurant reservations
02 // program
03 #include "restaurant.hh"
04
05 #include "dbname.h";
06
07 int main(int argc, char** argv)
08 {
09 int n_tables;
10
11 OS_PSE_ESTABLISH_FAULT_HANDLER {
12 objectstore::initialize();
13 os_transaction::initialize();
14 // check for missing or bad arguments
15 if (argc != 3 || !(n_tables = atoi(argv[2]))) {
16 cerr << "USAGE: init_db <name> <n-tables>\n";
17 return 1;
18 }
19
20 // create database for storing a Restaurant object
21 os_database* db = os_database::create(DB_NAME);
22
23 // begin update transaction
24 os_transaction* txn =
25 os_transaction::begin("the_txn", os_transaction::update);
26 // create a Restaurant object
27 Restaurant::create_restaurant(argv[1], n_tables, db);
28
29 os_transaction::commit();
30 db->close();
31 db = NULL;
32
33 } OS_PSE_END_FAULT_HANDLER
34
35 return 0;
36 }

Commentary on
init_db.cpp

The structure and interface of the PSE Pro version of init_db is nearly the same as
that of the iostreams version, except that it stores the Restaurant object — not the
values of its data members — in a database. This version does the following:
22

Writing PSE Pro for C++ Applications
1 Creates a database for the Restaurant object.

2 Calls create_restaurant() to store restaurant data.

3 Closes the database.

The differences, however, are significant in that they apply to any application that
uses PSE Pro. The key differences are

• All code that performs PSE Pro operations is delimited by page-fault handling
macros.

• PSE Pro is initialized by a call to objectstore::initialize().

• In this application, all code that accesses persistent data is contained within a PSE
Pro transaction. The PSE Pro transaction facility is initialized by a call to os_
transaction::initialize(). The transaction starts with a call to os_
transaction::begin() and ends with a call to os_transaction::commit().

The underlying implementation is also different, as a comparison of the two versions
of restaurant.cpp will show. Recall that the iostreams version of the create_
restaurant() method does not create an object but simply writes two data values
to a file. The PSE Pro version, on the other hand, does create a Restaurant object and
makes it persistent, storing it in a database. That is, the object — not just the values
of its data members — is now accessible to other applications when they open the
database.

The create_restaurant() method uses the PSE Pro overloading of ::operator
new() to create the Restaurant object. Persistent new has two arguments that
transient new does not have:

• The placement argument (db), which points to the persistent database that was
opened in init_db.cpp.

• The typespec argument (ts), which points to an os_typespec object. This
argument supplies PSE Pro with type information it needs when allocating
persistent storage. The pointer is obtained by calling get_os_typespec(), which
is declared as a method of Restaurant and uses PSE Pro’s os_ts<>::get()
method.

For a description of persistent new, see ::operator new() on page 38.

The PSE Pro version of create_restaurant() also creates a database root and then
associates the root with the Restaurant object created earlier. Here are the
statements that perform both operations:

os_database_root* db_root = db->create_root(DB_ROOT);

db_root->set_value(restaurant, ts);

The ts argument is the same typespec that was specified in ::operator new() when
the Restaurant object was created. Although this argument is not required in calls
to set_value(), ObjectStore Technical Support recommends using it to prevent
mismatch errors; see os_database_root::set_value() on page 40.

Applications can access the object by retrieving the root with which it is associated,
using the name (DB_ROOT) with which it was created.
Release 6.3 23

Using PSE Pro: An Example Application
Note init_db application does not — and must not — delete the Restaurant object
created by create_restaurant(). The program stores this object persistently; if the
object were deleted, it would no longer exist in the database.

main.cpp Here is the source file for the main application (reserve), which processes restaurant
reservations. Commentary follows the listing.

01 // main.cpp: processes restaurant reservations
02 #include "restaurant.hh"
03 #include <stdlib.h>
04
05 #include "dbname.h";
06
07 int main(int argc, char** argv)
08 {
09 int tables_reserved, n_persons;
10
11 OS_PSE_ESTABLISH_FAULT_HANDLER {
12 objectstore::initialize();
13 os_transaction::initialize();
14 // check for missing or bad argument
15 if (argc != 2 || !(n_persons = atoi(argv[1]))) {
16 cerr << "USAGE: reserve <n-persons>\n";
17 return 1;
18 }
19
20 // open database
21 os_database* db = os_database::open(DB_NAME);
22
23 // begin update transaction
24 os_transaction* txn =
25 os_transaction::begin("the_txn", os_transaction::update);
26 // get Restaurant object from database
27 Restaurant* restaurant =
28 Restaurant::get_restaurant(db);
29
30 // book a reservation
31 tables_reserved =
32 restaurant->make_reservation(n_persons);
33
34 // confirm or deny reservation
35 if (tables_reserved)
36 cout << "Reserved " << tables_reserved << " tables";
37 else
38 cout << "Sorry, all booked";
39 cout << " at " << restaurant->get_name() << endl;
40
41 // don't delete object! -- it's persistent
42
43 os_transaction::commit();
44 db->close();
45 db = NULL;
46
47 } OS_PSE_END_FAULT_HANDLER
48
49 return 0;
50 }
24

Writing PSE Pro for C++ Applications
Commentary on
main.cpp

The PSE Pro version of the main application is similar to the iostreams version in
both structure and interface — except for the differences already noted in
“Commentary on init_db.cpp” on page 22. In other words, the PSE Pro version
follows the same fundamental steps for processing a reservation, but without
explicitly saving the object and without deleting the persistent Restaurant object.
When the transaction commits, all changes to the object are made permanent in the
database.

Here are the steps implemented in main.cpp:

1 Open the database.

2 Call get_restaurant().

3 Call make_reservation().

4 Confirm or deny the reservation.

5 Close the database.

The implementation of get_restaurant() in Step 2 is very different from the
iostreams version. Instead of using new to create a Restaurant object each time the
application is invoked, the PSE Pro version retrieves the same Restaurant object
that was previously created in persistent memory by init_db.

To retrieve the object, get_restaurant() first gets a pointer to the database root,
using the name (the value of the string to which DB_ROOT points) with which it was
created. Once it has the root, it calls a method on the root object to retrieve the
associated entry-point object. The statements that do both operations are

os_database_root* db_root = db->find_root(DB_ROOT);

return (Restaurant*)db_root->get_value(
 Restaurant::get_os_typespec());

As in the call to set_value() that was used initially to associate the root with an
object (see restaurant.cpp on page 20, line 29), the call to get_value() includes a
typespec argument, only in this case the typespec is obtained by calling get_os_
typespec() in the argument list. The typespec argument is optional but is
recommended as a way to prevent mismatch errors. If you want PSE Pro to check the
typespec argument, you must also specify it when you call set_value() to associate
the root with the object, as shown in restaurant.cpp on page 20, line 29.

Preventing
memory leaks

The os_database object to which db points is deleted when os_database::close()
is invoked for db; see main.cppon page 24, line 44. This is a transient object that
represents the persistent database. Deleting it does not delete the database. Trying to
use the db object after the database is closed throws the exception os_err_
database_closed. For information about using the PSE Pro API for help in
managing the lifetimes of transient objects, see Closing Databases in Chapter 3 of the
PSE Pro for C++ A P I User Guide.
Release 6.3 25

Building PSE Pro Applications
Building PSE Pro Applications
The steps for building a PSE Pro application are

1 Generate schemas.

2 Compile the source code.

3 Link the application.

Except for Step 1, building a PSE Pro application is similar to building any other
application. The first step (schema generation) produces information about the types
of the objects that will be made persistent. PSE Pro uses this schema information
whenever an application accesses a database. Once you have generated the schema,
you use it in the remaining steps of the build process, as described in Compiling and
Linking on page 27.

Note Before building an application, you must have installed PSE Pro for C++ and
correctly set all necessary environment variables. In particular, the variables
INCLUDE and LIB should contain the correct PSE Pro directories. By default these are
C:\ODI\PSEPROC\include and C:\ODI\PSEPROC\lib, respectively.

Generating Schemas
Here are the steps for generating schemas:

1 Write a schema source file.

2 Compile the source file to check for syntax errors.

3 Run the PSE Pro schema generator, pssg, against the schema source file.

The following paragraphs describe each step in detail.

Writing the
schema source
file

The purpose of the schema source file is to mark the classes of objects that will be
made persistent. Classes you must mark include not only those of objects stored
directly in persistent memory (like the Restaurant class in the reservations
program) but also any reachable classes. A class is reachable if it is the base class, or
the class of a member, of a persistent object. For detailed information about the
classes you must mark, see in Chapter 2 of Building Applications with PSE Pro for C++.

After identifying the classes for which you must generate a schema, you use the OS_
MARK_SCHEMA_TYPE() macro to mark each class in the schema source file; for more
information about this macro, see OS_MARK_SCHEMA_TYPE() on page 41.

In the restaurant reservations program, only one type of object, Restaurant, is
persistently stored. Consequently, Restaurant is the only class that must be marked
in the schema source file, as follows:

OS_MARK_SCHEMA_TYPE(Restaurant);

The schema source file must also include the PSE Pro header file ostore.hh, as well
as the application header files that define the marked classes. Any other PSE Pro
header files included in your application must also be included in the schema source
file. See Using the Collections Facility on page 28 for an example that uses additional
26

Writing PSE Pro for C++ Applications
PSE Pro header files. PSE Pro header files are order dependent, and ostore.hh must
be included before any others.

Here is the schema source file (schema.scm) for the reservations program. Note that
ostore.hh is already included in restaurant.hh and is, therefore, not included
again.

schema.scm #include "restaurant.hh"
OS_MARK_SCHEMA_TYPE(Restaurant);

Checking for
syntax errors

The schema source file, like all other source files that you write, must contain valid
C++ code. It is therefore recommended (but not required) that you compile it to
check for syntax errors. Here is the command line to run the compiler to check the
example schema source file for syntax errors:

cl /MD /c /Tpschema.scm

For information about the compiler options used in this command line, see Compiler
Options on page 36. After successful compilation, you can delete the generated
object file. It is not needed for building a PSE Pro application. The object file to be
used for the application will be generated after you run the pssg schema-generation
tool.

pssg command
line

After you have a syntactically correct schema source file, you are ready to generate
the schema object file. To do so, you use the pssg schema-generation tool, specifying
the schema source file as one of its arguments. Here is the command line to generate
schema for the reservations program:

pssg -asof schema.obj schema.scm

The -asof option lets you specify the name of the object file, in this case,
schema.obj. If you do not use the -asof option, the default name of the object file
is osschm.obj. Note that the schema source file (schema.scm in the example) does
not require an option; however, it must appear at the end of the command line. For
information about other pssg options, see pssg on page 43.

After processing, pssg produces the application schema object file, schema.obj. This
object file is ready for linking into your application; see Compiling and Linking on
page 27.

Note Because pssg produces a compiled object file (in the example, schema.obj), the
command line must include the same options you specify when compiling other PSE
Pro source files; see Compiler Options on page 36.

Compiling and Linking
After you have successfully run pssg, you are ready to compile and link your
application. Compiling and linking a PSE Pro application are straightforward tasks
and can be made even more so by combining both operations on the same command
line. They are separated here to clarify what is involved in each operation.

Compile line Here is the command line for compiling the application source files:

cl /GX /MD /c main.cpp init_db.cpp restaurant.cpp
Release 6.3 27

Using the Collections Facility
For information about the compiler options in this command line, see Compiler
Options on page 36.

Link line Here are the command lines for linking the application object files into the example
executables:

cl /Feinit_db.exe init_db.obj restaurant.obj schema.obj
cl /Fereserve.exe main.obj restaurant.obj schema.obj

Note that the link lines must also include the application schema object file produced
by pssg.

Except for the /Fe option, which specifies the name of the executable, no other linker
options are required. cl automatically links the correct PSE Pro library, osclt.lib
or oscltd.lib (debug version), with the application.

Running the
application

The following is a sample run:

C:\> reserve 11
Reserved 3 tables at Il Falchetto

Using the Collections Facility
The PSE Pro version of the restaurant reservations program is still too limited to be
a useful application. One major limitation is that it can store only one Restaurant
object. One way to overcome this limitation is to redesign the program to use a C++
data structure such as a linked list or a tree, which would provide navigational access
to additional objects in the database. See, for example, the sample program in the
PSE Pro for C++ Tutorial which uses a binary tree to navigate among objects in the
database.

But PSE Pro provides another way to store additional objects in the database — the
collections facility. This facility enables applications to group database objects in a
collection and then to perform queries on the collection.

Collection types A collection is an object (such as a set or list) that can group other objects (such as
Restaurant objects). PSE Pro provides five classes for creating a collection: os_
array, os_bag, os_Dictionary, os_list, and os_set. (There are also templated
versions of these classes, which provide better type safety.) Each class has a set of
behaviors and characteristics, making it suitable for a range of applications. For
information about the different collection types and how to determine which to use,
see Choosing a Collection Type in Chapter 1 of the PSE Pro for C++ Collections Guide
and Reference.

Populating a
collection

After choosing a collection type, you typically create a persistent collection object,
associate this object with a database root, and then populate the collection by
inserting other objects in it. The inserted objects are the elements of the collection.

The elements in a populated collection are not actually the objects, but pointers to the
objects. This means that an object can be an element of more than one collection at a
time and that you can provide your own data structure for organizing and accessing
objects that are also elements of a collection.
28

Writing PSE Pro for C++ Applications
Once a collection is populated, you can perform different access and retrieval
operations on it. For example, you can use a cursor to navigate through the collection
or use a dictionary to quickly find elements in the collection using the dictionary’s
key.

Requirements To use the collections API, an application must

• Include the coll.hh header file just after ostore.hh.

• For applications that use the os_Dictionary class, include coll\dict_pt.hh
after coll.hh and, for source files that instantiate an os_Dictionary, include
coll\dict_pt.cc.

• Call os_collection::initialize() just after objectstore::initialize().

• For applications that use the os_Dictionary class specify information about it in
the schema source file; see Building the Collections Example on page 34.

For other requirements that might apply, see Requirements for Collections
Applications in Chapter 1 of the PSE Pro for C++ Collections Guide and Reference.

An Example
This section presents and discusses a revision of the restaurant reservations
program. The revised program uses features of the collections facility to store and
retrieve multiple persistent objects. It creates an os_Dictionary object to enable
quickly looking up restaurants by name. To make the program more interesting,
another data member (city) has been added to the Restaurant class, to identify the
restaurant’s location.

These are the source files for the main application, reserve:

• restaurant.hh, the header file

• restaurant.cpp, the implementations file

• main.cpp, the main application (reserve)

The source files for the program are in the directory examples\restaurant\coll_
os which is located in the PSE Pro installation directory. By default, this is
odi\PSEPROC63.

The source files also include the following additional programs:

• init_db, populates the database with several Restaurant objects

• rlist, lists all restaurants in the database or, if you supply a city argument, all the
restaurants in the given city.

• add_restaurant, adds a Restaurant object to the database from arguments
supplied on the command line

restaurant.hh Here is the source listing for the header file, restaurant.hh:

01 // restaurant.hh: defines the Restaurant class
02 #include <iostream>
03 #include <string.h>
04 #include <stdlib.h>
05 #include <os_pse/ostore.hh>
Release 6.3 29

Using the Collections Facility
06 #include <os_pse/coll.hh>
07
08 // forward declarations
09 class Restaurant;
10
11 // global function
12 ostream& operator<<(ostream& os, Restaurant& r);
13
14 class Restaurant {
15 private:
16 const char* name; // name of restaurant
17 const char* city; // name of city where it's located
18 int tables; // number of tables available (4 persons per table)
19 static const int PERSONSPERTABLE;
20 static const int QS_SIZE; // size of buffer holding query string
21 char* dupl_string(const char* s);
22 public:
23 Restaurant(const char* n, const char* c, int t);
24 ~Restaurant() { delete [] (char*)name; delete [] (char*)city; }
25 const char* get_name() { return name; }
26 const char* get_city() { return city; }
27 int get_tables() { return tables; }
28 void set_tables(int t) { tables = t; }
29 int make_reservation(int n_persons);
30 static Restaurant* create_restaurant(const char* n,
31 const char* c, int t, os_database* db);
32 static os_Dictionary<char*, Restaurant*>*
33 create_restaurant_dict(os_database* db);
34
35
36
37
38 // retrieve a pointer to the Restaurant typespec object
39 static os_typespec* get_os_typespec(){ return os_ts<Restaurant>::get(); }
40
41 private:
42 // declared but unimplemented functions to prevent
43 // inadvertent calls
44 Restaurant();
45 Restaurant(const Restaurant&);
46 Restaurant& operator=(const Restaurant&);
47 };

restaurant.cpp Here is the implementation file:

01 // restaurant.cpp: implements members of Restaurant
02 // and defines globals
03#include <os_pse/ostore.hh>
04#include <os_pse/coll.hh>
05#include <os_pse/coll/dict_pt.cc>
06
07 #include "restaurant.hh"
08
09 #include "dbname.h";
10 const char* DB_ROOT = "restaurant_root";
11
12 const int Restaurant::QS_SIZE = 100;
13 const int Restaurant::PERSONSPERTABLE = 4;
30

Writing PSE Pro for C++ Applications
14
15
16 // create a Restaurant object
17 Restaurant::Restaurant(const char* n, const char* c, int t):
18 name(dupl_string(n)), city(dupl_string(c))
19 {
20 tables = t;
21 }
22
23 // return a pointer to a new Restaurant object
24 Restaurant* Restaurant::create_restaurant(const char* n,
25 const char* c, int t, os_database* db)
26 {
27 // get a pointer to typespec for Restaurant class
28 os_typespec* ts = Restaurant::get_os_typespec();
29 // create Restaurant object
30 return new(db, ts) Restaurant(n, c, t);
31 }
32
33 // Create a dictionary object and a root, and associate the two;
34 // return a pointer to the collection object
35 os_Dictionary<char*, Restaurant*>*
36 Restaurant::create_restaurant_dict(os_database* db)
37 {
38 os_Dictionary<char*, Restaurant*>* rest_dict;
39 // get a typespec for os_set
40 os_typespec* rest_ts =
41 os_Dictionary<char*, Restaurant*>::get_os_typespec();
42 // create a dictionary for Restaurant objects
43 rest_dict = new(db, rest_ts) os_Dictionary<char*, Restaurant*>;
44
45 // create a database root and associate it with the dictionary
46 os_database_root* db_root = db->create_root(DB_ROOT);
47 db_root->set_value(rest_dict, rest_ts);
48
49 return rest_dict;
50 }
51
52 // allocate storage to hold the string in s, copy s to the
53 // newly allocated storage, and return a pointer to the storage
54 char* Restaurant::dupl_string(const char* s)
55 {
56 int len = strlen(s)+1;
57 char* p = new(os_database::of(this), os_typespec::get_char(),
58 len) char [len];
59 return strcpy(p, s);
60 }
61
62 // return the number of tables reserved, based on the number of
63 // persons in the party; otherwise, 0
64 int Restaurant::make_reservation(int n_persons)
65 {
66 int tables_to_reserve = 0;
67 int tables_available = get_tables();
68
69 if (!tables_available)
70 ; // do nothing, all booked up!
Release 6.3 31

Using the Collections Facility
71 else if (n_persons <= PERSONSPERTABLE) {
72 set_tables(tables_available-1);
73 tables_to_reserve = 1;
74 }
75 else { // figure out how many tables to reserve
76 tables_to_reserve = n_persons / PERSONSPERTABLE;
77 if (tables_to_reserve*PERSONSPERTABLE < n_persons)
78 tables_to_reserve++;
79 if (tables_to_reserve > tables_available)
80 // not enough tables, so can't make reservation
81 tables_to_reserve = 0;
82 else
83 // successful reservation
84 set_tables(tables_available-tables_to_reserve);
85 }
86 return tables_to_reserve;
87
88 // overloading of << for displaying information about a restaurant
89 ostream& operator<<(ostream& os, Restaurant& r)
90 {
91 cout << r.get_name() << " in " << r.get_city()
92 << " has " << r.get_tables() << " table(s) available.\n";
93 return os;
94 }

main.cpp Here is the source listing for main application, reserve. Commentary follows the
listing.

01 // main.cpp: processes restaurant reservations
02 #include "restaurant.hh"
03 #include <stdlib.h>
04
05 #include "dbname.h";
06 extern const char* DB_ROOT;
07
08 int main(int argc, char** argv)
09 {
10 OS_PSE_ESTABLISH_FAULT_HANDLER {
11 int tables_reserved;
12
13 // check for missing or bad arguments
14 if (argc != 3) {
15 cerr << "USAGE: reserve <name> <n-persons>\n";
16 return 1;
17 }
18
19 // initialize ObjectStore and the collections and transaction facilities
20 objectstore::initialize();
21 os_collection::initialize();
22 os_transaction::initialize();
23 // open database
24 os_database* db = os_database::open(DB_NAME);
25
26 os_database_root* db_root;
27
28 // start update transaction
29 os_transaction* txn =
32

Writing PSE Pro for C++ Applications
30 os_transaction::begin("the_txn", os_transaction::update);
31 // find the database root
32 db_root = db->find_root(DB_ROOT);
33
34 // retrieve dictionary of restaurants associated with root
35 os_Dictionary<char*, Restaurant*>* rdict =
36 (os_Dictionary<char*, Restaurant*>*)db_root->get_value(
37 os_Dictionary<char*, Restaurant*>::get_os_typespec());
38
39 Restaurant* r = rdict->pick(argv[1]);
40
41 // restaurant in database?
42 if (r) { // yes
43 // try to book a reservation
44 tables_reserved = r->make_reservation(atoi(argv[2]));
45
46 // confirm or deny reservation
47 if (tables_reserved)
48 cout << "Reserved " << tables_reserved
49 << " tables.\n";
50 else // not enough tables
51 cout << "Sorry, all booked.\n";
52 }
53 else // name not found in database
54 cout << "Can\'t find " << argv[1] << " in database.\n";
55
56 os_transaction::commit();
57 db->close();
58
59 db = NULL;
60 db_root = NULL;
61
62 } OS_PSE_END_FAULT_HANDLER
63
64 return 0;
65 }

Commentary on
main.cpp

The commentary focuses on the following aspects of the program:

• The use of a collection as the entry-point object

• The use of a dictionary key to retrieve Restaurant objects

Collection as
entry-point
object

The non-collections version of the program stored one Restaurant object in its
database and retrieved that object (the entry-point object) by associating it with the
root; see the noncollections version of restaurant.cpp on page 20, lines 25-29. In the
collections version, the entry-point object is a collection, which can be populated
with multiple Restaurant objects. (The task of populating the collection is handled
by init_db.cpp, which is included with the on-line source files for the collections
version of the program but is not listed here.)

The Restaurant::create_restaurant_dict() function (see the collections
version of restaurant.cpp on page 30, line 35) does the work of creating the entry-
point object and the root, and associating the two, as follows:

• It creates a persistent collection object (rest_dict) using persistent new on line 43.
The key used by rest_dict contains the names of the restaurants.
Release 6.3 33

Using the Collections Facility
• It gets a pointer to a newly created database root by calling create_root() on line
46.

• It associates the root with rest_dict by calling set_value() on line 47.

Now any applications that need to access Restaurant objects can do so, first by
retrieving the collection object that is associated with the root and then by using any
of the collections methods (for example, os_Dictionary::pick()) to access the
elements of the collection.

Retrieving
elements

The program provides two ways to retrieve elements from the collection:

• By using os_Dictionary::pick() to find the name of a restaurant in the
dictionary key. This function returns the Restaurant object with the matching
name, if one exists in the database; see main.cpp on page 30, line 39.

• By using an os_cursor to locate restaurants with a city member that matches the
name of a city; the sample program uses this in the rlist application.

The main application (reserve) expects the name of a restaurant as one of its
command-line arguments. It passes this argument (argv[1]) to the os_
Dictionary::pick() method, which returns a pointer to the Restaurant object if
an object with a matching name member is found. For more information about using
cursors and dictionaries, see Chapters 3 and 4 of the PSE Pro for C++ Collections Guide
and Reference.

Building the Collections Example
Building the collections version of the restaurants reservations application requires
the same steps as building the basic PSE Pro version:

1 Run pssg to generate the schema.

2 Compile the source files.

3 Link the object files into the executable.

Note that you cannot reuse the schemas that were produced by pssg for the
noncollections version of the program; see Generating Schemas on page 26. The
changes to the Restaurant class (for example, the addition of the city member) and
the addition of an os_Dictionary require you to run pssg again to generate fresh
schemas. The new schema source file looks like this:

schema.scm #include "restaurant.hh"
#include <os_pse/ostore.hh>
OS_MARK_SCHEMA_TYPE(Restaurant);
OS_MARK_DICTIONARY(char*, Restaurant*);

Use the OS_MARK_DICTIONARY() macro to mark each os_Dictionary in the schema
source file, specifying the type of the key used by the dictionary and the type of the
element stored in the dictionary. For more information about this macro, see OS_
MARK_DICTIONARY() on page 41.
34

Writing PSE Pro for C++ Applications
Command lines Here are the command lines for generating schemas, compiling, and linking the
various applications:

pssg -asof schema.obj schema.scm
cl /GX /MD /c init_db.cpp main.cpp restaurant.cpp rlist.cpp add_restaurant.cpp
cl /Fereserve.exe main.obj restaurant.obj schema.obj
cl /Feinit_db.exe init_db.obj restaurant.obj schema.obj
cl /Ferlist.exe rlist.obj restaurant.obj schema.obj
cl /Feadd_restaurant.exe add_restaurant.obj restaurant.obj schema.obj

The command lines are similar to those used for building the noncollections version
of the applications, the only differences are to build the additional applications
rlist and add_restaurant; see Building PSE Pro Applications on page 26.

Running the
application

Assuming that the database contains a Restaurant object with its name member set
to “Il Falchetto” and its tables member set to at least 5, here is a sample run:

C:\> reserve "Il Falchetto" 17
Reserved 5 tables.
Release 6.3 35

An Abbreviated PSE Pro Reference
An Abbreviated PSE Pro Reference
This section provides reference information for features of the PSE Pro API that are
mentioned in this Guide. The information is abbreviated in the number of features
described as well as in the level of information for each feature. For example, os_
database::open() has several overloadings, but only the one used in the example
programs presented in this Guide is described here.

In other words, this information is provided solely for the convenience of the reader
who wishes to read this Guide without having to look up an API elsewhere in the
PSE Pro documentation. However, for detailed and complete information about the
PSE Pro API, refer to the PSE Pro for C++ A P I User Guide and to the PSE Pro for C++
Collections Guide and Reference.

All reference items are listed alphabetically. Functions are listed by their fully
qualified names.

Compiler Options
The following table lists and describes the compiler options used to compile the
example programs presented in this Guide

For more information, see the following:

• The PSE Pro for C++ A P I User Guide for detailed information about compiling PSE
Pro applications and about other options you might need to use

• Compiling and Linking on page 27 for an example command line

get_os_typespec()
Certain features of the API (for example, persistent new) require a typespec argument
when you allocate persistent storage for an object. The simplest way to get a typespec
is to declare get_os_typespec() as a member of your class and implement it using
the static function os_ts<>::get() as follows (where class_name specifies the
name of the class in which you declared it):

static os_typespec* get_os_typespec()
{
 return os_ts<class_name>::get();

Option Meaning

/c Causes the compiler to compile without linking.

/GX Enables PSE Pro synchronous exception handling.

/MD Defines multithreading macros. You must specify this option even if
your application does not use multiple threads.

/I Use this to specify the location of the PSE Pro include directory. You
can use this option more than once on the same command line to
specify additional include directories. Necessary if the INCLUDE
environment variable is not set to the PSE Pro include directory.
36

Writing PSE Pro for C++ Applications
}

At run time, you can call get_os_typespec() for a pointer to a typespec, as follows:

os_typespec* ts = class_name::get_os_typespec();

The return value is static and therefore reusable; your application incurs no expense
by calling get_os_typespec() and does not have to delete the typespec.

The get_os_typespec() function is also implemented as a member function of the
collection classes (for example, os_set or os_Dictionary), enabling you to use it to
return a typespec argument when you use ::operator new() to create a collections
object.

For more
information

See the following:

• os_typespec::get_char() on page 42 for information about supplying the
typespec argument for fundamental types, such as char

• restaurant.hh on page 20, line 32, for an example declaration

• restaurant.cpp on page 20, line 23, for an example call

objectstore::initialize()
static void initialize();

This function initializes PSE Pro. It must be called before your application makes any
use of PSE Pro functionality.

For more
information

See main.cpp on page 24, line 12, for an example.

::operator delete()
::operator delete() is a global function that you can use to release either transient
or persistent storage. PSE Pro determines the type of storage at run time.

The following example releases storage allocated for object, regardless of whether
the storage is persistent or transient:

delete object;

The next example releases storage allocated for the array obj_array:

delete [] obj_array;

Note When you use ::operator delete() to delete a persistent object, you remove the
object from persistent storage, in effect making it inaccessible.

For more
information

See the destructor ~Restaurant() in restaurant.hh on page 20, line 16, for an
example of the delete operator used to delete a persistent character array.
Release 6.3 37

An Abbreviated PSE Pro Reference
::operator new()
PSE Pro overloads the ::operator new() global function for allocating persistent
storage. The syntax is

new([size,]placement, typespec [, array-size])

The arguments have the following meanings:

• size is the size_t argument that specifies the size of the object you are creating.
This argument is optional and is supplied by the compiler by default.

• placement is a pointer to a persistent storage unit, in other words, a pointer to an
os_database.

• typespec is a pointer to an os_typespec object that provides PSE Pro with typing
information about the object you want to make persistent.

• array-size is the number of elements in the array. Specify this argument only if
you are allocating persistent storage for an array.

For more
information

See the following:

• os_database::of() on page 39

• os_typespec::get_char() on page 42 for information about typespecs for
fundamental types

• get_os_typespec() on page 36 for information about typespecs for user-defined
types

• restaurant.cpp on page 20, line 25, for an example of new used to allocate
storage for a user-defined type

• restaurant.cpp on page 20, line 52, for an example of new used to allocate
storage for a fundamental type

os_collection::initialize()
static void initialize();

This function must be called before any use of the collections or relationship facility
and after objectstore:: initialize() is called.

For more
information

See the following:

• objectstore::initialize() on page 37 for information about initializing PSE
Pro

• main.cpp on page 32, line 21, for an example

os_database::close()
void close();

Closes the database specified by the this argument.

For more
information

See main.cpp on page 24, line 44, for an example.
38

Writing PSE Pro for C++ Applications
os_database::create()
static os_database* create(const char* pathname);

Returns a pointer to a newly created database, with the specified pathname. If
pathname already exists, an exception is signaled. However, there are overloadings
of this function that will cause it to overwrite an existing database at pathname.

For more
information

See init_db.cpp on page 22, line 21, for an example.

os_database::create_root()
static os_database_root* create_root(const char* root-name);

Returns a pointer to a newly created root in the database specified by the this
argument. The database root is named root-name, enabling you to retrieve it by
name. The root and its root-name are persistently stored in your database. You use
the root to retrieve an associated entry-point object from your database.

For more
information

See the following:

• os_database::find_root() on page 40

• os_database_root::set_value() on page 40 for information about associating
the root with an entry-point object

• restaurant.cpp on page 20, line 27, for an example

os_database::of()
static os_database *of(const void* object);

This function can be used as the first argument to ::operator new() when you
want to allocate storage in the database containing the previously allocated object.
The of() function returns a pointer to an os_database object.

For more
information

See the following:

• ::operator new() on page 38

• restaurant.cpp on page 20, line 52, for an example

os_database::open()
static os_database* open(const char* pathname);

Returns a pointer to an existing database, with the specified pathname. If pathname
does not exist, an exception is signaled. However, there are overloadings of this
function that will cause it to create a database.

For more
information

See main.cpp on page 24, line 21, for an example.
Release 6.3 39

An Abbreviated PSE Pro Reference
os_database::find_root()
static os_database_root* find_root(const char* root-name);

Returns a pointer to the database root named root-name in the database specified by
the implicit this argument.

For more
information

See the following:

• os_database::create_root() on page 39 for information about creating a root
• restaurant.cpp on page 20, line 39, for an example

os_database_root::get_value()
void* get_value(os_typespec* typespec = 0);

Returns a pointer to an entry-point object associated with the database root specified
by the implicit this argument. The typespec argument is optional; if specified, PSE
Pro checks that it matches the typespec argument specified in os_database_
root::set_value(). If this argument is unspecified or 0, PSE Pro does not check for
matching typespecs.

For more
information

See the following:

• os_database_root::set_value() on page 40 for information about associating
a root with an entry-point object

• restaurant.cpp on page 20, line 41, for an example

os_database_root::set_value()
void set_value(void* object, os_typespec* typespec = 0);

Establishes an association between object (a persistent stored object in your
database) and the root to which the implicit this argument points. The typespec
argument is optional; if specified, PSE Pro checks that it matches the typespec
argument specified in os_database_root::get_value(). If this argument is
unspecified or 0, PSE Pro does not check for matching typespecs.

For more
information

See the following:

• os_database_root::get_value() on page 40
• restaurant.cpp on page 20, line 29, for an example

os_Dictionary::pick()
os_Dictionary<class_name>::pick(*key-ptr);

Returns a pointer to an element of the implicit this argument that has the value of
the key pointed to by key-ptr. If there is more than one such element, an arbitrary
one is picked and returned. If there is no such element, 0 is returned. If the dictionary
is empty, returns 0.

For more
information

See the following:

• os_Dictionary in Chapter 4 of the PSE Pro for C++ Collections Guide and Reference
for a full description of this function

• main.cpp on page 32, line 39, for an example
40

Writing PSE Pro for C++ Applications
OS_PSE_END_FAULT_HANDLER
This macro ends the fault handler block established by the OS_PSE_ESTABLISH_
FAULT_HANDLER macro.

For more
information

See OS_PSE_ESTABLISH_FAULT_HANDLER on page 41.

OS_PSE_ESTABLISH_FAULT_HANDLER
This macro establishes the fault handler block required by PSE Pro applications so
that PSE Pro can detect references to persistent storage. All applications performing
PSE Pro operations must use the OS_PSE_ESTABLISH_FAULT_HANDLER and OS_PSE_
END_FAULT_HANDLER macros at the top of every stack in the program. Essentially,
this requirement means that the code in the top-level function (main() or
WinMain()) must be contained by these macros. Applications that use multiple
threads must also include these macros at the beginning and end of any thread that
performs PSE Pro operations.

For more
information

See init_db.cpp on page 22, line 11 and line 33, for an example.

OS_MARK_DICTIONARY()
This macro is used to mark a dictionary as persistent in schema source files. It has the
following syntax:

OS_MARK_DICTIONARY(*key-type, *class)

where key-type is the data type of the key and class is a pointer to the class (or
other element) to be included in the application’s schema.

For more
information

See the following:

• Chapter 4 of PSE Pro for C++ Collections Guide and Reference for more information
about the os_Dictionary class.

• “schema.scm” on page 34 for an example

OS_MARK_SCHEMA_TYPE()
This macro is used to mark a class as persistent in schema source files. It has the
following syntax:

OS_MARK_TYPE(class)

where class is the class to be included in the application’s schema.

You must use this macro to mark every class on which the application might perform
persistent new.

For more
information

See the following:

• Chapter 2 of Building Applications with PSE Pro for C++for more information about
classes you must mark

• “schema.scm” on page 27 for an example
Release 6.3 41

An Abbreviated PSE Pro Reference
os_transaction::begin()
Use this method to begin a PSE Pro transaction; use os_transaction::commit() to
end and commit it. Here is the syntax for defining a transaction:

os_transaction* txn = os_transaction::begin(“txn-tag”, txn-type);
 // your transaction code goes here
os_transaction::commit();

The arguments have the following meanings:

• txn-tag is an identifier that uniquely identifies this transaction. The argument is
optional; if you set it, you can retrieve it later with a call to os_
transaction::get_name().

• txn-type indicates whether the transaction performs read/write access to
persistent data (os_transaction::update), or read-only access (os_
transaction::read_only).

For more
information

See the following:

• Chapter 6 of the PSE Pro for C++ A P I User Guide for detailed information about
transactions.

• main.cpp on page 24, line 24, for an example of a transaction

os_transaction::commit()
Use this method to end a transaction. Committing a transaction saves all updated
information to the database.

For more
information

See the following:

• Chapter 6 of the PSE Pro for C++ A P I User Guide for detailed information about
transactions.

• main.cpp on page 24, line 24, for an example of a transaction

os_typespec::get_char()
static os_typespec *get_char();

Returns a pointer to a typespec for the type char. Typespecs are used by different
APIs, including persistent new, which requires a typespec as an argument when you
allocate persistent storage.

The get_char() method is one of a number of os_typespec methods that you can
use when you are allocating persistent storage for a fundamental type, such as char.

For more
information

See the following:

• get_os_typespec() on page 36 for getting a typespec for a user-defined type

• ::operator new() on page 38

• restaurant.cpp on page 20, line 52, for an example
42

Writing PSE Pro for C++ Applications
pssg
The pssg utility is used to generate schemas. Here is the format of the pssg
command line for generating schemas for applications like those presented in this
Guide:

pssg -asof app-schema-obj-file.obj schema-src-file.cpp

The arguments have the following meanings:

• -asof specifies that pssg should produce a schema object file named app-
schema-obj-file.obj. This object file is ready for linking with your application.

• schema-src-file.cpp specifies the C++ schema source file that you must supply
as input to pssg. This file does not require an option but must appear last on the
command line.

For more
information

See the following:

• Generating Schemas on page 26 for information about the schema source file

• Chapter 2 of Building Applications with PSE Pro for C++ for a full description of
pssg and all of its options

• “pssg command line” on page 27 for an example pssg command line
Release 6.3 43

An Abbreviated PSE Pro Reference
44

Release 6.3
Index
A
aborting a transaction 12
API

checklist 12
overview 10
reference information 36

application schema object file 27
application schemas 27
applications

compiling 27
generating schemas 26
linking 28

associating roots and objects 40

B
basic operations

example program 19
listed 11

begin() member of os_transaction
description 42

building applications
basic PSE Pro 26
collections 34

C
checklist of PSE Pro operations 12
close() member of os_database

description 38
example 17

coll.hh header file 29
coll\dict_pt.cc header file 29
coll\dict_pt.hh header file 29
collections facility

example program 29
overview 28
requirements 29

commit() member of os_transaction

description 42
committing a transaction 12
compiling

basic application 27
collections application 35
iostreams application 17
options 36

create() member of os_database
description 39
example 22

create_root() member of os_database
description 39
example 21

D
database

basic operations 11
os_database methods 12

database roots
creating 39
described 11
entry-point object 40
finding 40
operations 13
os_database_root methods 13

delete operator
description 37

dictionary 34

E
elements of a collection 28
entry-point object

collection as 33
described 11
example 25
retrieving 40

environment variables
45

F

INCLUDE 26
LIB 26

example programs
basic PSE Pro version 19
collections version 29
iostreams version 15

F
find_root() member of os_database

description 40
example 21

G
get_char() member of os_typespec

description 42
example 21

get_os_typespec()

description 36
example 20

get_value() member of os_database_root
description 40
example 21

global functions
operator delete() 37
operator new() 38

H
header files

applications using collections 29
coll.hh 29
coll\dict_pt.cc 29
coll\dict_pt.hh 29
in basic applications 12
in schema source file 26
ostore.hh 12

I
implementing PSE Pro 14
INCLUDE environment variable 26
include files 12
init_db application

basic PSE Pro version 22
iostreams version 17

initialization
collections facility 29
PSE Pro 12

initialize() member of objectstore
description 37
example 22
required 12

initialize() member of os_collection
description 38
example 32

iostreams example 15

L
LIB environment variable 26
linking

application using collections 35
basic application 28

M
macros

OS_MARK_DICTIONARY 41
OS_MARK_SCHEMA_TYPE 41
OS_PSE_END_FAULT_HANDLER 41
OS_PSE_ESTABLISH_FAULT_HANDLER 41

managing database operations 11
marking types 26

N
new operator

description 38
example 21

O
objectstore::initialize()

description 37
example 22
required call 12

of() member of os_database
description 39
example 21

open() member of os_database
description 39
example 24

operator delete()

deleting transient objects 25
description 37

operator new()

description 38
example 21
46 Writing Applications with PSE Pro for C++

Index
optimizing
storage allocation 39

options
compiler 36
pssg utility 43

os_collection::initialize()

description 38
example 32

os_database::close()

description 38
example 17

os_database::create()

description 39
example 22

os_database::create_root()

description 39
example 21

os_database::find_root()

description 40
example 21

os_database::of()

description 39
example 21

os_database::open()

description 39
example 24

os_database_root::get_value()

description 40
example 21

os_database_root::set_value()

description 40
example 21

os_Dictionary::pick()

description 40
OS_MARK_DICTIONARY macro

description 41
example 34

OS_MARK_SCHEMA_TYPE macro
description 41
example 27

OS_PSE_END_FAULT_HANDLER macro
description 41
example 22

OS_PSE_ESTABLISH_FAULT_HANDLER macro
description 41
example 22

os_transaction::begin()

description 42

example 22
os_transaction::commit()

description 42
example 22

os_typespec::get_char()

description 42
example 21

ossg utility
example command line 27

ostore.hh header file
in basic applications 12
in collections applications 29
in schema source file 26

P
page-fault macros 12

OS_PSE_END_FAULT_HANDLER 41
OS_PSE_ESTABLISH_FAULT_HANDLER 41

persistence
creating persistent objects 11
operator delete() 37
operator new() 38
overview 10
page-fault macros 12

pick() member of os_Dictionary
description 40

populating a collection 28
PSE Pro

API 10
basic operations 11
building an application 26

pssg utility
description 43

R
reservations application

basic PSE Pro version 19
collections version 29
iostreams version 15

rolling back a transaction 12

S
schema source file

checking for errors 27
example 27
OS_MARK_DICTIONARY 41
OS_MARK_SCHEMA_TYPE macro 41
Release 6.3 47

T

schemas 26
set_value() member of os_database_root

description 40
example 21

T
transactions

aborting 12
committing 12
delimiting 13
example 22
managing 12
rolling back 12

transient objects
compared to persistent objects 10
deleting 25

typespec argument
new 38
os_database_root::get_value() 40
os_database_root::set_value() 40

typespecs
fundamental types 42
get_os_typespec() 36
os_typespec::get_char() 42
reasons for using 23
user-defined types 36

U
utilities

pssg 43
48 Writing Applications with PSE Pro for C++

	Preface
	Writing PSE Pro for C++ Applications
	Making Complex Objects Persistent
	The PSE Pro API

	Basic PSE Pro Operations
	Database Management
	Database Roots
	Persistent Objects
	Transaction Management

	A Checklist of PSE Pro Operations
	Using PSE Pro: An Example Application
	iostreams Version
	Flaws in the iostreams Version
	PSE Pro Version

	Building PSE Pro Applications
	Generating Schemas
	Compiling and Linking

	Using the Collections Facility
	An Example
	Building the Collections Example

	An Abbreviated PSE Pro Reference
	Compiler Options
	get_os_typespec()
	objectstore::initialize()
	::operator delete()
	::operator new()
	os_collection::initialize()
	os_database::close()
	os_database::create()
	os_database::create_root()
	os_database::of()
	os_database::open()
	os_database::find_root()
	os_database_root::get_value()
	os_database_root::set_value()
	os_Dictionary::pick()
	OS_PSE_END_FAULT_HANDLER
	OS_PSE_ESTABLISH_FAULT_HANDLER
	OS_MARK_DICTIONARY()
	OS_MARK_SCHEMA_TYPE()
	os_transaction::begin()
	os_transaction::commit()
	os_typespec::get_char()
	pssg

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

