
Building Applications
With PSE Pro for C++

Release 6.3

Copyright

Building Applications with PSE Pro for C++, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This
manual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes
no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design),
DataDirect Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center,
eXcelon, Fathom,, IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered
by Progress, Progress, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program,
Progress Fast Track, Progress OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and
design), ProCare, Progress en Partners, Progress in Progress, Progress Profiles, Progress Results, Progress Software
Developers Network, ProtoSpeed, ProVision, SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, and Your Software, Our Technology-Experience the Connection are registered
trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other
countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect XQuery,
DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks
of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Any other trademarks or trade names contained herein are the property of their respective owners.

September 2005

Contents

Preface . 5

Chapter 1 Overview of Building PSE Pro Applications 9

Requirements for Each PSE Pro Application . 9

Including the PSE Pro Header File . 9

Establishing Fault Handlers . 9

Initializing the PSE Pro Run Time . 10

Other Requirements . 10

Steps for Building a PSE Pro Application . 10

Chapter 2 Generating the Application Schema . 11

Creating Schema Source Files . 11

Format of the Schema Generator Command Line 13

Using Schema Libraries . 14

Compiler Switches Used by the Schema Generator 15

Exporting vtbls . 15

Schema Generation on UNIX Platforms . 16

Chapter 3 Compiling Your Source Files . 17

Supported Platforms . 17

HP-UX 11.11 . 18

Linux. 18

Solaris (32 bit) . 18

Windows . 18

Chapter 4 Linking Your Application. 19

Libraries You Must Link With . 19

Windows . 19

UNIX . 19

Linker Options . 20

HP-UX 11.11 . 20

Linux. 20

Solaris (32 bit) . 20
Release 6.3 3

Contents
4

Windows .20

Chapter 5 PSE Pro Static Builds .23

Generating Schema for Static Builds. .23

Chapter 6 Using MFC and MSDEV IDE. .25

Using MFC .25

Using MSDEV IDE .26

Index. .27
4 Building Applications with PSE Pro for C++

Preface

Purpose Building Applications with PSE Pro for C++ provides information and instructions for
building database applications that use PSE Pro.

Audience This book is for programmers responsible for writing database applications that use
ObjectStore PSE Pro for C++. No previous knowledge of PSE Pro for C++ or the C++
interface to ObjectStore is required. It is assumed that you are experienced with
Visual C++.

Scope This book supports Release 6.3 of ObjectStore PSE Pro for C++.

How This Book Is Organized
Chapter 1, Overview of Building PSE Pro Applications, on page 9, lists the
components each PSE Pro application must include and briefly describes the steps
for building an application.

Chapter 2, Generating the Application Schema, on page 11, provides instructions for
creating the schema source file and running the schema generator.

Chapter 3, Compiling Your Source Files, on page 17, describes the compiler switches
for compiling your PSE Pro application.

Chapter 4, Linking Your Application, on page 19, provides the names of the libraries
you must link with and discusses some schema generation problems that could
potentially cause link errors.

Chapter 5, PSE Pro Static Builds, on page 23, describes how to link with the static
version of PSE Pro.

Chapter 6, Using MFC and MSDEV IDE, on page 25, discusses how to use PSE Pro
in the MSDEV IDE.
Release 6.3 5

Preface
Notation Conventions
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.
6 Building Applications with PSE Pro for C++

Preface
- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 7

Preface
8 Building Applications with PSE Pro for C++

Chapter 1
Overview of Building PSE Pro
Applications

This chapter lists the requirements for each PSE Pro application and the steps you
must follow to build a PSE Pro application or library.

Requirements for Each PSE Pro Application
The following elements are required in every PSE Pro application:

• Including the PSE Pro Header File on page 9

• Establishing Fault Handlers on page 9

• Initializing the PSE Pro Run Time on page 10

Including the PSE Pro Header File
For a program to use any PSE Pro features, it must include the file os_
pse/ostore.hh.

Establishing Fault Handlers
PSE Pro must handle all memory access violations, because some are actually
references to persistent memory in a database. On Windows, there is no function for
registering a signal handler for such access violations that also works when you are
debugging a PSE Pro application (the SetUnhandledExceptionFilter() function
does not work when you use the Visual C++ debugger).

Every PSE Pro application must put a handler for access violation at the top of every
stack in the program. This normally means putting a handler in a program’s main()
or WinMain() function and, if the program uses multiple threads, putting a handler
in the first function of each new thread.

PSE Pro provides two macros to use in establishing a fault handler:

• OS_PSE_ESTABLISH_FAULT_HANDLER

• OS_PSE_END_FAULT_HANDLER

On UNIX platforms PSE Pro can register a signal handler for such access violations.
The handler needs to be registered only once using the macros OS_PSE_ESTABLISH_
Release 6.3 9

Steps for Building a PSE Pro Application
FAULT_HANDLER and OS_PSE_END_FAULT_HANDLER. You can also invoke the macro
for every thread, as on Windows, with no ill effects.

Initializing the PSE Pro Run Time
To use the PSE Pro API, you must first call the static member function
objectstore::initialize(). The function signature is

static void initialize() ;

A process can execute initialize() more than once. After the first execution,
calling this function has no effect.

Other Requirements
Transactions are optional in PSE Pro. If your application will use the PSE Pro
transaction facility, you must call the static member function os_
transaction::initialize().

If your application will use the PSE Pro collections facility, you must call the static
member function os_collection::initialize().

If you are using the Command Prompt to build with NMAKE, ospsevars.bat has to
be executed in order to update the PATH, INCLUDE, and LIB environment variables.

The installation program modifies various Directory options in the Visual Studio IDE
(view modifications at Tools | Options, Directories tab), so that the examples can be
built in the IDE.

During installation for Windows XP and Windows 2000, the ospsevars.bat file
and the PSE Pro DLLs are copied into the PSE Pro installation’s bin directory. By
default the installation directory is c:\odi\PSEPROC6.3.

The PSE Pro schema generator tool, pssg, calls the VC++ compiler cl.exe. Make
sure that the Executable files option in the Visual Studio IDE (Tools | Options,
select the Directories tab) contains the correct bin directories.

Steps for Building a PSE Pro Application
Follow these steps to build a PSE Pro application:

1 Create a schema source file. See Creating Schema Source Files on page 11.

2 Run the PSE Pro schema generator, pssg, to generate a schema object file. See
Running the Schema Generator on page 13.

3 Run your C++ compiler on your application or library source files. See Compiling
Your Source Files on page 17.

4 Link your application or library with the schema object file and the PSE Pro
library. See Linking Your Application on page 19.
10 Building Applications with PSE Pro for C++

Chapter 2
Generating the Application
Schema

To build your application, you must link your application object files with a schema
object file that contains information about the persistent classes in your application.
This chapter provides information about how to create the schema source file and
run the PSE Pro schema generator, pssg, on it to create the schema object file. It
discusses the following topics:

Creating Schema Source Files 11

Running the Schema Generator 13

Schema Generation in the VC++ IDE 16

Schema Generation on UNIX Platforms 16

Because the PSE Pro schema generator tool, pssg, does not run on UNIX platforms,
the process for generating an application’s schema differs depending on whether the
application will run on Windows or UNIX platforms. For more details on how to use
pssg to generate application schema files on the different UNIX platforms, see the
readme files in the installation directory of the specific UNIX products.

Creating Schema Source Files
An application’s schema consists of the classes of objects in the databases it uses. To
create the schema, every PSE Pro application or library must be linked with an object
file that contains information about the classes of persistent objects used by the
application. You generate this object file from the schema source file, which is a simple
source file that you create as follows:

• Include the PSE Pro header file <os_pse/ostore.hh>.

• Include the definition of each class of object the application might store in a
database, as well as the definition of each class of object in each database the
application might open.

• Call the OS_MARK_SCHEMA_TYPE() macro for each included class and supply the
class name as argument. Do not put quotation marks around the class name. Enter
the argument without white space. The macro cannot span more than one (1) line in
the schema source file.
Release 6.3 11

Creating Schema Source Files
• By convention, the schema source files distributed with the PSE Pro example
applications use the .scm extension.

Here is an example:

/*** schema.scm ***/
#include <os_pse/ostore.hh>
#include "image_map.h"
#include "image.h"
#include "document.h"
OS_MARK_SCHEMA_TYPE(image_map);
OS_MARK_SCHEMA_TYPE(image);
OS_MARK_SCHEMA_TYPE(document);

If a nested class is public, calling OS_MARK_SCHEMA_TYPE() for the outer class is
sufficient. The schema generator automatically generates schema for the nested
class. When you define a class inside a private or protected section of another
class’s definition, the class is not visible to the schema generator, even if you mark
the containing class. For classes embedded in private or protected sections, call OS_
MARK_SCHEMA_NESTED_TYPE() instead of OS_MARK_SCHEMA_TYPE().

You must mark each instantiation of any class template you use. In the following
example, BinaryTree is a class template, so you must mark BinaryTree<Data>.
Here is a schema source file that marks BinaryTree<Data> and Data:

/*** schema.scm ***/

#include <os_pse/ostore.hh> // PSE Pro header file
#include "BinaryTree.cpp"
#include "Data.h"

// Mark the classes to allow persistent allocation
OS_MARK_SCHEMA_TYPE(BinaryTree<Data>);
OS_MARK_SCHEMA_TYPE(Data);

Collections For applications that will use the PSE Pro collections facility, include the PSE Pro
header file <os_pse/coll.hh> in the schema source file after <os_pse/ostore.hh>.

For applications that will use persistent dictionaries, include the PSE header file <os_
pse/coll/dict_pt.hh> in the schema source file. You must call the macro OS_
MARK_DICTIONARY() in the schema source file for each key-type/element-type pair
that you use. Here is an example:

/*** schema.scm ***/
#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>
#include <os_pse/coll/dict_pt.hh>
#include "employee.hh"
OS_MARK_SCHEMA_TYPE(employee);
OS_MARK_DICTIONARY(char*, employee*);
12 Building Applications with PSE Pro for C++

Chapter 2: Generating the Application Schema
Running the Schema Generator
Every PSE Pro application or library must be linked with an object file that contains
information about the classes of persistent objects used by the application. Schema
generation is the process of generating this object file from the schema source file. You
run the PSE Pro utility pssg on the schema source file to generate the schema object
file. This section discusses the following topics:

• Format of the Schema Generator Command Line on page 13

• Using Schema Libraries

• When Regenerating the Schema Is Required on page 15

• Compiler Switches Used by the Schema Generator on page 15

• Exporting vtbls on page 15

Format of the Schema Generator Command Line
The format of the pssg command line is a bit different depending on whether you
plan to run your application on Windows or UNIX.

Windows To generate the schema object file for an application that will run on Windows, use
the following pssg command line format (on one line):

pssg [CCFLAGS]
 [-asof filename]
 [-asdll dllname -asdb dbname]
 schema-source-file

CCFLAGS Indicates that you want pssg to pass the specified
compiler switches to the C++ compiler when it compiles
the schema source file during schema generation, Replace
CCFLAGS with the compiler switches you want to pass.

-asof filename The default name of the generated schema object file is
osschm.obj. If you want the schema object file to have a
different name, specify the -asof option and replace
filename with the name you want for the generated
schema object file. The filename extension is always .obj.

-asdll dllname Indicates that you want to create a schema library. Replace
dllname with the name you want the schema library to
have. If you specify the -asdll option, you must also
specify the -asdb option.

-asdb dbname Indicates the application schema database in which you
want the pssg utility to store Metaobject Protocol (MOP)
information that it uses to generate the schema library.
Replace dbname with the path you want the application
schema database to have. If you specify the -asdb option,
you must also specify the -asdll option.
Release 6.3 13

Running the Schema Generator
UNIX To generate the schema object file for an application that will run on UNIX, use the
following pssg command line format (on one line):

pssg
 [CCFLAGS]
 [-ascpp filename]
 [-aslib library-name]
 schema-source-file

Using Schema Libraries
You can use the pssg utility to generate a schema library. For applications that run
on Windows, a schema library is a dll. For applications that run on UNIX, a schema
library is a shared library. You can use a schema library in the following ways.

• For verifying a database. See PSE Pro for C++ A P I User Guide, Checking Databases
with the ospseverifydb Utility.

• In place of linking with the traditional schema object file in a PSE Pro application.
When your program loads the schema library, PSE Pro initializes the typespecs for
classes that are marked in the schema library.

schema-source-file Replace schema-source-file with the name of the
schema source file for which you want to generate a
schema object file. By convention, the schema source files
distributed with the PSE Pro example applications use the
.scm extension.

CCFLAGS Indicates that you want pssg to pass the specified
compiler switches to the C++ compiler when it compiles
the schema source file during schema generation,
Replace CCFLAGS with the compiler switches you want to
pass.

-ascpp filename The default name of the generated schema object file is
osschm.cpp. If you want the schema object file to have a
different name, specify the -ascpp option and replace
filename with the name you want for the generated
schema object file. The filename extension is always
.cpp.

You must compile and link the generated schema object
file with your application.

-aslib library-name Indicates that you want pssg to create a schema library.
Replace library-name with the name you want the
schema library to have.

schema-source-file Replace schema-source-file with the name of the
schema source file for which you want to generate a
schema object file. By convention, the schema source
files distributed with the PSE Pro example applications
use the .scm extension.
14 Building Applications with PSE Pro for C++

Chapter 2: Generating the Application Schema
When Regenerating the Schema Is Required
You should regenerate the schema object file whenever you add or remove class
definitions or modify a class definition in your application or library.

You can use a make rule like the following:

CC_OPTS = /DWIN32 /GX ...
schema-object-file: schema-source-file
 pssg $(CC_OPTS) -asof schema-object-file $@ schema-source-file

Compiler Switches Used by the Schema Generator
pssg uses the following compiler switches. In case of conflict with user-supplied
flags, these override the user-supplied flags:

• /MD

Use the msvcrt.dll run time.

• /Od

Debug.

• /Z7

MS C7 debug mode.

• /Gx

Enable C++ exceptions.

• /D_ODI_PSSG=1

Use this preprocessor macro to hide code from pssg. (ObjectStore's schema tool,
ossg, uses _ODI_OSSG_).

Exporting vtbls
If you do not export a class with declspec(dllexport), and the class is a persistent
class that is marked in a schema source file, you must explicitly export the class’s vtbl
in a .def file. For example, the contents of the .def file must look like this:

EXPORTS
??_7Foo@@6B@
--and any other symbol you want explicitly exported--

Then specify the /def option to the linker and identify the .def file.

If you do not export the vtbl, you receive an unresolved symbol that is caused by the
osschm.obj file created by the schema generator (pssg).
Release 6.3 15

Schema Generation in the VC++ IDE
Schema Generation in the VC++ IDE
In the VC++ IDE, you can create a custom build rule to compile the schema-source-
file:

1 In the FileView of the Workspace pane, right-click the schema source file (or select
Project | Settings). The Project Settings dialog box is displayed.

2 Click the Custom Build tab (if the schema source file has a .cpp extension, you may
need to click Always use custom build step on the General tab in order to display the
Custom Build tab).

3 In the Commands text area, enter the following build command:

 pssg /asof $(INTDIR)\osschm.obj schema-source-file

4 In the Outputs text area, enter the following path name of the object file:
$(INTDIR)\osschm.obj

5 In the Description text area, enter

 Generating ObjectStore/PSE typespecs

6 Select All configurations from the Settings For drop-down list so the build rule
applies to both debug and release builds.

The PSE Pro Quickstart example shows how the custom build rule should look. To
display this example, select Start | Programs | ObjectStore PSE Pro for C++ | QuickStart
and follow steps 1 and 2, above.

Schema Generation on UNIX Platforms
The pssg schema generator for UNIX platforms does not directly generate schema
object code; instead it generates a schema cpp file, which is then compiled and linked
with the application. Here are the steps involved:

1 Run pssg against the schema source file with the -ascpp option.

2 Compile the generated schema source file with the C++ compiler to create the
schema object file.

3 Link the application object files with the schema object file.

For more information about creating schemas for use by applications that run on
UNIX platforms, see the readme file accompanying specific PSE Pro products.
16 Building Applications with PSE Pro for C++

Chapter 3
Compiling Your Source Files

This chapter includes information helpful in compiling source files on a variety of
platforms.

Supported Platforms
PSE Pro is available in several versions. The table that follows lists the platforms
supported by this release of PSE Pro for C++.

Platform Compiler

HP-UX 11.11 (32-bit) HP aC++ 3.56

HP-UX 11.11 (64-bit) HP aC++ 3.56

Linux 2.4.18-14smp (32-bit) GCC 3.2.3

Linux (64-bit) GCC 3.2.3

Solaris (32-bit) Sun One Studio 8

Windows XP and 2000 Visial C++ 7.1 (unmanaged)
Release 6.3 17

Compilation Options
Compilation Options
The following sections list the various options used when compiling PSE Pro
applications on specific platforms. For UNIX versions of PSE Pro, the readme file in
the PSE Pro installation directory contains additional information about compiling
applications.

HP-UX 11.11
Use the HP C++ aCC A03.56 compiler with the following compiler switches:

• +eh to specify exception support, the default

• -D_REENTRANT

• -g, - g0, -g1, or -O2 to specify debug or opt

• +DAportable +DS2.0

• -I to specify the PSE Pro include files

• +Z for PIC (not needed by PSE Pro)

• -ext +DA2.0W (64 bit)

• +DA2.0N (32 bit)

Linux
Use the GCC 3.2.3 compiler with the following compiler switches:

• -g, -g0, or -g1 or -O2 to specify debug or opt

• -I to specify the PSE Pro include files

Solaris (32 bit)
Use the Sun One Studio 8 compiler with the following compiler switches:

• -mt Compile for multithreaded code

• -g/g0 or -O2/-xO2 to specify debug or opt

• -I to specify the PSE Pro include files

• -KPIC for PIC (not needed by PSE Pro)

Windows
Use the Microsoft Visual C++ compiler with the following compile switches:

• /Gx to enable C++ exceptions

• /MD to use the msvcrt.dll run time (multithreaded DLL version), or /MDd to use
the msvcrtd.dll _DEBUG run time
18 Building Applications with PSE Pro for C++

Chapter 4
Linking Your Application

This chapter discusses these topics:

Libraries You Must Link With 19

Linker Options 20

Typical Link Errors Related to Schema Generation 21

Troubleshooting an Assertion Failure 22

Libraries You Must Link With
Windows

Use the Microsoft Visual C++ compiler to link PSE Pro applications and libraries.
Link against the library osclt.lib and run against the DLL o6psepr.dll.

For debugging, link against the library oscltd.lib and run against the DLL
o6pseprd.dll.

Upon inclusion, os_pse/ostore.hh sets the default library.

To use the MFC extension DLL, link with osmfc.lib or (for debug) osmfcd.lib, and
run against o6mfc.dll or (for debug) o6mfcd.dll.

UNIX
When building applications with the UNIX versions of PSE Pro, you always need to
link with the lib/libospse library (or its debug equivalent lib/debug/libospse).
In addition, if your application uses collections you must also link with the PSE Pro
collections library lib/libospsecol (or its debug equivalent
lib/debug/libospsecol).

Use the -L option to specify the directory where the PSE Pro libraries are located and
the -l option to specify individual libraries. When you specify a PSE Pro library, do
not use the lib portion of the library name. For example, if the environment variable
OS_PSE_ROOTDIR includes the location of the PSE Pro libraries, a command line
might look like this:

CC -L$(OS_PSE_ROOTDIR)/lib -o my_app main.o schema.o -lospse
Release 6.3 19

Linker Options
Linker Options
The following sections list the linker options to use when building PSE Pro
applications on UNIX platforms. For more information on linker options for specific
UNIX platforms, see the readme file in the installation directory.

HP-UX 11.11
• +DAportable +DS2.0 Specify portable architecture.

• -L$(OS_PSE_ROOTDIR)/lib -lospse Link with PSE Pro run time.

• -g

• -Wl, -E

• -ext +DA2.0W (64 bit)

• +DA2.ON (32 bit)

Linux
• -L$(OS_PSE_ROOTDIR)/lib -lospse Link with PSE Pro run time.

• -g

• -rdynamic Use global symbols in executable.

Solaris (32 bit)
• -mt Link for multithreaded code.

• -g/g0 Prepare program for debugging.

• -L$(OS_PSE_ROOTDIR)/lib -lospse Link with PSE Pro run time.

Windows
On Windows platforms, no special linker options are required when linking PSE Pro
applications.
20 Building Applications with PSE Pro for C++

Chapter 4: Linking Your Application
Typical Link Errors Related to Schema
Generation

If you get a link error like the following, your program uses the typespec (os_
ts<Foo> in this case) for a class (Foo in this case), but your schema source file fails to
mark the class.

osschm.obj : error LNK2001: unresolved external symbol "private:
static class os_pse::os_ts<class Foo>
os_pse::os_ts<class Foo>::the_instance"

Include the class’s definition and mark it in the schema source file.

If the above error occurs for os_ts<class Foo*> (indicating a pointer) rather than
os_ts<class Foo>, you marked a pointer type. But pssg cannot create typespecs
for a typed pointer. A workaround is to add the following os_ts<T> specialization
(compare also to the stl42 example that defines STL list<Foo*>).

namespace os_pse {
 template <> class os_ts<Foo*> : public os_typespec {
 public:
 static inline os_typespec *get()
 { return os_typespec::get_pointer(); }
 };
 // define more pointer types:
 // template <> class os_ts<Bar*> : ...
 }

Yet another schema generation-related error that can occur during linking is an
unresolved external symbol for a virtual function table. An example of this error is

osschm.obj : error LNK2001: unresolved external symbol
 "const Foo::`vftable’" (??_7Foo@@6B@)"

In this case, if class Foo has been marked in the schema source file, pssg creates a
reference for a virtual function table if class Foo contains one or more virtual
functions. If an application never calls the constructor of class Foo, the VC++
compiler does not create a vftable for that class. A way to force the creation of that
symbol into the .obj file is to add the following invocation of the constructor to your
program to ensure that the function _force_vftable() is never called:

void _force_vftable(void*) {
 _force_vftable(new Foo());
 _force_vftable(..more classes..);
Release 6.3 21

Troubleshooting an Assertion Failure
Troubleshooting an Assertion Failure
The global operator delete() is defined in the PSE Pro DLL (o5pse[pr][d].dll
and the osclts*.lib static libraries). Therefore, it depends on the linker to pick up
this operator delete().

For example, this failure appears in a pop-up dialog:

Microsoft Visual C++ Debug Library
Debug Assertion Failed!
Program: c:\temp\app.exe
File: dbgheap.c
Line: 1011
Expression: _CrtIsValidHeapPointer(pUserData)
For information on how your program can cause an assertion
failure, see the Visual C++ documentation on asserts
(Press Retry to debug the application)
Abort Retry Ignore

When you run an application in the debugger, you might see this stack trace:

_CrtIsValidHeapPointer(void * 0x30001020) line 1612
_free_dbg_lk(void * 0x30001020, int 1) line 1011 + 9 bytes
_free_dbg(void * 0x30001020, int 1) line 970 + 13 bytes
free(void * 0x30001020) line 926 + 11 bytes
operator delete(void * 0x30001020) line 7 + 9 bytes
main() line 24 + 15 bytes

The argument to operator delete() is persistent: 0x30001020. To solve this
problem, make sure that the linker reaches osclt.lib first, so that its operator
delete() gets linked. A better solution is to define a static inline operator
delete that is visible to all .cpp files that delete persistent objects. For example:

inline void operator delete(void* p)
{
 //calls free() on transient data
objectstore::free_memory(p);
}

This instructs your application to use PSE Pro’s operator delete() function when
the object is persistent.
22 Building Applications with PSE Pro for C++

Chapter 5
PSE Pro Static Builds

This chapter discusses how to build applications using the PSE Pro static libraries.
Applications built this way can be executed without the PSE Pro run time libraries.
The chapter contains the following topics:

Generating Schema for Static Builds 23

Linking with the Static Version of PSE Pro 24

Generating Schema for Static Builds
For static builds, make sure to add the /D_OS_STATIC_LIB compiler switch to pssg.
If you do not, you see the following LNK4049 warnings on class os_basic_
typespec when linking statically with the generated schema object file. The
warnings can be ignored.

LINK : warning LNK4049: locally defined symbol protected:

void __thiscall os_pse::os_basic_typespec::cleanup(void)
(?cleanup@os_basic_typespec@os_pse@@IAEXXZ) imported

void __thiscall os_pse::os_basic_typespec::initialize(void)
(?initialize@os_basic_typespec@os_pse@@IAEXXZ) imported

For all static builds, you see one other LNK4049 warning when linking statically with
the generated schema object file. This warning can also be ignored.

LINK : warning LNK4049: locally defined symbol

const os_pse::os_basic_typespec::vftable (
??_7os_basic_typespec@os_pse@@6B@) imported
Release 6.3 23

Linking with the Static Version of PSE Pro
Linking with the Static Version of PSE Pro
To link with the static version of the PSE Pro library, add the following compile
switches:

• /D_OS_STATIC_LIB=1

• /MD, /MDd, /MT, or /MTd

Upon inclusion, os_pse/ostore.hh sets the default library based on these two
compile switches. The PSE Pro installation contains the following static libraries built
against different versions of the C run time:

• osclts.lib

Use the multithreaded DLL version (/MD, msvcrt.dll).

• oscltsd.lib

Use the debug, multithreaded, DLL version (/MDd, msvcrtd.dll).

• oscltst.lib

Use the multithreaded static version (/MT, libcmt.lib).

• oscltstd.lib

Use the debug, multithreaded, static version (/MTd, libcmtd.lib).

In the absence of DllMain() in the static PSE Pro libraries, the application must
explicitly notify PSE Pro on thread creation and termination. If a thread does not
access persistent data, the functions do not have to be called.

static void objectstore::thread_attach(HANDLE h)
static void objectstore::thread_detach(HANDLE h)

You can call GetCurrentThread() to obtain the handle h.
24 Building Applications with PSE Pro for C++

Chapter 6
Using MFC and MSDEV IDE

This chapter provides information about building your PSE Pro application when
you use MFC and/or when you use MSDEV IDE. It discusses the following topics:

Using MFC 25

Using MSDEV IDE 26

Using MFC
You can use MFC to build your PSE Pro application in one of two ways:

• If you are not going to allocate any MFC classes persistently, you can just use MFC
as you would normally.

• If you want to use the MFC container classes persistently, use the persistent
version of MFC, which consists of the MFC-style container and string classes in
the PSE Pro MFC Extension DLL, osmfc.dll.

PSE Pro comes with an MFC AppWizard and an MFC extension DLL that has PSE
Pro-specific subclasses of CDocument, DOleDocument, COleLinkingDoc, and
COleServerDoc. The AppWizard generates applications whose document classes
are derived from these subclasses.

The AppWizard also includes MFC-style container and string classes, for example,
CPSEPtrArray and CPSEString. These classes have the same API as their MFC
counterparts and also provide cast operators. See the osmfc project in /src/osmfc
and its accompanying docs/readme file for details.

The pse_scribble example derives from CPSEDocument and uses a CPSEPtrArray
to store CStrokes.

The PSE Pro document classes (CPSEDocument, CPSEOleDocument,
CPSEOleLinkingDoc, and CPSEServerDoc) play the same role as their original MFC
counterparts, except that they store the information in PSE Pro databases (either in
regular files or in streams within OLE compound files).

This means that an MFC application that uses PSE Pro is essentially identical to a
traditional MFC application, except that you do not have to implement any
Serialize() methods. You can expect that opening a new document and saving a
document will also be faster if you use PSE Pro because the entire document does not
have to be loaded in and saved back out.
Release 6.3 25

Using MSDEV IDE
The complete project used to build the MFC extension DLL is available in the
src/osmfc subdirectory under your installation directory. You can modify and
redistribute this code as long as you maintain existing copyright notices.

The MFC-style container and string classes in the PSE Pro MFC Extension DLL
(CPSEPtrArray, CPSEString, and others in osmfc.dll) supersede the previously
released persistent MFC DLL (mfcpse.dll).

Using MSDEV IDE
The PSE Pro installation adds the following directories to the IDE’s directory search
paths and to your system environment:

• Include files: c:\odi\PSEPROC63\include

• Executable files: c:\odi\PSEPROC63\bin

• Library files: c:\odi\PSEPROC63\lib

Make sure that these directory files are set. In the Visual Studio IDE, select Tools |
Options, and choose the Directories tab. Verify that the settings for Include files, Library
files, and Executable files match the above directories.
26 Building Applications with PSE Pro for C++

Release 6.3
Index
A
application schema 11
applications

compiling 17
linking 19
static builds 23
using MFC 25
using MSDEV IDE 25

-ascpp option to pssg 14
-asof option to pssg 13
assertion failure 22

B
building applications

generating schema 11
list of steps for 10

C
C++ exceptions 18
compiler switches

pssg option 13
static builds 24
typically used 17

compiling source files 17

D
debug mode 15
DLLs 17

E
enabling C++ exceptions 18
exception handler, establishing 9
exporting vtbls 15

F
fault handler, establishing 9

G
Generating 11

H
header files

PSE Pro 9

I
INCLUDE variable 10
initializing PSE Pro 10

L
LIB variable 10
libraries 19
linker options 20
linking applications 19
LNK errors 21
locally defined symbol 23

M
marking persistent types 11
MFC 25
MFC extension DLL 19
MSDEV IDE 26
multithreaded DLL 18

N
nested classes 12
NMAKE 10
27

O

O
o5mfc.dll DLL 19
o5mfc.lib library 19
o5mfcd.dll DLL 19
o5mfcd.lib library 19
o5pse.dll DLL 19
o5psepr.dll DLL 19
o5pseprd.dll DLL 19
objectstore::initialize() 10
_ODI_PSSG preprocessor macro 15
osclt.lib library 19
oscltd.lib library 19
osclts.lib library 24
oscltsd.lib library 24
oscltst.lib library 24
oscltstd.lib library 24
OS_MARK_SCHEMA_NESTED_TYPE() macro 12
OS_MARK_SCHEMA_TYPE() macro 11
ospsevars.bat 10
osschm.cpp file 14
osschm.obj file 13
ostore.hh header file 9

P
PATH variable 10
PSE Pro

DLLs 19
initializing 10
libraries 19
static builds 23

pssg utility
running 13

S
schema generator

command line format 13
compiler switches 15
exporting vtbls 15
introduction 13
regenerating required 15
static builds 23
UNIX 16
VC++ IDE 16

schema header file 13
schema object file 13
schema source files

definition 11
example 12
input to pssg utility 13

schema.scm file 11
static builds 23

T
troubleshooting

assertion failure 22
linking errors 21
LNK4049 warning 23
unresolved external symbol 21
unresolved symbol 15

U
unresolved external symbol 21
user-supplied flags 15

V
VC++ IDE 16
28 Building Applications with PSE Pro for C++

	Building Applications With PSE Pro for C++
	Preface
	Overview of Building PSE Pro Applications
	Requirements for Each PSE Pro Application
	Including the PSE Pro Header File
	Establishing Fault Handlers
	Initializing the PSE Pro Run Time
	Other Requirements

	Steps for Building a PSE Pro Application

	Generating the Application Schema
	Creating Schema Source Files
	Format of the Schema Generator Command Line
	Using Schema Libraries
	Compiler Switches Used by the Schema Generator
	Exporting vtbls

	Schema Generation on UNIX Platforms

	Compiling Your Source Files
	Supported Platforms
	HP-UX 11.11
	Linux
	Solaris (32 bit)
	Windows

	Linking Your Application
	Libraries You Must Link With
	Windows
	UNIX

	Linker Options
	HP-UX 11.11
	Linux
	Solaris (32 bit)
	Windows

	PSE Pro Static Builds
	Generating Schema for Static Builds

	Using MFC and MSDEV IDE
	Using MFC
	Using MSDEV IDE

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	S
	T
	U
	V

