
PSE Pro for C++ Collections
Guide and Reference

Release 6.3

Copyright

PSE Pro for C++ Collections Guide and Reference, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom,,
IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered by Progress, Progress,
Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress
OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and design), ProCare, Progress en Partners,
Progress in Progress, Progress Profiles, Progress Results, Progress Software Developers Network, ProtoSpeed, ProVision,
SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries
or affiliates in the U.S. and/or other countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen,
ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect
XQuery, DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or
one of its subsidiaries or affiliates in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or trade names contained herein
are the property of their respective owners.

September 2005

Contents

Preface . 11

Chapter 1 Introducing Collections. 15

Overview of Collections . 15

Collections Manipulation Features . 16

Requirements for Collections Applications . 16

Including Collections Header Files . 17

Initializing the Collections Facility . 17

Generating the Application Schema. 17

Linking with ObjectStore Libraries. 17

Choosing a Collection Type . 20

os_Set and os_set . 20

os_Bag and os_bag. 20

os_List and os_list . 20

os_Array and os_array . 21

os_Dictionary . 21

Using a Decision Tree to Select a Collection Type 21

Collection Characteristics and Behaviors . 22

Collections Store Pointers to Objects . 22

Collections Can Be Transient or Persistent . 22

Parameterized and Nonparameterized Collections 22

Class Hierarchy Diagram . 22

Collection Behaviors . 23

Expected Collection Size . 23

Performing pick() on an Empty Collection . 24

Templated and Nontemplated Collections . 24

Using Collections with the Element Type Parameter 24

Chapter 2 Performing Basic Collections Functions 27

General Guidelines . 28

Deleting Collections . 28

Inserting Dictionary Elements . 29
Release 6.3 3

Contents
4

Duplicate Insertions .29

Null Insertions .29

Ordered Collections .29

Duplicate Keys .30

Ordered Collections .31

Removing Dictionary Elements. .31

Finding the Count of an Element with count().32

Copying, Combining, and Comparing Collections 33

Ordered Collections and Collections with Duplicates34

Chapter 3 Using Cursors to Navigate Collections35

Description of a Cursor .35

Creating Default Cursors .36

Positioning the Cursor at the Collection’s First Element37

Moving the Cursor to the Collection’s Next Element 37

Is the Cursor at a Nonnull Element? .38

Rebinding Cursors to Another Collection .38

Manipulating First and Last Elements in a Collection.39

Chapter 4 Using Dictionaries .41

Creating Dictionaries .41

Marking Persistent Dictionaries .43

Marking Transient Dictionaries .43

Dictionary Behavior. .44

Visiting the Elements with Specified Keys .44

Example of Using Dictionaries .46

Chapter 5 Performing Advanced Collections Operations 53

Controlling Traversal Order .53

Default Traversal Order. .53

Address Order Traversal .54

Rank-Function-Based Traversal .54

Retrieving Uniquely Specified Collection Elements 55

Dictionaries .57

Picking an Arbitrary Element .57

Supplying Rank and Hash Functions .58

os_index_key() Macro. .59

Specifying Expected Size. .60

Chapter 6 Class Reference .61

Introduction .61

os_Array::operator |=() .66
4 PSE Pro for C++ Collections Guide and Reference

Contents
os_Array::operator &=() . 66

os_Array::operator –=() . 66

os_Array::set_cardinality() . 67

os_array::operator =() . 71

os_array::operator |=() . 71

os_array::operator &=() . 71

os_array::operator –=() . 72

os_array::os_array() . 72

os_array::set_cardinality() . 72

os_Bag. 73
os_Bag::operator =() . 76

os_Bag::operator |=() . 76

os_Bag::operator &=() . 76

os_Bag::operator –=() . 77

os_Bag::os_Bag(). 77

os_bag::operator =() . 80

os_bag::operator |=(). 80

os_bag::operator &=() . 80

os_bag::operator –=() . 81

os_bag::os_bag() . 81

os_Collection::contains() . 85

os_Collection::count(). 85

os_Collection::insert_after() . 86

os_Collection::insert_before() . 86

os_Collection::insert_first() . 87

os_Collection::only(). 88

os_Collection::operator os_Array() . 88

os_Collection::operator const os_Array(). 88

os_Collection::operator os_Bag() . 88

os_Collection::operator const os_Bag() . 88

os_Collection::operator os_List() . 89

os_Collection::operator const os_List() . 89

os_Collection::operator os_Set() . 89

os_Collection::operator const os_Set() . 89

os_Collection::operator ==() . 89

os_Collection::operator !=() . 89

os_Collection::operator <() . 90

os_Collection::operator <=() . 90

os_Collection::operator >() . 90

os_Collection::operator >=() . 90

os_Collection::operator |=() . 91
Release 6.3 5

Contents
6

os_Collection::operator |() .91

os_Collection::operator &=() .91

os_Collection::operator –=() .92

os_Collection::operator –() .92

os_Collection::remove() .92

os_Collection::remove_last(). .93

os_Collection::replace_at() .93

os_Collection::retrieve_first() .94

os_Collection::retrieve_last() .94

os_collection::allow_duplicates .97

os_collection::allow_nulls .97

os_collection::cardinality() .97

os_collection::cardinality_estimate() .98

os_collection::cardinality_is_maintained(). .98

os_collection::clear() .98

os_collection::contains() .98

os_collection::count() .98

os_collection::empty() .98

os_collection::EQ .98

os_collection::GE .98

os_collection::GT .98

os_collection::get_behavior() .99

os_collection::initialize() .99

os_collection::insert(). .99

os_collection::insert_after() .99

os_collection::insert_before() . 100

os_collection::insert_first() . 100

os_collection::insert_last() . 101

os_collection::LE . 101

os_collection::LT . 101

os_collection::maintain_order . 101

os_collection::NE . 101

os_collection::operator os_int32() . 102

os_collection::operator os_array&() . 102

os_collection::operator const os_array&() . 102

os_collection::operator os_bag&() . 102

os_collection::operator const os_bag&() . 102

os_collection::operator os_list&(). 102

os_collection::operator os_set&(). 103

os_collection::operator const os_set&() . 103
6 PSE Pro for C++ Collections Guide and Reference

Contents
os_collection::operator ==() .103

os_collection::operator !=(). .103

os_collection::operator <=() .104

os_collection::operator >() .104

os_collection::operator >=() .104

os_collection::operator |=(). .105

os_collection::operator |(). .105

os_collection::operator &=() .105

os_collection::operator –=() .106

os_collection::operator -(). .106

os_collection::remove_first() .106

os_collection::remove_last() .107

os_collection::replace_at() .107

os_collection::retrieve_first() .108

os_collection::retrieve_last() .108

os_collection::update_cardinality() .108

os_Cursor .109
os_Cursor::first() .110

os_Cursor::insert_after(). .110

os_Cursor::insert_before() .110

os_Cursor::more() .111

os_Cursor::next(). .111

os_Cursor::null() .111

os_Cursor::os_Cursor(). .111

os_Cursor::owner() .112

os_Cursor::previous() .112

os_Cursor::rebind() .113

os_Cursor::remove_at() .113

os_Cursor::retrieve() .113

os_Cursor::valid() .113

os_Cursor::~os_Cursor() .113

os_cursor::insert_after() .115

os_cursor::insert_before(). .115

os_cursor::last() .115

os_cursor::more() .115

os_cursor::next() .115

os_cursor::null() .115

os_cursor::optimized .116

os_cursor::order_by_address. .116

os_cursor::os_cursor() .116

os_cursor::owner(). .117
Release 6.3 7

Contents
8

os_cursor::previous() . 117

os_cursor::rebind() . 117

os_cursor::remove_at() . 117

os_cursor::retrieve() . 118

os_cursor::update_insensitive . 118

os_cursor::valid() . 118

os_cursor::~os_cursor() . 118

os_Dictionary::contains() . 122

os_Dictionary::count_values() . 122

os_Dictionary::insert() . 122

os_Dictionary::pick() . 124

os_Dictionary::remove_value() . 125

os_Dictionary::retrieve(). 126

os_Dictionary::retrieve_key() . 126

os_List::operator =() . 130

os_List::operator &=() . 131

os_List::operator –=() . 131

os_List::os_List() . 131

os_list . 132
os_list::operator =() . 135

os_list::operator |=() . 135

os_list::operator &=() . 135

os_list::operator –=(). 135

os_Set::default_behavior() . 141

os_Set::operator |=(). 142

os_Set::operator &=() . 142

os_Set::operator –=() . 142

os_set::operator =() . 146

os_set::operator |=() . 146

os_set::operator –=(). 147

os_set::os_set() . 147

Chapter 7 Macros and User-Defined Functions Reference 149

OS_MARK_DICTIONARY() . 150

OS_MARK_NLIST() . 150

OS_MARK_NLIST_PT() . 151

OS_TRANSIENT_DICTIONARY() . 151

OS_TRANSIENT_DICTIONARY_NOKEY() . 152

OS_TRANSIENT_NLIST(). 152

OS_TRANSIENT_NLIST_NO_BLOCK() . 153

os_assign_function_body() . 154
8 PSE Pro for C++ Collections Guide and Reference

Contents
os_index_key_hash_function() .155

os_index_key_rank_function() .156

OS_INDEXABLE_LINKAGE() .156

os_query_function_body_with_namespace() 157

os_rel_1_m_body_options() .163

os_rel_m_1_body_options() .164

os_rel_m_m_body_options(). .165

os_relationship_1_1() .167

os_relationship_1_m() .168

OS_RELATIONSHIP_LINKAGE() .169

os_relationship_m_m() .171

Index .173
Release 6.3 9

Contents
10
10 PSE Pro for C++ Collections Guide and Reference

Preface

Purpose The PSE Pro for C++ Collections Guide and Reference describes how to use the C++
programming interface to PSE Pro for C++ to allocate, populate, and manipulate
collections.

Audience This book assumes you are experienced with C++.

Scope Information in this book assumes that PSE Pro is installed and configured.

How This Book Is Organized
Chapter 1, Introducing Collections, on page 15, introduces collections, describes the
different types of collections, and provides a simple example.

Chapter 2, Performing Basic Collections Functions, on page 27, discusses how to
create, destroy, populate, and obtain information about collections.

Chapter 3, Using Cursors to Navigate Collections, on page 35, describes how to use
a cursor to iterate over the elements in a collection.

Chapter 4, Using Dictionaries, on page 41, provides information about collections
that use keys to keep track of elements.

Chapter 5, Performing Advanced Collections Operations, on page 53, discusses the
use of paths to navigate to collection elements, the techniques for controlling
collection traversal, supplying rank and hash functions, and specifying expected
collection size.

Chapter 6, Class Reference, on page 61, provides complete information about each
class in the collections facility. Information is presented in alphabetical order by class
name.

Chapter 7, Macros and User-Defined Functions Reference, on page 149, presents
information in alphabetical order about each collections macro and user-defined
function.

Notation Conventions
Release 6.3 11

Preface
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.
12 PSE Pro for C++ Collections Guide and Reference

Preface
- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 13

Preface
14 PSE Pro for C++ Collections Guide and Reference

Chapter 1
Introducing Collections

A collection is an object whose purpose is to group together other objects. It provides
a convenient means of storing and manipulating groups of objects by supporting
operations for inserting, removing, and retrieving elements.

This chapter discusses the following topics:

Overview of Collections 15

Collections Class Library 16

Collections Manipulation Features 16

Requirements for Collections Applications 16

Introductory Collections Example 18

Choosing a Collection Type 20

Collection Characteristics and Behaviors 22

Templated and Nontemplated Collections 24

Overview of Collections
The ObjectStore collections facility provides

• A library of collection classes

• Facilities that allow traversal, manipulation, and retrieval of the elements within
collections

The collections facility is rich and varied. Consequently, it adds overhead to your
code and database. If your application does not require collections, a simple linked
list you write yourself might be a more suitable choice.
Release 6.3 15

Collections Manipulation Features
Collections Class Library
The classes in the ObjectStore collections class library provide the data structures for
representing several types of collections. The categories of classes and their different
behaviors are as follows:

• Sets do not maintain order, do not allow nulls, and ignore duplicates.

• Bags do not maintain order and do not allow nulls, but they do allow duplicates.

• Lists maintain order and do not allow nulls, but they do allow duplicates.

• Arrays maintain order and allow nulls and duplicates.

• Dictionaries associate a key with each element or group of elements. They can be
ordered or unordered, do not allow nulls, and ignore duplicates.

• Index-only collections support O(1) element look-up. The index can be ordered
or unordered, supports null insertions, and ignores duplicate insertions.

An object can be contained in many different collections, and collections can be used
in transient or persistent memory, depending on the needs of your application.

Collections Manipulation Features
Each class defines member functions that allow you to insert, remove, and count the
elements in the collection. With the ObjectStore cursor class, you can create a cursor
to iterate over the elements in a collection and to retrieve elements for examination
or processing one at a time.

Collections are commonly used to model many-valued attributes, and they can also
be used as class extents (which hold all instances of a particular class). Collections of
one type — dictionaries — associate a key with each element or group of elements,
and so can be used to model binary associations or mappings. ObjectStore
dictionaries are described in detail in Chapter 4, Using Dictionaries, on page 41.

Requirements for Collections Applications
The following sections describe the requirements for applications that use
collections:

• Including Collections Header Files

• Initializing the Collections Facility

• Generating the Application Schema

• Linking with ObjectStore Libraries
16

Introducing Collections
Including Collections Header Files
After including the standard ObjectStore header file <os_pse/ostore.hh>,
programs that use ObjectStore collections must include the header file <os_
pse/coll.hh>.

If your application uses ObjectStore dictionaries, your program must include <os_
pse/coll/dict_pt.hh> and must also include <os_pse/coll/dict_pt.cc> in any
source file that instantiates an os_Dictionary, following the other header files.

Initializing the Collections Facility
To use the collections facility, after an application calls the
objectstore::initialize() function, it must call the static member function os_
collection::initialize(). For example:

objectstore::initialize();
os_collection::initialize();

Generating the Application Schema
As with any ObjectStore application, applications that use the collections facility
must generate an application schema. Create a schema source file that marks the
classes you want to store in the database.

If you use parameterized persistent collections, you must mark those collection types
in your schema source file.

If you use persistent dictionaries, you must call the macro OS_MARK_DICTIONARY()
in the schema source file for each key-type/element-type pair that you use. Calls to
this macro have the form

OS_MARK_DICTIONARY(key-type, element-type)

Specific information about marking dictionaries can be found in Marking Persistent
Dictionaries on page 43. See also OS_MARK_DICTIONARY() on page 150.

Linking with ObjectStore Libraries
Programs that use ObjectStore collections must link with the ostore.lib library.
Release 6.3 17

Requirements for Collections Applications
Introductory Collections Example
Here is a simple example to illustrate how to use collections. It defines a class that
records a note entered by the user. Notes are maintained in an os_list in reverse
order from that in which they were created; that is, the most recent note is at the
beginning of the list. At start-up, the database file is read and the notes are created in
memory. The existing notes are displayed and the user is prompted to enter a new
note. The database file is rewritten starting with the new note.

Header file:
note.hh

 #include <ostore/ostore.hh>

 class note {
 public:

 /* Public Member functions */
 note(const char*, note*, int);
 ~note();
 void display(ostream& = cout);
 static os_typespec* get_os_typespec();

 /* Public Data members */
 char* user_text;
 note* next;
 int priority;
 };

To establish an entry point, an os_database_root called root_head is assigned and
points to the value returned from the find_root member function defined on the
class os_database. The head variable is assigned to point to the value returned by
the get_value function applied to root_head.

Each note instance and its user text is allocated persistently in an os_list, and a
transaction surrounds the code that touches persistent data. The value of the
database root is set to the head of the linked list.

Header file:
note.hh

#include <iostream>
#include <string.h>
#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>

/* A simple class that records a note entered by the user. */

class note {

 public:

 /* Public Member functions */
 note(const char*, int);
 ~note();
 void display(ostream& = cout);

user text /3

user text /2

user text /1

database file

note 3

note 1
note 2

head
user text /1

user text /2

user text /3
18

Introducing Collections
 static os_typespec* get_os_typespec();

 /* Public Data members */
 char* user_text;
 int priority;
};

Main program:
main.cc

/* ++ Note Program - main file */

#include "note.hh"
extern "C" void exit(int);
extern "C" int atoi(char*);

/* Head of linked-list of notes */
os_list *notes = 0;
const int note_text_size = 100;

main(int argc, char** argv) {

 if(argc!=2) {
 cout << "Usage: note <database>" << endl;
 exit(1);
 } /* end if */

 objectstore::initialize();
 os_collection::initialize();
 char buff[note_text_size];
 char buff2[note_text_size];
 int note_priority;

 os_database *db = os_database::open(argv[1], 0, 0644);

 OS_BEGIN_TXN(t1,0,os_transaction::update) {

 os_database_root *root_head = db->find_root("notes");
 if(!root_head)
 root_head = db->create_root("notes");
 notes = (os_list *)root_head->get_value();

 if(!notes) {
 notes = new(db, os_list::get_os_typespec()) os_list;
 root_head->set_value(notes);
 } /* end if */

 os_cursor c(*notes);
 /* Display existing notes */
 for(note* n=(note *)c.first(); n; n=(note *)c.next())
 n->display();

 /* Prompt user for a new note */
 cout << "Enter a new note: "<< flush;
 cin.getline(buff, sizeof(buff));

 /* Prompt user for a note priority */
 cout << "Enter a note priority: "<< flush;
 cin.getline(buff2, sizeof(buff2));
 note_priority = atoi(buff2);

 notes->insert(new(db, note::get_os_typespec())
 note(buff, note_priority));
 }
 OS_END_TXN(t1)

 db->close();
}

Release 6.3 19

Choosing a Collection Type
Choosing a Collection Type
This section contains a brief description of each type of ObjectStore collection,
followed by a simple decision tree you can use to choose a collection type to suit your
program’s particular behavioral requirements.

All collection types described below (with the exception of os_Dictionary) have
both a templated (parameterized) and a nontemplated (nonparameterized) version.
For ease of differentiation, the templated versions use uppercase letters (for example,
os_Set), whereas the nontemplated versions use lowercase (os_set). Nontemplated
classes are always typed as void* pointers.

• For information about the differences between templated (parameterized) and
nontemplated (nonparameterized) collection classes, see Templated and
Nontemplated Collections.

• For information about the characteristics of ObjectStore collection classes, see
Collection Characteristics and Behaviors.

• For a description of hierarchical representation of the relationships between the
ObjectStore collection types, see the Class Hierarchy Diagram.

• For information about how to create collection classes, see Creating Collections on
page 28.

os_Set and os_set
Sets, as with familiar data structures such as linked lists and arrays, have elements.
Elements are objects that the set groups together. But, in contrast to the elements of
lists and arrays, the elements of a set are unordered. Use sets to group objects
together when you do not need to record any particular order for the objects.

Besides lacking order, sets do not allow multiple occurrences of the same element.
This means that inserting a value that is already an element of a set leaves the set
unchanged.

os_Bag and os_bag
Bags are collections that keep track of what their elements are and also of the number
of occurrences of each element. In other words, bags allow duplicate elements. Bags
provide all the operations available for sets, as well as an operation, count(), that
returns the number of occurrences of a given element in a given collection.

os_List and os_list
In addition to sets and bags, the ObjectStore collections facility supports lists. A list
is a collection that associates a numerical position with each element based on
insertion order. Lists allow duplicates. In addition to simple insert (insert into the
beginning or end of the collection) and simple remove (removal of the first
occurrence of a specified element), you can insert, remove, and retrieve elements
based on a specified numerical position, or based on a specified cursor position (see
Accessing Collection Elements with a Cursor or Ordinal Value on page 39).
20

Introducing Collections
os_nList and os_nlist are derived from parameterized os_List and os_list,
respectively. They allow the user to customize the internal representation of
ObjectStore lists.

os_Array and os_array
ObjectStore arrays are like ObjectStore lists, except that they always provide access to
collection elements in constant time. That is, the time complexity of operations such
as retrieval of the nth element is order 1 in the array’s size. Arrays also always allow
null elements, and they provide the ability to automatically establish a specified
number of new null elements.

os_Dictionary
Like bags, ObjectStore dictionaries are unordered collections that allow duplicates.
Unlike bags, however, dictionaries associate a key with each element. The key can be
a value of any C++ fundamental type, a user-defined type, or a pointer type. When
you insert an element into a dictionary, you specify the key along with the element.
You can retrieve an element with a given key, or retrieve those elements whose keys
fall within a given range.

Dictionaries are somewhat different from other ObjectStore collection classes in their
use of keys. See Chapter 4, Using Dictionaries, on page 41, for additional information
on how dictionaries differ from other kinds of ObjectStore collections.

Using a Decision Tree to Select a Collection Type
Here is a simple decision tree to help you choose a collection type to suit particular
behavioral requirements.

os_Array os_List os_Dictionary

Maintain insertion order?

yes no

os_Bag os_Set

Associate a key with
each element?

Automatic addition of a specified
number of null elements?

yes no yes no

Allow duplicates?

yes no
Release 6.3 21

Collection Characteristics and Behaviors
Collection Characteristics and Behaviors
To use collections, it is important to understand the characteristics and behavior of
each type of collection. The topics discussed in this section are

• Collections Store Pointers to Objects

• Collections Can Be Transient or Persistent

• Parameterized and Nonparameterized Collections

• Class Hierarchy Diagram

• Collection Behaviors

• Expected Collection Size

• Performing pick() on an Empty Collection

Collections Store Pointers to Objects
ObjectStore collection classes store pointers to objects, not the objects themselves.
Thus, elements exist independently from membership in a collection. A single
element can be a member of many collections.

Collections Can Be Transient or Persistent
Like all types in ObjectStore, collections can be used in transient memory (program
memory) or persistent memory. Transient collections are used to represent transient,
changeable groupings; the current list of cars in the parking garage, for example.
Persistent collections contain more permanent associations, such as the list of people
on a board of directors or the founding states of the European community.

Parameterized and Nonparameterized Collections
Every ObjectStore collection class (except os_Dictionary) is provided in both a
templated (parameterized) and a nontemplated (nonparameterized) form. See
Templated and Nontemplated Collections on page 24.

Templated classes use an uppercase letter in their class names (os_Set), whereas
nontemplated classes use lowercase letters in their class names (os_set).

Class Hierarchy Diagram
The following diagram shows the hierarchical relationship among most (os_
Dictionary, os_nlist, and os_nList are not included) of the public ObjectStore
collection classes. Note that E is actually a pointer value: the element type parameter
used by the templated collection classes to specify the types of values allowable as
22

Introducing Collections
elements. See Using Collections with the Element Type Parameter on page 24 for
more information.

Collection Behaviors
The ObjectStore collection classes vary according to what behaviors and
characteristics are permitted and prohibited. The following table lists the classes and
their default behaviors. You can change the default size of a collection; see Chapter
5, Performing Advanced Collections Operations, on page 53, for more information
on customizing your ObjectStore collections

The os_Dictionary class differs substantially from other collection classes in its
behaviors. Dictionary behaviors are related to the key of an element rather than to an
element itself. See Chapter 4, Using Dictionaries, on page 41, for information on how
ObjectStore dictionaries differ from other ObjectStore collection classes.

The behavior of os_nList and os_nlist is the same as that of os_List. See os_
nList and os_nlist on page 137.

Expected Collection Size
By default, all collection classes are presized with a representation suitable for a size
of less than 20. The expected_size argument for the collection constructors lets you
supply a different default size. For more information, see Specifying Expected Size
on page 60.

os_set

os_bag

os_list

os_array

os_Bag<E>

os_Collection<E>

os_collection

os_List<E>

os_Array<E>

os_Set<E>

os_nListos_nlist

Collection
Class

Maintain Element
Order

Allow
Duplicates

Allow
Nulls

os_Set No No No

os_Bag No Yes No

os_List Yes Yes No

os_Array Yes Yes Yes
Release 6.3 23

Templated and Nontemplated Collections
Performing pick() on an Empty Collection
For all collection classes, performing pick() on an empty collection or on an empty
result of a query results in a null return value.

Templated and Nontemplated Collections
ObjectStore collection classes are provided in both templated (parameterized) and
nontemplated (nonparameterized) versions.

Using Collections with the Element Type Parameter
The parameterized ObjectStore collection classes — os_Set, os_Bag, os_List, os_
Collection, os_Dictionary, and os_Array — are class templates. Each class has a
parameter, the element type parameter, that specifies the type of value allowable as
elements. This type must be a pointer type. For example:

os_Set<part*> &a_part_set =
 new(db1, os_Set<part>::get_os_typespec()) os_Set<part*>;

This fragment defines a variable whose value is a reference to a set of pointers to
part objects. The element type, part*, appears in angle brackets when the collection
type is mentioned. (Note that the element type parameter is represented as <E> in
function signatures.)

os_nList and os_nlist are also parameterized ObjectStore collections classes. The
parameters for these classes are used to customize the internal representation of the
list. See os_nList and os_nlist on page 137.

Example: os_
Set

The following example uses an instance of os_Set, one of the classes supplied by the
collections facility. This class defines a part that includes the part number and the
responsible engineer.

#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>

class part {

 public:

 int part_number;
 os_Set<part*> &children;
 employee *responsible_engineer;

 part (int n) :
 children(*new(
 db1,
 os_Set<part*>::get_os_typespec())
 os_Set<part*> {
 part_number = n;
 responsible_engineer = 0;
 }

};
24

Introducing Collections
Using Collections Without Parameterization
You can choose to use the following nonparameterized collection classes:

Notice that the names of the parameterized classes have an uppercase letter
following the os_ , while the nonparameterized classes have a lowercase letter
following the os_ . Notice, as well, that there is no nonparameterized version of os_
Dictionary.

Difference Between Parameterized and Nonparame-terized
Interfaces
The difference between the parameterized and nonparameterized interfaces is that
with the parameterized interface, you can inform the compiler of the type of element
a collection is to have, allowing the compiler to provide an extra measure of type
safety. With the nonparameterized interface, elements are always typed as void*
pointers. Most of the examples in this manual use the parameterized interface, but if
you are not using parameterization, just drop any construct of the form

<element-type-name>

and use the nonparameterized collection type names (beginning with os_ followed
by a lowercase letter). If you use os_set instead of os_Set, class definition example
used earlier in Using Collections with the Element Type Parameter on page 24 would
then look like the following:

Example: os_
set()

class employee ;
extern os_database *db1 ;
class part {
 public:
 int part_number ;
 os_set &children ;
 employee *responsible_engineer ;
 part (int n) :
 children(*new(db1, os_set::get_os_typespec()) os_set {
 part_number = n;
 responsible_engineer = 0 ;
 }
};

In this example, os_Set, and os_Set is changed to os_set and the element type
parameter <part*> is left out.

Nonparameterized collections are typed void*
When you use nonparameterized collections, elements are typed void*. This means
you must cast the result of retrieving a collection element, for example, when using
pick()or traversing a collection by using a cursor.

os_collection

os_listos_bag os_arrayos_set
Release 6.3 25

Templated and Nontemplated Collections
26

Chapter 2
Performing Basic Collections
Functions

A collection is an object whose purpose is to group together other objects. It provides
a convenient means of storing and manipulating groups of objects by supporting
operations for inserting, removing, and retrieving elements.

This chapter discusses the following topics:

Creating Collections 28

Deleting Collections 28

Inserting Collection Elements 29

Removing Collection Elements with remove() 31

Testing Collection Membership with contains() 32

Finding the Count of an Element with count() 32

Finding the Size of a Collection with cardinality() 33

Copying, Combining, and Comparing Collections 33
Release 6.3 27

Deleting Collections
Creating Collections
This section presents information on creating collections. The os_Array, os_Bag,
os_Collection, os_List, and os_Set classes are discussed together in the first
subsection. os_Dictionary is discussed separately in Chapter 4, Using Dictionaries,
on page 41.

General Guidelines
You create collections for each collection class with the following constructor
functions:

Constructor
functions

The overloadings of constructor functions are listed in Chapter 6, Class Reference, on
page 61. For each constructor, there is at least one overloading that creates an empty
set and another that lets you specify the expected collection size. There are also two
copy constructors that create a collection with the same membership as another
specified collection.

Deleting Collections
To delete a collection, use the C++ delete() function. For example:

os_list *list = new(db, os_list::get_os_typespec()) os_list;
delete list;

You must explicitly delete each collection that you allocate. If you do not, your
application has memory leaks.

Collection Type Constructor Function

Array os_Array::os_Array()

Bag os_Bag::os_Bag()

List os_List::os_List()

Set os_Set::os_Set()
28 PSE Pro for C++ Collections Guide and Reference

Performing Basic Collections Functions
Inserting Collection Elements
You update collections by inserting and removing elements or by using the
assignment operators (see Copying, Combining, and Comparing Collections on
page 33). The insert operations for os_Collection and its subtypes are declared as
follows:

void insert(const E) ;

Inserting Dictionary Elements
For dictionaries, you specify an entry, that is, a key, along with the element to be
inserted. Declare os_Dictionary::insert() as follows:

void insert(const K &key, const E element) ;

void insert(const K *key_ptr, const E element) ;

These two overloadings are provided for convenience so that you can pass either the
key or a pointer to the key.

Caution For dictionaries with signal_dup_keys behavior, if an attempt is made to insert
something with a key that already exists, err_am_dup_key is signaled.

Duplicate Insertions
For collections that do not support duplicates, inserting something that is already an
element of the collection leaves the collection unchanged. For example:

os_database *db1 ;
message *a_msg ;
os_Set<message*> &temp_set =
 new(db1, os_Set<message>::get_os_typespec())
 os_Set<message*>;
. . .
temp_set.insert(a_msg) ;
temp_set.insert(a_msg) ; /* set is unchanged */

For collections that support duplicates, each insertion increases the collection’s size
by 1 and increases by 1 the count (or number of occurrences) of the inserted element
in the collection. You can retrieve the count of a given element with count().
Iteration with an unrestricted cursor visits each occurrence of each element.

Null Insertions
If you insert a null pointer (0) into a collection that does not support nulls, the
collection remains unchanged and err_coll_nulls is signaled.

Ordered Collections
Inserting an element into an ordered collection adds the element to the end of the
collection. See also Accessing Collection Elements with a Cursor or Ordinal Value on
page 39.
Release 6.3 29

Deleting Collections
Duplicate Keys
For dictionaries with signal_dup_keys behavior, if an attempt is made to insert an
element with a key that already exists, err_am_dup_key is signaled.
30 PSE Pro for C++ Collections Guide and Reference

Performing Basic Collections Functions
Removing Collection Elements with remove()
The remove operations for os_Collection and its subtypes are declared in the
following way:

os_int32 remove(E) ;

If you remove an element from a collection, the cardinality decreases by 1, and the
count of the element in the collection decreases by 1. If you remove something that
is not an element, the collection is unchanged. For example:

os_database *db1 ;
message *a_msg; . . .
os_Set<message*> &temp_set =
 new(db1, os_Set<message>::get_os_typespec())
 os_Set<message*>;
. . .
temp_set.remove(a_msg) ;
temp_set.remove(a_msg) ; /* set is unchanged */

Ordered Collections
For collections that maintain order, remove() removes the specified element from
the end of the collection. There are also overloadings of remove() that allow you to
remove at a numerical index value in the collection or remove at the position of the
cursor.

Removing Dictionary Elements
For dictionaries, you can also remove the entry with a specified key and element
with remove_value(). This function is faster than remove(), so if you can specify
the key, use remove_value() instead of remove(). There are two overloadings that
differ only in that you pass a pointer to the key in one overloading and you pass a
reference to the key in the other overloading.

void remove(const K &key, const E element) ;

void remove(const K *key_ptr, const E element) ;

If there is no entry with the specified key and element, the collection is unchanged.
As with remove(), if you remove an entry from a dictionary, the cardinality
decreases by 1, and the count of the element in the collection decreases by 1.

With dictionaries, you can also remove a specified number of entries with a specified
key, using the following functions:

E remove_value(const K &key, os_unsigned_int32 n = 1) ;

E remove_value(const K *key_ptr, os_unsigned_int32 n = 1) ;

If there are fewer than n entries with the specified key, all entries in the dictionary
with that key are removed. If there is no such entry, the dictionary remains
unchanged.
Release 6.3 31

Finding the Count of an Element with count()
Testing Collection Membership with
contains()

To see if a given pointer is an element of a collection, use

os_int32 contains(E) const ;

This function returns nonzero if the specified E is an element of the specified
collection, and 0 otherwise.

For dictionaries, you can determine if there is an entry with a given key and element.

os_boolean contains(
 const K const &key_ref,
 const E element
) const ;

os_boolean contains(
 const K *key_ptr,
 const E element
) const ;

With the first function, you pass a reference to the key; with the second, you pass a
pointer to the key. Other than that, these two functions are equivalent. If there is no
entry with the specified key and element, 0 (false) is returned.

Finding the Count of an Element with count()
To find the count of a given element in a collection that allows duplicates, use

os_int32 count(E) ;

If the specified E is not an element of the collection, 0 is returned.

For dictionaries, you can determine the number of entries with a specified key with
one of these functions:

os_unsigned_int32 count_values(const K const &key_ref) const ;

os_unsigned_int32 count_values(const K *key_ptr) const ;

With the first function, you pass a reference to the key; with the second, you pass a
pointer to the key. Other than that, these two functions are equivalent.
32 PSE Pro for C++ Collections Guide and Reference

Performing Basic Collections Functions
Finding the Size of a Collection with
cardinality()

You can determine the number of elements in a collection with the member function
os_collection::cardinality().

os_unsigned_int32 cardinality() const ;

The cardinality of a collection that does not allow duplicates is the number of
elements it contains. The cardinality of a collection that does allow duplicates is the
sum of the number of occurrences of each of its elements.

You can test to see if a collection is empty with the member function empty().

os_int32 empty() ;

This function returns true (a nonzero 32-bit integer) if it is empty, and false (0)
otherwise.

Copying, Combining, and Comparing
Collections

The class os_Collection defines several operators for assignment and comparison.
Some of the assignment operators are related to the familiar set-theory operators
union, intersection, and difference. In addition, some of the comparison operators
are analogous to set-theory comparisons such as subset and superset. The collection
operators are listed below. (LHS, below, stands for the operand on the left-hand side,
and RHS stands for the right-hand-side operand.)

Collection
operators

• operator =() replaces the contents of LHS with the contents of RHS.

• operator |=() adds the contents of RHS to LHS.

• operator -=() removes the contents of RHS from LHS.

• operator &=() replaces the contents of LHS with the intersection of LHS and
RHS.

• operator <() (like proper subset).

• operator >() (like proper superset).

• operator <=() (like subset).

• operator >=() (like superset).

• operator ==() (checks if elements are the same).

• operator !=() (checks if any elements are different).
Release 6.3 33

Copying, Combining, and Comparing Collections
Dual Purpose of the Operators
All these operators have a dual purpose. They can be used on two collections, or they
can be used on a collection (as left-hand operand) and an instance of that collection’s
element type (as right-hand operand). For example, they can be used on a set of parts
and a part. In that case, the instance of the collection’s element type is treated as a
collection whose one and only element is that instance. Performance varies by
representation. For example, you can use the union equals operator (|=) as a
convenient way of performing inserts:

os_Set<message*> &a_set
 = *new(db1, os_Set<message*>::get_os_typespec())
 os_Set<message*>;
message *a_msg ;
. . .
a_set |= a_msg ;

And you can use -= to remove elements: a_set -= a_msg ;

Ordered Collections and Collections with Duplicates
When you use update operators, such as |=, on ordered collections or collections that
allow duplicates, the result can be understood in terms of performing an iteration on
one or more of the operands. So, for example:

big_list |= little_list ;

is equivalent to iterating through little_list in the default order, performing an
insert into big_list for each occurrence of each element of little_list.
Assignment of one collection to another as in

the_copy = the_original;

is equivalent to first removing all the_copy’s elements and then iterating through
the_original in default order, performing an insert into the_copy for each
occurrence of each element of the_original.

In general, the update operators (=, |=, -=, &=) bundle together a sequence of inserts
or removes of elements of one or more operands in the order in which those elements
appear in the operands, the default iteration order for the operands. This describes only
the behavior of the operators. The implementations might be different. For example,
to add all of a part’s children to a given list, you might use this code:

os_database *db1 ;
. . .
os_List<part*> &a_list =
 new(db1, os_List<part>::get_os_typespec())
 os_List<part*>;
part *a_part ;
. . .
a_list |= a_part->children ;

This is behaviorally equivalent to

part *p ;
os_Cursor<part*> c(a_part->children) ;
for (p = c.first() ; p ; p = c.next())
 a_list.insert(p) ;
34 PSE Pro for C++ Collections Guide and Reference

Chapter 3
Using Cursors to Navigate
Collections

The ObjectStore collections facility provides a class that helps you navigate within a
collection. The os_Cursor class helps you insert and remove elements, as well as
retrieve particular elements or sequences of elements.

This chapter discusses the following topics:

Description of a Cursor 35

Creating Default Cursors 36

Traversing Collections with Default Cursors 37

Positioning the Cursor at the Collection’s First Element 37

Moving the Cursor to the Collection’s Next Element 37

Is the Cursor at a Nonnull Element? 38

Rebinding Cursors to Another Collection 38

Accessing Collection Elements with a Cursor or Ordinal Value 39

Manipulating First and Last Elements in a Collection 39

Description of a Cursor
A cursor, an instance of os_Cursor, is used to designate a position within a collection.
You can use cursors to traverse collections as well as to retrieve, insert, remove, and
replace elements.

When you create a default cursor, you specify its associated collection, and the cursor
is positioned at the collection’s first element. With member functions of os_Cursor,
you can reposition the cursor as well as retrieve the element at which the cursor is
currently positioned. See Traversing Collections with Default Cursors on page 37.

Some members of the collection classes take cursor arguments. These functions
support insertion, removal, and replacement of elements.
Release 6.3 35

Creating Default Cursors
Creating Default Cursors
The class os_Cursor is a parameterized class supplied by the ObjectStore class
library.

os_Cursor(const os_Collection<E> &) ;

Its constructor takes an os_Collection& (people in the example in the next section)
as the argument. This is the collection to be traversed. The traversal proceeds in an
arbitrary order for unordered collections and, for ordered collections, in the order in
which the elements were inserted.

Note that traversal of a collection with duplicates visits each element once for each
time it occurs in the collection. For example, an element that occurs three times in a
collection is visited three times during a traversal of the collection.

os_Cursor’s parameter (person* in the example) indicates the type of elements in
the collection being traversed. The cursor’s parameter must be the element type (see
Using Collections with the Element Type Parameter on page 24) of the collection
passed as the constructor argument.
36 PSE Pro for C++ Collections Guide and Reference

Using Cursors to Navigate Collections
Traversing Collections with Default Cursors
The ObjectStore collections facility allows you to program loops that process the
elements of a collection one at a time. When you use it, you do not need to know how
many elements are in the collection; each time through the loop, you can test whether
more elements remain to be visited. Consequently, you need not worry about loop
bounds.

To traverse a collection, you create a cursor associated with the collection you want
to traverse. The cursor records the state of an iteration by pointing to the element
currently being visited. Each time through the loop, you advance the cursor to the
next element and retrieve that element. Following is an example:

os_database *db1 ;
. . .
os_Set<person*> &people
 = *new(db1, os_Set<person*>::get_os_typespec())
 os_Set<person*>;
. . . /* insertions into people */

os_Set<person*> &teenagers
 = *new(db1, os_Set<person*>::get_os_typespec())
 os_Set<person*>;

person* p;
os_Cursor<person*> c(people);

for (p = c.first(); c.more() ; p = c.next()) {
 if (p–>age >=13 && p–>age <= 19)
 teenagers.insert(p);
}

The for loop in this example retrieves each element of the collection people and
adds those between the ages of 13 and 19 to the collection teenagers. The next
sections provide information about positioning and moving cursors in the collection.

Positioning the Cursor at the Collection’s First Element
In the example code, the traversal is performed with a for loop. The initialization
part of the loop header is an assignment involving a call to the member function os_
Cursor::first():

p = c.first()

This positions the cursor at the collection’s first element and returns that element. If
there is no first element because the collection is empty, first() makes the cursor
null and returns 0.

Moving the Cursor to the Collection’s Next Element
In the example, the increment part of the for loop header is an assignment involving
a call to the member function os_Cursor::next():

p = c.next()

This positions the cursor at the collection’s next element and returns that element. If
there is no next element, next() makes the cursor null and returns 0.
Release 6.3 37

Rebinding Cursors to Another Collection
Is the Cursor at a Nonnull Element?
In the example, the loop’s condition is a call to the member function os_
Cursor::more():

c.more()

This function returns a nonzero 32-bit integer (true) when the cursor is still
positioned at some element of the collection. The function returns 0 (false) when the
cursor is not pointing at any element.

After next() is applied to the collection’s last element, the cursor becomes null and
more() then returns false, terminating the loop.

Alternative to
using more()

For collections that do not allow null elements, you can take advantage of the fact
that first() and next() return null pointers when there is no first or next element.
This means you can use the values returned by these functions (in this case p) as the
loop condition as long as the collection contains no null pointers. For example:

os_database *db1 ;
. . .
os_Set<person*> &people
 = *new(db1, os_Set<person*>::get_os_typespec())
 os_Set<person*>;

. . . /* inserts to people */

os_Set<person*> &teenagers
 = *new(db1, os_Set<person*>::get_os_typespec())
 os_Set<person*>;

person* p ;
os_Cursor<person*> c(people) ;

for (p = c.first() ; p ; p = c.next())
 if (p–>age >=13 && p–>age <= 19)
 teenagers.insert(p) ;

Rebinding Cursors to Another Collection
You can change a cursor’s associated collection with the following members of os_
Cursor:

void rebind(const os_Collection<E>&) ;

void rebind(const os_Collection<E>&, _Rank_fcn) ;

This last overloading is for rebinding cursors whose order is specified by a rank
function. Once rebound, the cursor is positioned at the specified collection’s first
element.
38 PSE Pro for C++ Collections Guide and Reference

Using Cursors to Navigate Collections
Accessing Collection Elements with a Cursor
or Ordinal Value

You can gain access to a specific place in a collection by means of an ordinal value or
a cursor as arguments to the following functions:

void os_Collection::insert_after(const E, const os_Cursor<E>&)

void os_Collection::insert_after(const E, os_unsigned_int32)

void os_Collection::insert_before(const E, const os_Cursor<E>&)

void os_Collection::insert_before(const E, os_unsigned_int32)

void os_Collection::remove_at(const os_Cursor<E>&)

void os_Collection::remove_at(os_unsigned_int32)

E os_Collection::replace_at(const E, const os_Cursor<E>&)

E os_Collection::replace_at(const E, os_unsigned_int32)

E os_Collection::retrieve(const os_Cursor<E>&) const

E os_Collection::retrieve(os_unsigned_int32) const

The cursor-based overloadings must use a default cursor. The cursor-based
overloadings of remove_at(), replace_at(), and retrieve() can also be used for
unordered collections. (See Traversing Collections with Default Cursors on page 37.)

Manipulating First and Last Elements in a
Collection

There are also functions for inserting, removing, and retrieving elements from the
beginning and the end of an ordered collection. These are declared as follows:

void os_Collection::insert_first(const E)

void os_Collection::insert_last(const E)

os_int32 os_Collection::remove_first(const E&)

E os_Collection::remove_first()

os_int32 os_Collection::remove_last(const E&)

E os_Collection::remove_last()

The integer-valued remove() and retrieve() functions return 0 if the collection
had no elements to remove or retrieve (that is, was empty). Otherwise, they return a
nonzero integer and modify their arguments to indicate the removed or retrieved
element.

If you perform any of these functions on an unordered collection created with the
supertype’s interface, the exception err_coll_not_supported is signaled. These
operations cause a compile-time error if they are performed on an unordered
collection created with the subtype’s interface. (Compile-time detection is possible
because the unordered subtypes define the ordered operations as private.)
Release 6.3 39

Manipulating First and Last Elements in a Collection
40 PSE Pro for C++ Collections Guide and Reference

Chapter 4
Using Dictionaries

Dictionaries are unordered collections that allow duplicates. Unlike other
collections, dictionaries associate a key with each element. The key can be a value of
any C++ fundamental type, user-defined type, or pointer type. When you insert an
element into a dictionary, you specify the key along with the element. You can
retrieve an element with a given key or retrieve those elements whose keys fall
within a given range.

Required
include files

To use ObjectStore’s dictionary facility, you must include the files <os_
pse/ostore.hh>, <os_pse/coll.hh>, and either os_pse/coll/dict_pt.hh or
<os_pse/coll/dict_pt.cc>, in this order. You must include dict_pt.cc when
instantiating the template because it contains the bodies of the functions declared in
os_pse/coll/dict_pt.hh. However, users of the template can just include dict_
pt.hh.

This chapter discusses the following topics:

Creating Dictionaries 41

Marking Persistent Dictionaries 43

Marking Transient Dictionaries 43

Dictionary Behavior 44

Visiting the Elements with Specified Keys 44

Writing Destructors for Dictionaries 45

Example of Using Dictionaries 46

Creating Dictionaries
You can create dictionaries with an os_Dictionary constructor. For example:

os_Dictionary<char*, char*> *dict = new (
 db, os_Dictionary<char*, char*>::get_os_typespec())
 os_Dictionary<char*, char*>;

See the reference information for os_Dictionary::os_Dictionary() on page 123.

Dictionaries can have different types of keys as the key type parameters.
Release 6.3 41

Creating Dictionaries
Integer keys For integer keys, specify one of the following as key type:

• os_int32 (a signed 32-bit integer)

• os_unsigned_int32 (an unsigned 32-bit integer)

• os_int16 (a signed 16-bit integer)

• os_unsigned_int16 (an unsigned 16-bit integer)

Class keys For class keys, the class must have a destructor that zeroes any pointers it contains,
a default (no arguments) constructor, and operator=.

Class keys with
soft pointers

For ordered dictionaries and when the key is a class that contains a soft pointer you
need to register its assignment operator using the os_assign_function() and os_
assign_function_body() macros. See os_assign_function() on page 154 and
os_assign_function_body() on page 154.

void* keys Use the type void* for pointer keys other than char* keys.

char* keys For char[] keys, use the parameterized type os_char_array<S>, where the actual
parameter is an integer literal indicating the size of the array in bytes.

If a dictionary’s key type is char*, the dictionary makes its own copies of the
character array upon insert. If the dictionary does not allow duplicate keys, you can
significantly improve performance by using the type os_char_star_nocopy as the
key type. With this key type, the dictionary copies the pointer to the array and not
the array itself. You can freely pass chars to this type.

Note that you should not use os_char_star_nocopy with dictionaries that allow
duplicate keys.

char[], char*, and os_char_star_nocopy all use strcmp() for comparison.

Floating-point
keys

Because the collections library has no defined ordering for IEEE floating-point NaN
values, if you are using floating-point keys and expect to generate NaN values, there
are a number of possible problems. The collections library will not order floating-
point keys with NaN value in any definitive way. All NaN values cannot be expected
to be equal. Some may be greater than all the other keys, some may be less than all
the other keys. Furthermore cross platform database compatibility is not ensured
when using floating-point keys with NaN values; a NaN value generated on one
platform cannot be counted on to be equal with a NaN value generated on another
platform. This cross-platform problem could result in “lost keys,” meaning
operations that traverse a dictionary or index might not reach all the keys.

The workaround for this problem is to wrap your floating-point key in a user-
defined class and supply your own rank and hash function for that class using the
os_index_key macro. In this way you can designate the way you want NaN values
to be treated and you can address the issue of cross-database compatibility. Keep in
mind that these rank and hash functions will be greatly used, so if performance is a
priority for your application, you should keep any platform checks and
computations to a minimum. See Supplying Rank and Hash Functions on page 58
and os_assign_function() on page 154 for more information.
42 PSE Pro for C++ Collections Guide and Reference

Using Dictionaries
Marking Persistent Dictionaries
If you use persistent dictionaries, you must call the macro OS_MARK_DICTIONARY()
for each key-type/element-type pair that you use. Calls to this macro have the form

OS_MARK_DICTIONARY(key-type, element-type)

Put these calls in the schema source file. For example:

/* schema.cc */

#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>
#include <os_pse/coll/dict_pt.hh>
#include <os_pse/manschem.hh>
#include "dnary.hh"
OS_MARK_DICTIONARY(void*,Course*) ;
OS_MARK_DICTIONARY(int,Employee**) ;
OS_MARK_DICTIONARY(int,Course*) ;
OS_MARK_SCHEMA_TYPE(Course) ;
OS_MARK_SCHEMA_TYPE(Employee) ;
OS_MARK_SCHEMA_TYPE(Department) ;

For pointer keys, use void* as the key-type.

See the reference information for OS_MARK_DICTIONARY() on page 150.

Marking Transient Dictionaries
If you use only transient dictionaries, you must call the macro OS_TRANSIENT_
DICTIONARY() for each key-type / element-type pair that you use. If you use a
particular instantiation of an os_Dictionary template both transiently and
persistently, you should use the OS_MARK_DICTIONARY() macro only. The
arguments for OS_TRANSIENT_DICTIONARY() are the same as for OS_MARK_
DICTIONARY(), but you call OS_TRANSIENT_DICTIONARY() at file scope in an
application source file, rather than in a schema source file.

However, using OS_TRANSIENT_DICTIONARY() more than once with the same key
type results in a compilation error. For example, the following does not compile
correctly:

OS_TRANSIENT_DICTIONARY(int,void*);
OS_TRANSIENT_DICTIONARY(int,foo*);

The problem is that both invocations of OS_TRANSIENT_DICTIONARY() cause a stub
routine to be defined for the key type int. Instead, you should only invoke OS_
TRANSIENT_DICTIONARY() once for each key type and use the macro OS_
TRANSIENT_DICTIONARY_NOKEY() for each consecutive dictionary with the same key
type. The correct use, given the example above, would be

OS_TRANSIENT_DICTIONARY(int,void*);
OS _TRANSIENT_DICTIONARY_NOKEY(int,foo*);
Release 6.3 43

Dictionary Behavior
For related information on these macros, see OS_MARK_DICTIONARY() on page 150,
OS_TRANSIENT_DICTIONARY() on page 151, and OS_TRANSIENT_DICTIONARY_
NOKEY() on page 152.

Dictionary Behavior
Every dictionary has the following properties:

• Duplicate elements are allowed.

• Null pointers cannot be inserted.

• No guarantees are made concerning whether an element inserted or removed
during a traversal of its elements will be visited later in that same traversal.

By default, a new dictionary also has the following properties:

• Its entries have no intrinsic order.

• Duplicate keys are allowed; that is, two or more elements can have the same key.

• Range look-ups are not supported; that is, key order is not maintained.

Visiting the Elements with Specified Keys
For dictionaries, you can retrieve an element with the specified key with one of the
following two functions:

E pick(const K const &key_ref) const ;

E pick(const K *key_ptr) const ;

These differ only in that with one you supply a reference to the key, and with the
other you supply a pointer to the key. Again, if there is more than one element with
the key, an arbitrary one is picked and returned. If there is no such element, the
function returns null.

Retrieving Elements When the Key Type is a Class
If the dictionary’s key type is a class, you must supply rank and hash functions for
the class. See Supplying Rank and Hash Functions on page 58.

The key types char*, char[], and os_char_star_nocopy are each treated as a class
whose rank and hash functions are defined in terms of strcmp(). For example, for
char*:

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string “Smith” (that is, whose
key, k, is such that strcmp(k, "Smith") is 0).
44 PSE Pro for C++ Collections Guide and Reference

Using Dictionaries
Writing Destructors for Dictionaries
There are circumstances in which a slot in an ObjectStore dictionary can be reused.
A slot is used for the first time when the first item is hashed to that slot during an
insert. A removal of that item causes the slot to be emptied and marked as previously
occupied. A subsequent insert of a key that hashes to that slot can result in the reuse
of that slot to hold this new key.

When a key is removed, the destructor for the object of type K is run. Because the slot
can then be reused, it is necessary for the destructor for the object of type K to null
any pointers to memory that are freed in the destructor.

Example Following is an example where type K is class myString:

class myString
{
 private:
 char* theString;
 int len;
}
RMString::RMString(char* theChars)
{
 if (theChars == 0)
 len = 0;
 else
 len = strlen(theChars);
 theString = new(os_segment::of(this),
 os_typespec::get_char(),len + 1)
 char[len+1];
 if (theChars == 0)
 theString[0] = ‘\0’;
 else
 strcpy(theString, theChars);
}
RMString::~RMString()
{
 delete[] theString;
/**
 The following line solves the multiple delete problem
**/
 theString = 0;

}

Failure to include the line theString = 0; results in the following error if a slot is
reused:

Invalid argument to operator delete

<err-0025-0608>Delete failed. Cannot locate a persistent object at
address 0x5780114 (err_invalid_deletion)
Release 6.3 45

Example of Using Dictionaries
Example of Using Dictionaries
A ternary relationship is a relationship among three objects, such as “student x got
grade y in course z.” Dictionaries are often useful in representing ternary
relationships. This section contains an example involving the classes Student,
Grade, and Course, which allow you to store and retrieve information about who got
what grade in what course.

Each Student object contains two dictionaries that serve to associate a course with
the grade the student got in the course. One dictionary supports look-up of the grade
given the course, and the other supports look-up of the courses with a given grade.

Note that the dnary.cc example includes <os_pse/coll/dict_pt.cc> instead of
dict_pt.hh; dict_pt.cc is needed because it contains the bodies of the functions
declared in dict_pt.hh. You need not also include dict_pt.hh because it is
included in dict_pt.cc. The example also includes schema.cc, which is the
application’s schema source file.

Following is the file dnary.hh, which contains the class definitions. After that is the
file dnary.cc, which contains the member function implementations.

Header file:
dnary.hh

/* dnary.hh */

#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>
#include <os_pse/coll/dict_pt.hh>
#include <iostream>

class Student ;
class Grade ;
class Course ;

/* ------------------- class Student ------------------*/
class Student {
 public:
 int get_id() const ;
 const char* get_name() ;

 int add_course(Course*, c, Grade* g = 0) ;
 void remove_course(Course*) ;

 Grade *get_grade_for_course(const Course*) const ;
 void set_grade_for_course(Course*, Grade*) ;

 os_Set<Course*> &get_courses_with_grade(
 const Grade*) const ;
 float get_gpa() const ;

 static os_typespec *get_os_typespec() ;
 { return os_ts<Student>::get(); }

 Student(int id, const char* n);
 ~Student() ;

 private:
 int id ;
 char* name;
 os_Set<Course*> & courses ;
 os_Dictionary<void*, Grade*> * course_grade;
 os_Dictionary<void*, Course*> * grade_course;
46 PSE Pro for C++ Collections Guide and Reference

Using Dictionaries
} ;

* ---------------------- class grade ---------------------*/
class Grade {

 public:
 const char *get_name() const ;
 float get_value() const ;

 static os_typespec *get_os_typespec() ;
 { return os_ts<Grade>::get(); }

 Grade(const char *name, float value) ;
 ~Grade() ;

 private:
 char *name ;
 float value ;

} ;

* ---------------------- class course ---------------------*/
class Course {

 public:
 int get_id() const ;
 const char *name() const ;
 static os_typespec *get_os_typespec() ;
 {return os_ts<Course>::get(); }

 Course(char *name() const ;
 ~Course();

 private:
 int id ;
 char * _name;

} ;

Main program:
dnary.cc

/* dnary.cc */

#include "dnary.hh"
#include <os_pse/coll/dict_pt.cc>

typedef os_Dictionary<void*,Course*> grade_course_dnary ;
typedef os_Dictionary<void*,Grade*> course_grade_dnary ;

/* Student member function implementations */

int Student::get_id() const {
 return id ;
}

const char* Student::get_name() {
 return name ;
}

int Student::add_course(Course *c, Grade *g) {
 if (courses->contains(c))
 return 0 ;

 courses->insert(c) ;
 if (g) {
 grade_course->insert(g, c) ;
 course_grade->insert(c, g) ;
 } /* end if */
 return 1 ;
}

Release 6.3 47

Example of Using Dictionaries
void Student::remove_course(Course *c) {
 if (courses->contains(c)) {
 courses->remove(c) ;
 grade_course.remove(course_grade->pick(c), c) ;
 course_grade->remove_value(c) ;
 }
}

Grade *Student::get_grade_for_course(const Course *c) const {
 return course_grade->pick((Course*)c) ;
}

void Student::set_grade_for_course(Course *c, Grade *g) {
 grade_course->remove(course_grade->pick(c), c) ;
 course_grade->remove_value(c) ;
 grade_course->insert(g, c) ;
 course_grade->insert(c, g) ;
}

os_Set<Course*> &
Student::get_courses_with_grade(const Grade *g) const {
 os_Set<Course*> &the_courses =
 *new(os_database::get_transient_database(),
 os_Set<Course*>::get_os_typespec())
 os_Set<Course*> ;

// os_cursor cur(*grade_course, os_coll_range(
// os_collection::EQ, g)) ;

 os_cursor cur(*grade_course);

 for (Course *c = (Course*) cur.first() ; c ; c =
 (Course*) cur.next())
 the_courses.insert(c) ;

 return the_courses ;
}

float Student::get_gpa() const {
 float sum = 0.0 ;
 os_cursor c(course_grade) ;
 for (Grade *g = (Grade*) c.first(); g; g = (Grade*) c.next())
 sum = sum + g->get_value() ;
 return sum / course_grade->cardinality();
}

Student::Student(int i, const char* n) :

 courses = new(os_segment::of(this),
 os_Set<Course*>::get_os_typespec())
 os_Set<Course*>,

 course_grade = new(os_segment::of(this),
 os_Dictionary<void*, Grade*>::get_os_typespec())
 os_Dictionary<void*, Grade*>(10);
 grade_course = new (os_segment::of(this),
 os_Dictionary<void*, Course*>::get_os_typespec())
 os_Dictionary<void*, Course*> () ;
 id = i;
 if(n) {
 int len + ::strlen(n) + 1;
 _name = new(os_segment::of(this), os_typespec::get_char(), len)
 char[len];
 ::strcpy(_name, n);
48 PSE Pro for C++ Collections Guide and Reference

Using Dictionaries
 } else
 _name = 0;
}

Student::~Student() {
 if (_name)
 delete {} _name;
 delete courses ;
 delete course_grade ;
 delete grade_course ;
}

/* Grade member function implementations */

const char *Grade::get_name() const {
 return name ;
}

float Grade::get_value() const {
 return value ;
}

Grade::Grade(const char *n, float v) {
 name = new(os_segment::of(this), os_typespec::get_char(),
 strlen(n)+1)
char[strlen(n)+1] ;
 ::strcpy(name, n) ;
 value = v ;
}

Grade::~Grade() {
 delete name ;
}

/* Course member function implementations */

int Course::get_id() const {
 return id ;
}
 const char * Course::name() const{
 return _name;
}

Course::Course(char* name, int _id)
 : id(_id)
{
 int len = ::strlen(name) + 1;
 _name = new(os_segment::of(this), os_typespec::get_char(), len)
 char[len];
 ::strcpy(_name, name);
}

Course::~Course()
{
 delete [] _name;
}

void force_vfts(void *) {
 force_vfts(new os_Dictionary<char *, Grade *>);
 force_vfts(new os_Dictionary<os_char_star_nocopy, Course *>);
 force_vfts(new os_Dictionary<void *, Course *>);
 force_vfts(new os_Dictionary<void *, Grade *>);
 force_vfts(new os_List<Student *>);
 force_vfts(new os_List<Course *>);
Release 6.3 49

Example of Using Dictionaries
 force_vfts(new os_Set<Student *>);
 force_vfts(new os_Set<Course *>);
 force_vfts(new os_Array<Course *>);
 force_vfts(new os_Array<Student *>);
 force_vfts(new os_Bag<Student *>);
 force_vfts(new os_Bag<Course *>);
 force_vfts(new os_Collection<Student *>);
}

Schema file:
schema.cc

/* schema.cc */

#include <os_pse/ostore.hh>
#include <os_pse/coll.hh>
#include <os_pse/coll/dict_pt.hh>
#include <os_pse/manschem.hh>

#include "dnary.hh"

 OS_MARK_DICTIONARY(void*,Course*);
 OS_MARK_DICTIONARY(void*,Grade*);
 OS_MARK_SCHEMA_TYPE(Course);
 OS_MARK_SCHEMA_TYPE(Student);
 OS_MARK_SCHEMA_TYPE(Grade);

Example
description

The data member Student::courses contains a reference to a set of pointers to the
courses the student has taken.

The data member Student::course_grade contains a reference to a dictionary that
maps each course to the grade the student got for that course. This dictionary
supports look-up of the grade given the course.

The data member Student::grade_course contains a reference to a dictionary that
maps each grade to the courses for which the student got that grade. This dictionary
supports look-up of the courses given the grade.

The function Student::add_course() first checks to see if the specified course has
already been added. If it has, 0 (indicating failure) is returned. If it has not, the
function inserts the specified course into the set referred to by Student::courses.
Then, if a grade is specified, entries are inserted into the dictionaries referred to by
Student::course_grade and Student::grade_course. Finally, 1 (indicating
success) is returned.

The function Student::remove_course() removes the specified course from
Student::courses. If the course is not an element of courses, the call to remove()
has no effect.

Then, using pick() on course_grade, remove_course() determines the grade for
the given course. The grade and the course are then passed to os_
Dictionary::remove() to remove from Student::grade_course the entry whose
value is the given course. The function add_course() ensures that there is at most
one.

If the course is not an element of the dictionary, pick() returns 0 and the call to
remove() has no effect.

Finally, using os_Dictionary::remove_value(), remove_course() removes from
Student::Course_grade the entry whose key is the given course. Again, add_
50 PSE Pro for C++ Collections Guide and Reference

Using Dictionaries
course() ensures there is at most one. If the dictionary has no entry whose key is
that course, the call to remove_value() has no effect.

Student::get_grade_for_course() uses os_Dictionary::pick() to retrieve
from Student::course_grade the element whose key is the given course.

Student::set_grade_for_course() first takes precautions in case the specified
course already has been assigned a grade. It removes from Student::course_grade
and Student::grade_course any entries with the given course. It does this as
follows.

First, the function performs remove() on grade_course, passing in the grade for the
given course (determined by performing pick() on course_grade) and also passing
in the given course itself. If no grade has been set for the course, pick() returns 0
and the call to remove() has no effect. Then the function uses remove_value() to
remove from course_grade the entry, if there is one, whose key is the given course.

Next, Student::set_grade_for_course() inserts into grade_course an entry
whose key is the specified grade and whose value is the specified course. Finally, it
inserts into course_grade an entry whose key is the specified course and whose
value is the specified grade.

The function Student::get_courses_with_grade() returns a reference to a
collection of the courses for which the student got the specified grade. It creates a
collection on the transient heap and then uses a restricted cursor to visit each element
of grade_course whose key is the specified grade. As each qualifying element is
visited, it is inserted into the newly created collection. Finally, a reference to the
collection is returned.

The function Student::get_gpa() returns the student’s grade point average. It
visits each element of the dictionary course_grade, summing the result of
performing get_value() on each element along the way. When the traversal is
complete, the sum is divided by the dictionary’s size to get the average, which is
returned.

The Student constructor allocates an os_Set and two instances of os_Dictionary
in the specified segment.
Release 6.3 51

Example of Using Dictionaries
52 PSE Pro for C++ Collections Guide and Reference

Chapter 5
Performing Advanced
Collections Operations

After you are familiar with the basic use of collections, you can use the information
in this chapter to perform more advanced operations with collections. This chapter
discusses the following topics:

Controlling Traversal Order 53

Performing Collection Updates During Traversal 55

Retrieving Uniquely Specified Collection Elements 55

Selecting Individual Collection Elements with pick() 57

Consolidating Duplicates with operator =() 58

Supplying Rank and Hash Functions 58

Specifying Expected Size 60

Controlling Traversal Order
To control traversal order, use one of the constructors for os_Cursor. The various
overloadings allow you to specify a traversal order based on

• The order in persistent memory of the objects pointed to by collection elements

• The rank function registered for the collection’s element type

• A specified rank function

The following sections discuss traversals.

Default Traversal Order
os_Cursor(const os_Collection&, os_int32 options);

Every cursor has an associated ordering for the elements of its associated collection.
By default, this ordering is the order in which each element appears in the collection
(for ordered collections) or an arbitrary ordering (for unordered collections).
Release 6.3 53

Controlling Traversal Order
Address Order Traversal
If you supply os_collection::order_by_address as the options argument, this
cursor iterates in address order. This is the order in which the objects pointed to by
collection elements are arranged in persistent memory.

If you dereference each collection element as you retrieve it and the objects pointed
to by collection elements will not all fit in the client cache at once, this order can
dramatically reduce paging overhead.

An order-by-address cursor is update insensitive.

Rank-Function-Based Traversal
os_Cursor(
 const os_Collection&,
 const char* typename,
) ;

If you create a cursor with this constructor, iteration follows the order determined by
the rank function of the element type specified by typename. See Supplying Rank
and Hash Functions on page 58.

os_Cursor(
 const os_Collection&,
 _Rank_fcn
) ;

_Rank_fcn is a pointer to a rank function for the element type. Iteration using a
cursor created with this constructor follows the order determined by this function.

Rank-function-based cursors are update insensitive. See Performing Collection
Updates During Traversal on page 55.
54 PSE Pro for C++ Collections Guide and Reference

Performing Advanced Collections Operations
 Performing Collection Updates During
Traversal

If you want to be able to update a collection while traversing it, you must use an
update-insensitive cursor.

With an update-insensitive cursor, the traversal is based on a snapshot of the
collection elements at the time the cursor was bound to the collection. None of the
inserts and removes performed on the collection is reflected in the traversal.

If you update a collection while traversing it without using an update-insensitive
cursor, the results of the traversal are undefined.

You can create an update-insensitive cursor with the following cursor constructor:

os_Cursor(
const os_Collection&,
os_int32 options
) ;

Supply os_collection::update_insensitive as the options argument.

In addition, the following kinds of cursors are always update insensitive:

• Rank-function-based cursors. See Rank-Function-Based Traversal on page 54.

• order_by_address cursors. See Address Order Traversal on page 54.

Retrieving Uniquely Specified Collection
Elements

You can retrieve the collection element at which a specified cursor is positioned with
the following function:

E retrieve(const os_Cursor<E>&) const ;

If the cursor is null, err_coll_null_cursor is signaled. If the cursor is nonnull but
not positioned at an element, err_coll_illegal_cursor is signaled.

You can retrieve the only element of a collection with the following function:

E only() const ;

If the collection has more than one element, err_coll_not_singleton is signaled.
If the collection is empty, 0 is returned.
Release 6.3 55

Retrieving Uniquely Specified Collection Elements
Ordered Collections
For ordered collections, you can retrieve the element with a specified numerical
position with the following function:

E retrieve(os_unsigned_int32 index) const ;

The index is zero based. If the index is not less than the collection’s size, err_coll_
out_of_range is signaled. If the collection does not have maintain_order behavior,
err_coll_not_supported is signaled.

retrieve_first()
function

You can retrieve a collection’s first element with the following function:

E retrieve_first() const ;

This function returns the collection’s first element, or 0 if the collection is empty. If
the collection is not ordered, err_coll_not_supported is signaled.

For collections with allow_nulls behavior, you can use the following function
instead:

os_int32 retrieve_first(const E&) const ;

This function modifies the argument to refer to the collection’s first element. It
returns 0 if the specified collection is empty, and nonzero otherwise. If the collection
is not ordered, err_coll_not_supported is signaled.

retrieve_last()
function

To retrieve a collection’s last element, use

E retrieve_last() const ;

This function returns the collection’s last element, or 0 if the collection is empty. If
the collection is not ordered, err_coll_not_supported is signaled.

For collections with allow_nulls behavior, you can use the following function
instead:

os_int32 retrieve_last(const E&) const ;

This function modifies the argument to refer to the collection’s last element. It
returns 0 if the specified collection is empty, and nonzero otherwise. If the collection
is not ordered, err_coll_not_supported is signaled.
56 PSE Pro for C++ Collections Guide and Reference

Performing Advanced Collections Operations
Selecting Individual Collection Elements with
pick()
Dictionaries

For dictionaries, you can retrieve an element with the specified key, with one of the
following two functions:

E pick(const K const &key_ref) const ;

E pick(const K *key_ptr) const ;

These two differ only in that with one you supply a reference to the key, and with
the other you supply a pointer to the key. Again, if there is more than one element
with the key, an arbitrary one is picked and returned. If there is no such element, 0
is returned.

If the dictionary’s key type is a class, you must supply rank and hash functions for
the class (see Supplying Rank and Hash Functions on page 58).

The key types char*, char[], and os_char_star_nocopy are each treated as a class
whose rank and hash functions are defined in terms of strcmp(). For example, for
char*:

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string Smith (that is, whose
key, k, is such that strcmp(k, "Smith") is 0).

Picking an Arbitrary Element
You can retrieve an arbitrary collection element with

E pick() const;

If the collection is empty, 0 is returned.

This is sometimes useful when all the elements of a collection have the same value
for a data member and the easiest way to retrieve this value is through one of the
elements.

For example, suppose the class bus defines a member for the set of pins connected to
it but no member for the cell in which it resides, while pin defines a member pointing
to its attached cell, which in turn has a member pointing to its containing cell. The
best way to find the cell on which a given bus resides is to find the pins connected to
it and then find the cell on which one of the pins resides:

a_cell = a_bus–>pins.pick()–>cell->container;
Release 6.3 57

Supplying Rank and Hash Functions
Consolidating Duplicates with operator =()
You can use the assignment operator os_Collection::operator =() (see Copying,
Combining, and Comparing Collections on page 33) to consolidate duplicates in a
bag or other collection. Do this by assigning the collection with duplicates to an
empty collection that does not allow duplicates. For example:

os_database *db1 ;
part *a_part, *p ;
employee *e ;
. . .
os_Bag<employee*> &emp_bag =
 new(db1, os_Bag<employee>::get_os_typespec())
 os_Bag<employee* >;

os_Set<employee*> &emp_set =
 = *new(db1, os_Set<employee* >::get_os_typespec())
 os_Set<employee* >;

os_Cursor<part*> c(a_part->children) ;
for (p = c.first() ; p ; p = c.next())
 emp_bag.insert(p–>responsible_engineer) ;

emp_set = emp_bag ; // consolidate duplicates

os_Cursor<employee*> c(emp_set) ;

for (e = c.first() ; e ; e = c.next())
 cout << e–>name << "\t" << emp_bag.count(e) << "\n" ;

If two of a_part’s children have the same responsible_engineer, that engineer
appears twice as an element of emp_bag. You can consolidate duplicates in emp_set
so you can iterate over it, retrieving each engineer only once in the loop and then use
count() to see how many times the engineer occurs in emp_bag. This is the number
of parts for which the engineer is responsible.

Supplying Rank and Hash Functions
In all these examples, iteration order is based on integer-valued data members
(part_number, emp_id, or salary); that is, the paths end in integer values. The
integers have a system-supplied order, defined by the comparison operators <, >,
and so forth. The same is true for pointers. For char* pointers, which are treated
differently from other pointers, the order is defined by performing strcmp() on the
string pointed to. But what if a path ends in some other type of value; that is, what if
it ends in the instances of some class or floating-point numerical type?

If you want to use such a path to control iteration order, you must make known to
ObjectStore a utility specific to the class, a rank function that defines an ordering on
the type’s instances.

Registering To register a rank or hash function, you must call os_index_key() from within a
session. This function registers a rank or hash function for the entire process. Calling
os_index_key() outside any session has no effect.
58 PSE Pro for C++ Collections Guide and Reference

Performing Advanced Collections Operations
Floating-point
keys

If you are using floating-point keys and expect to generate NaN values, you should
wrap your floating-point key in a user-defined class and supply your own rank and
hash function for that class using the os_index_key macro.

os_index_key() Macro
You make these utilities known to ObjectStore by calling the macro os_index_
key(). Calls to os_index_key() have the following form:

os_index_key(type,rank-function,hash-function);

For example:

os_index_key(date,date_rank,date_hash);

The type is the type that is at the end of the path.

For information about the os_index_key() macro, see os_assign_function() on
page 154.

The rank-function is a user-defined global function that, for any pair of instances
of class, provides an ordering indicator for the instances, much as strcmp() does
for strings. The rank function should return one of os_collection::LT, os_
collection::GT, or os_collection::EQ.

Rank functions for floating-point numerical types (float, double, and long
double) should follow these guidelines:

• NaN and inf must be handled specially. For example, the representation of NaN is
not unique. In the rank function, test for these values before doing anything else.
You might want NaN to rank below any other value.

For the purpose of ranking, comparisons should be precise. For example, the rank
function should consider x and y to be equal if x == y but not if abs(x – y) < e
(for some small value of e) as long as > and < also check for equality using e.The
hash-function is a user-defined global function that, for each instance of class,
returns a value, an os_unsigned_int32, that can be used as a key in a hash table. It
takes a const void* argument. If you are not supplying a hash function for the class,
this argument should be 0.
Release 6.3 59

Specifying Expected Size
Supposethat dates are instances of a user-defined class:

class date{
public:
 int month;
 int day;
 int year;
};

In this case, you must define the rank function and make it known to ObjectStore.
You might define it as follows:

int date_rank(const void* arg1, const void *arg2) {
 const date *date1 = (const date *) arg1;
 const date *date2 = (const date *) arg2;

 if (date1->year < date2->year)
 return os_collection::LT;
 else if (date1->year > date2->year)
 return os_collection::GT;
 else if (date1->month < date2->month)
 return os_collection::LT;
 else if (date1->month > date2->month)
 return os_collection::GT;
 else if (date1->day < date2->day)
 return os_collection::LT;
 else if (date1->day > date2->day)
 return os_collection::GT;
 return os_collection::EQ;
}

Specifying Expected Size
Frequently, a collection has a loading phase in which it is loaded with elements
before being the subject of other kinds of manipulation such as queries and traversal.
In these cases, it is desirable to create the collection with the size it will have after
loading is complete.

To presize a collection, use the expected_size argument to a collection’s
constructor.
60 PSE Pro for C++ Collections Guide and Reference

Chapter 6
Class Reference

This chapter describes the following classes and their functions and enumerators.
See the Introduction on page 61 for information that applies to all classes.

os_Array 62

os_array 68

os_Bag 73

os_bag 78

os_Collection 82

os_collection 95

os_Cursor 109

os_cursor 114

os_Dictionary 119

os_List 127

os_list 132

os_nList and os_nlist 137

os_Set 139

os_set 144

Introduction
The following information applies to all classes related to collections:

Type definitions The types os_int32 and os_boolean, used throughout this manual, are each
defined as a signed 32-bit integer type. The type os_unsigned_int32 is defined as
an unsigned 32-bit integer type.

Required
header files

Programs that use collections or collection subtypes (arrays, bags, dictionaries, lists,
and sets), after they include the header file <os_pse/ostore.hh>, must include the
header file <os_pse/coll.hh>.
Release 6.3 61

Introduction
os_Array
template <class E>
class os_Array : public os_Collection<E>

An array, like a list (see os_List on page 127), is an ordered collection. Arrays always
provide access to collection elements in constant time. That is, the time complexity
of operations such as retrieval of the nth element is order 1 in the array’s cardinality.

Arrays also have a set_cardinality() function that changes the array cardinality,
filling the additional array slots (if the cardinality is increased) with a specified fill
value. Arrays allow both duplicates and nulls. As with other ordered collections,
array elements can be inserted, removed, replaced, or retrieved based on a specified
numerical array index or based on the position of a specified cursor.

If an element is inserted into an os_Array, elements after it are pushed down in
order. If an element is removed, elements after it in the array are pushed up. If you
want the index to an element to remain constant, set the element at indexn to either
0 or another pointer.

The class os_Array is parameterized, with a parameter for constraining the type of
values allowable as elements (for the nonparameterized version of this class, see os_
array on page 68). The element type parameter, E, occurs in the signatures of some
of the functions described here. The parameter is used by the compiler to detect type
errors.

The element type of any collection type, such as an array, must be a pointer type (for
example, employee*).

Create os_Arrays with the os_Array constructor.

You must mark parameterized collections types in the schema source file.

Member
functions and
enumerators

The following tables list the member functions that can be performed on instances of
os_Array. The second table lists the enumerators inherited by os_Array from os_
collection. Many functions are inherited by os_Array from os_Collection or
os_collection. The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The full explanation of
each function defined by os_Array appears in this entry, after the table and list. In
each case, the Defined By column gives the class whose entry contains the full
explanation.

In the following table, for parameterized os_Array<E>, E means class pointer.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

empty () os_int32 os_collection
62 PSE Pro for C++ Collections Guide and Reference

Class Reference
get_behavior () const os_unsigned_
int32

os_collection

insert (const E) void os_Collection

insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

only () const E os_Collection

operator os_array& () os_collection

operator const
 os_array&

() const os_collection

operator os_Bag<E>& () os_Collection

operator const
 os_Bag<E>&

() const os_Collection

operator os_bag& () os_collection

operator const os_bag& () const os_collection

operator os_List<E>& () os_Collection

operator const
 os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator os_Set<E>& () os_Collection

operator const
 os_Set<E>&

() const os_Collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
Release 6.3 63

Introduction
operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Array<E>&) const

(const os_Collection<E>&) const

(E) const

os_Array<E>&

os_array&

os_array

os_Array

operator |= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

operator | (const os_Collection<E>&) const

(E) const

os_
Collection<E
>&

os_
Collection<E
>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

operator & (const os_Collection<E>&) const

(E) const

os_
Collection<E
>&

os_
Collection<E
>&

os_Collection

operator –= (const os_Collection<E>&) const

(E) const

os_Array<E>&

os_Array<E>&

os_Array

operator - (const os_Collection<E>&) const

(E) const

os_
Collection<E
>&

os_
Collection<E
>&

os_Collection

os_Array<E> ()

(os_unsigned_int32
 expected_size)

(const os_Array<E>&)

(const const os_Collection<E>&)
(os_unsigned_int32
 expected_size = 0,
 os_unsigned_int32 card = 0,
 E fill_value)

os_Array

remove (const E) os_int32 os_Collection

Name Arguments Returns Defined By
64 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Array
enumerators

The following table lists the enumerators that can be used for os_Array member
functions.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. Although the actual implementation of
the assignment might be different, the associated semantics are maintained.

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

retrieve_first () const

(const E&) const

E

os_int32

os_Collection

retrieve_last () const

(const E&) const

E

os_int32

os_Collection

set_cardinality (os_unsigned_int32 new_card,
 E fill_value)

void os_Array

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
Release 6.3 65

Introduction
os_Array::operator =()
os_Array<E> &operator =(const os_Array<E> &s);

os_Array<E> &operator =(const os_Collection<E> &s);

Copies the contents of the collection s into the target array and returns the target
array. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target array. The iteration is
ordered if the source collection is ordered. The target array semantics are enforced
as usual during the insertion process.

os_Array<E> &operator =(const E e);

Clears the target array, inserts the element e into the target array, and returns the
target array.

os_Array::operator |=()
os_Array<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target array and returns the target array.
In effect, this appends the elements of a collection to an os_Array.

os_Array<E> &operator |=(const E e);

Inserts the element e into the target array and returns the target array.

os_Array::operator &=()
os_Array<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. If the
collection is ordered and contains duplicates, it does so by retaining the appropriate
number of leading elements. The function returns the target collection.

os_Array<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. The function returns the target
collection.

os_Array::operator –=()
os_Array<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. If the collection is ordered, it is the first s.count(e)
elements that are removed. The function returns the target collection.

os_Array<E> &operator –=(const E e);

Removes the element e from the target collection. If the collection is ordered, it is the
first occurrence of the element that is removed from the target collection. The
function returns the target collection.
66 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Array::os_Array()
os_Array();

Returns an empty array.

os_Array(os_unsigned_int32);

Returns an empty array whose initial implementation is based on the expectation
that the specified os_unsigned_int32 indicates the approximate usual cardinality
of the array after it has been loaded with elements.

os_Array(const os_Array<E>&);

Returns an array that results from assigning the specified array to an empty array.

os_Array(const os_Collection<E>&);

Returns an array that results from assigning the specified collection to an empty
array.

os_Array(os_unsigned_int32 expected_size = 0,
 os_unsigned_int32 card = 0,
 void* fill_value = 0);

The arguments have the following meaning:

• expected_size presizes the array. If this argument is not specified, the array is
presized to 5 slots.

• card specifies the cardinality of the initial array.

• The array’s slots are set to the value specified by fill_value. If this argument is
unspecified, the array is null filled.

os_Array::set_cardinality()
void set_cardinality(os_unsigned_int32 new_card, E fill_value);

Augments the array to have the specified cardinality, using the specified fill_
value to occupy the array’s new slots.
Release 6.3 67

Introduction
os_array
class os_array : public os_collection

An array, like a list (see the class os_list on page 132), is an ordered collection.
Unlike lists, arrays allow nulls and have a set_cardinality() function that
changes the array cardinality, filling the additional array slots (if the cardinality is
increased) with a specified fill value.

Arrays allow both duplicates and nulls. Array elements can be inserted, removed,
replaced, or retrieved based on a specified numerical array index or based on the
position of a specified cursor.

If an element is inserted into an os_array, elements after it are pushed down in
order. If an element is removed, elements after it in the array are pushed up. If you
want the index to an element to remain constant, set the element at indexn to either
0 or another pointer.

The class os_array is nonparameterized. For the parameterized version of this class,
see os_Array on page 62.

Array elements are pointers, so the element type of any array must be a pointer type
(for example, employee*).

Create arrays with the os_array constructor.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_array. The second table lists the enumerators inherited by os_array
from os_collection. Many functions are also inherited by os_array from os_
collection. The full explanation of each inherited function or enumerator appears
in the entry for the class from which it is inherited. The full explanation of each
function defined by os_array appears in this entry, after the tables. In each case, the
Defined By column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const void*) const os_int32 os_collection

count (const void*) const os_int32 os_collection

empty () const os_int32 os_collection

get_behavior () const os_unsigned_
int32

os_collection

insert (const void*) void os_collection

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection
68 PSE Pro for C++ Collections Guide and Reference

Class Reference
insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_first (const void*) void os_collection

insert_last (const void*) void os_collection

only () const void* os_collection

operator os_bag& () os_collection

operator const
 os_bag&

() const os_collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_array&) const

(const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

os_array

operator |= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator | (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

operator &= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator & (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

Name Arguments Returns Defined By
Release 6.3 69

Introduction
os_array
enumerators

The following table lists the enumerators that can be used by os_array member
functions.

operator –= (const os_collection&) const

(const void*) const

os_array&

os_array&

os_array

operator - (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

os_array ()

(os_unsigned_int32
 expected_size)

(const os_array&)

(const os_collection&)

(os_unsigned_int32
 expected_size = 0,
 os_unsigned_int32 card = 0,
 void *fill_value = 0)

os_array

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

os_collection

remove_first (const void*&)

()

os_int32

void*

os_collection

remove_last (const void*&)

()

os_int32

void*

os_collection

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

os_collection

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

os_collection

retrieve_first () const

(const void*&) const

void*

os_int32

os_collection

retrieve_last () const

(const void*&) const

void*

os_int32

os_collection

set_cardinality (os_unsigned_int32 new_card,
 void *fill_value)

void os_array

Name Arguments Returns Defined By

Name Inherited From

allow_nulls os_collection

EQ os_collection

GT os_collection
70 PSE Pro for C++ Collections Guide and Reference

Class Reference
Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, but the associated semantics are maintained.

os_array::operator =()
os_array &operator =(const os_array &s);

os_array &operator =(const os_collection &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target array semantics are enforced
as usual during the insertion process.

os_array &operator =(const void *e);

Clears the target array, inserts the element e into the target array, and returns the
target array.

os_array::operator |=()
os_array &operator |=(const os_collection &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_array &operator |=(const void *e);

Inserts the element e into the target collection and returns the target collection. In
effect, this appends the elements of a collection to an os_array.

os_array::operator &=()
os_array &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. If the
collection is ordered and contains duplicates, it does so by retaining the appropriate
number of leading elements. The function returns the target collection.

os_array &operator &=(const void *e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. The function returns the target
collection.

LT os_collection

maintain_order os_collection

Name Inherited From
Release 6.3 71

Introduction
os_array::operator –=()
os_array &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. If the collection is ordered, it is the first s.count(e)
elements that are removed. The function returns the target collection.

os_array &operator –=(const void *e);

Removes the element e from the target collection. If the collection is ordered, it is the
first occurrence of the element that is removed from the target collection. The
function returns the target collection.

os_array::os_array()
os_array();

Returns an empty array.

os_array(os_unsigned_int32);

Returns an empty array whose initial implementation is based on the expectation
that the specified os_unsigned_int32 indicates the approximate usual cardinality
of the array after it has been loaded with elements.

os_array(const os_array&);

Returns an array that results from assigning the specified array to an empty array.

os_array(const os_collection&);

Returns an array that results from assigning the specified collection to an empty
array.

os_array(os_unsigned_int32 expected_size = 0,
 os_unsigned_int32 card = 0,
 void* fill_value = 0);

The arguments have the following meaning:

• expected_size presizes the array. If this argument is not specified, the array is
presized to 5 slots.

• card specifies the cardinality of the initial array.

• The array’s slots are set to the value specified by fill_value. If this argument is
unspecified, the array is null filled.

os_array::set_cardinality()
void set_cardinality(os_unsigned_int32 new_card, void *fill_value);

Augments the array to have the specified cardinality, using the specified fill_
value to occupy the array’s new slots.
72 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Bag
template <class E>
class os_Bag : public os_Collection<E>

A bag (sometimes called a multiset) is an unordered collection. Unlike elements in
sets, elements can occur in a bag more than once at a given time.

The count of a value in a given bag is the number of times it occurs in the bag. Each
insertion of a value into a bag increases its count in the bag by 1. The count of a value
in a bag is 0 if and only if the value is not an element of the bag.

Values are inserted into an os_Bag anywhere. That is, the user has no control over
the ordering of the elements.

Use the constructor os_Bag::os_Bag() to create bags.

You can presize a bag when you create it.

The class os_Bag is parameterized, with a parameter for constraining the type of
values allowable as elements (for the nonparameterized version of this class, see os_
bag on page 78). The element type parameter, E, occurs in the signatures of some of
the functions described below. The parameter is used by the compiler to detect type
errors.

The element type of any instance of os_Bag must be a pointer type.

You must mark parameterized collections types in the schema source file.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_Bag. The second table lists the enumerators inherited by os_Bag from
os_collection. Many functions are also inherited by os_Bag from os_Collection
or os_collection. The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The full explanation of
each function defined by os_Bag appears in this entry, after the tables. In each case,
the Defined By column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

empty () os_int32 os_collection

get_behavior () const os_unsigned_
int32

os_collection

insert (const E) void os_Collection

insert_after (const void*, const os_cursor&)

(const void*, os_unsigned_int32)

void os_collection
Release 6.3 73

Introduction
insert_before (const void*, const os_cursor&)

(const void*, os_unsigned_int32)

void os_collection

insert_first (const void*) void os_collection

insert_last (const void*) void os_collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator os_bag& () os_collection

operator const
 os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
 os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
 os_Set<E>&

() const os_Collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
74 PSE Pro for C++ Collections Guide and Reference

Class Reference
operator >= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator = (const os_Bag<E>&) const

(const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag<E>&

os_Bag

operator |= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator | (const os_Collection<E>&) const

(const E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator & (const os_Collection<E>&) const

(const E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(const E) const

os_Bag<E>&

os_Bag<E>&

os_Bag

operator - (const os_Collection<E>&) const

(const E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

os_Bag ()

(os_int32 expected_size)

(const os_Bag<E>&)

(const os_Collection<E>&)

os_Bag

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&) void os_Collection

remove_first (const void*&)

()

os_int32

void*

os_collection

remove_last (const void*&)

()

os_int32

void*

os_collection

replace_at (const E,
 const os_Cursor<E>&)

E os_Collection

retrieve (const os_Cursor<E>&) const E os_Collection

Name Arguments Returns Defined By
Release 6.3 75

Introduction
os_Bag
enumerators

The following table lists the enumerators inherited by os_Bag from os_collection.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, but the associated semantics are maintained.

os_Bag::operator =()
os_Bag<E> &operator =(const os_Collection<E> &s);

os_Bag<> &operator=(const os_Bag<E> &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The target
collection semantics are enforced as usual during the insertion process.

os_Bag<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_Bag::operator |=()
os_Bag<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_Bag<E> &operator |=(const E e);

Inserts the element e into the target collection and returns the target collection.

os_Bag::operator &=()
os_Bag<E> &operator &=(const os_Collection<E> &s);

retrieve_first () const

(const void*&) const

void*

os_int32

os_collection

retrieve_last () const

(const void*&) const

void*

os_int32

os_collection

Name Arguments Returns Defined By

Enumerator Inherited From

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
76 PSE Pro for C++ Collections Guide and Reference

Class Reference
For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. The
function returns the target collection.

os_Bag<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, the function clears the target collection. The function returns
the target collection.

os_Bag::operator –=()
os_Bag<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. It returns the target collection.

os_Bag<E> &operator –=(const E e);

Removes the element e from the target collection. The function returns the target
collection.

os_Bag::os_Bag()
os_Bag();

Returns an empty bag.

os_Bag(os_int32);

Returns an empty bag whose initial implementation is based on the expectation that
the specified os_int32 indicates the approximate usual size of the bag, after it has
been loaded with elements.

os_Bag(const os_Bag<E>&);

Returns a bag that results from assigning the specified bag to an empty bag.

os_Bag(const os_Collection<E>&);

Returns a bag that results from assigning the specified collection to an empty bag.
Release 6.3 77

Introduction
os_bag
class os_bag : public os_collection

A bag (sometimes called a multiset) is an unordered collection. Unlike values in sets,
values can occur in a bag more than once at a given time. The count of a value in a
given bag is the number of times it occurs in the bag. Repeated insertion of a value
into a bag increases its count in the bag by 1 each time. The count of a value in a bag
is 0 if and only if the value is not an element of the bag.

The class os_bag is nonparameterized. For the parameterized version of this class,
see os_Bag on page 73.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_bag. The second table lists the enumerators inherited by os_bag from
os_collection. Many functions are also inherited by os_bag from os_collection.
The full explanation of each inherited function or enumerator appears in the entry
for the class from which it is inherited. The full explanation of each function defined
by os_bag appears in this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const void*) const os_int32 os_collection

count (const void*) const os_int32 os_collection

empty () os_int32 os_collection

get_behavior () const os_unsigned_
int32

os_collection

insert (const void*) void os_collection

only () const void* os_Collection

operator os_array& () os_collection

operator const
 os_array&

() const os_collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection
78 PSE Pro for C++ Collections Guide and Reference

Class Reference
operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_bag&) const

(const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

os_bag

operator |= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator | (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

operator &= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator & (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

operator –= (const os_collection&) const

(const void*) const

os_bag&

os_bag&

os_bag

operator - (const os_collection&) const

(const void*) const

os_collection&

os_collection&

os_collection

os_bag ()

(os_int32 expected_size)

(const os_bag&)

(const os_collection&)

os_bag

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&) void os_collection

replace_at (const void*,
 const os_cursor&)

void* os_collection

retrieve (const os_cursor&) const void* os_collection

Name Arguments Returns Defined By
Release 6.3 79

Introduction
os_bag
enumerators

The following table lists the enumerators inherited by os_bag from os_collection.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, but the associated semantics are maintained.

os_bag::operator =()
os_bag &operator = (const os_collection &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The target
collection semantics are enforced as usual during the insertion process.

os_bag &operator =(const void *e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_bag::operator |=()
os_bag &operator |=(const os_bag &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_bag &operator |=(const void *e);

Inserts the element e into the target collection and returns the target collection.

os_bag::operator &=()
os_bag &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. The function
returns the target collection.

os_bag &operator &=(const void *e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. The function returns the target
collection.

Name Inherited From

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
80 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_bag::operator –=()
os_bag &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. The function returns the target collection.

os_bag &operator –=(const void *e);

Removes the element e from the target collection. It returns the target collection.

os_bag::os_bag()
os_bag();

Returns an empty bag.

os_bag(os_int32);

Returns an empty bag whose initial implementation is based on the expectation that
the specified os_int32 indicates the approximate usual cardinality of the bag, after
it has been loaded with elements.

os_bag(const os_bag&);

Returns a bag that results from assigning the specified bag to an empty bag.

os_bag(const os_collection&);

Returns a bag that results from assigning the specified collection to an empty bag.
Release 6.3 81

Introduction
os_Collection
template <class E>
class os_Collection : public os_collection

The os_Collection class is an interface class. It defines functions that operate on
collections. Use it as the declaration type for arguments to user-defined functions
that take the collections subtype os_Array, os_Bag, os_Set, or os_List. Also, use it
as an abstract base class for deriving other collections subtypes. Do not instantiate
os_Collection.

A collection is an object that serves to group together other objects. The objects so
grouped are the collection’s elements. For some collections, a value can occur as an
element more than once. The count of a value in a given collection is the number of
times (possibly 0) it occurs in the collection.

The class os_Collection is parameterized, with a parameter for constraining the type
of values allowable as elements (for the nonparameterized version of this class, see
os_collection on page 95). This means that when specifying os_Collection as a
function’s formal parameter or as the type of a variable or data member, you must
specify the the collection’s element type parameter. This is accomplished by
appending to os_Collection the name of the element type enclosed in angle
brackets (< >):

os_Collection<element-type-name>

The element type parameter, E, occurs in the signatures of some of the functions
described below. The parameter is used by the compiler to detect type errors.

The element type of any instance of os_Collection must be a pointer type.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_Collection. The second table lists the enumerators inherited by os_
Collection from os_collection. Many functions are also inherited by os_
Collection from os_collection. The full explanation of each inherited function or
enumerator appears in the entry for the class from which it is inherited. The full
explanation of each function defined by os_Collection appears in this entry, after
the tables. In each case, the Defined By column gives the class whose entry contains
the full explanation.

Name Arguments Returns Defined By

cardinality () const os_unsigned_
int32

os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

empty () os_int32 os_collection

get_behavior () const os_unsigned_
int32

os_collection

insert (const E) void os_Collection
82 PSE Pro for C++ Collections Guide and Reference

Class Reference
insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection

operator const
 os_Bag<E>&

() const os_Collection

operator os_bag& () os_collection

operator const
 os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
 os_List<E>&

() const os_Collection

operator os_list& () os_collection

operator const
 os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
 os_Set<E>&

() const os_Collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
Release 6.3 83

Introduction
operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator |= (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator | (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator & (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

operator - (const os_Collection<E>&) const

(E) const

os_
Collection<E>&

os_
Collection<E>&

os_Collection

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

Name Arguments Returns Defined By
84 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Collection
enumerators

The following table lists the enumerators for os_Collection.

os_Collection::contains()
os_int32 contains(E) const;

Returns a nonzero os_int32 if the specified E is an element of the specified
collection, and 0 otherwise.

os_Collection::count()
os_int32 count(E);

Returns the number of occurrences (possibly 0) of the specified E in the collection for
which the function was called.

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

retrieve_first () const

(E&) const

E

os_int32

os_Collection

retrieve_last () const

(E&) const

E

os_int32

os_Collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
Release 6.3 85

Introduction
os_Collection::insert()
void insert(const E);

Adds the specified instance of E to the collection for which the function was called.
The behavior of insert() depends on the characteristics of the collection you are
using:

• If the collection is ordered, the element is inserted at the end of the collection.

• If the collection disallows nulls and the specified E is 0, err_coll_nulls is
signaled.

• If the collection disallows duplicates and the specified E is already an element of
the collection, the insertion is ignored; that is, nothing is inserted into the
collection.

os_Collection::insert_after()
void insert_after(const E, const os_Cursor<E>&);

Adds the specified instance of E to the collection for which the function was called.
The new element is inserted immediately after the element at which the specified
cursor is positioned. The index of all elements after the new element increases by 1.
The cursor must be a default cursor (that is, one that results from a constructor call
with only a single argument). If the cursor is null, err_coll_null_cursor is
signaled. If the cursor is invalid, err_coll_illegal_cursor is signaled.

void insert_after(const E, os_unsigned_int32);

Adds the specified instance of E to the collection for which the function was called.
The new element is inserted after the position indicated by the os_unsigned_int32.
The index of all elements after the new element increases by 1. If the index is not less
than the collection’s cardinality, err_coll_out_of_range is signaled.

The behavior of insert_after() (both signatures) depends on the characteristics
of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows nulls and the specified E is 0, err_coll_nulls is
signaled.

• If the collection is an array, all elements after this element are pushed down.

• If the collection disallows duplicates and the specified E is already an element of
the collection, the insertion is ignored; that is, nothing is inserted into the
collection.

os_Collection::insert_before()
void insert_before(const E, const os_Cursor<E>&);

Adds the specified instance of E to the collection for which the function was called.
The new element is inserted immediately before the element at which the specified
cursor is positioned. The index of all elements after the new element increases by 1.
The cursor must be a default cursor (that is, one that results from a constructor call
86 PSE Pro for C++ Collections Guide and Reference

Class Reference
with only a single argument). If the cursor is null, err_coll_null_cursor is
signaled. If the cursor is invalid, err_coll_illegal_cursor is signaled.

void insert_before(const E, os_unsigned_int32);

Adds the specified instance of E to the collection for which the function was called.
The new element is inserted immediately before the position indicated by the os_
unsigned_int32. The index of all elements after the new element increases by 1. If
the index is not less than the collection’s cardinality, err_coll_out_of_range is
signaled.

The behavior of insert_before() (both signatures) depends on the characteristics
of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows nulls and the specified E is 0, err_coll_nulls is
signaled.

• If the collection is an array, all elements after the inserted element are pushed
down.

• If the collection disallows duplicates and the specified E is already an element of
the collection, the insertion is ignored; that is, nothing is inserted into the
collection.

os_Collection::insert_first()
void insert_first(const E);

Adds the specified instance of E to the beginning of the collection for which the
function was called. The behavior of insert_first() depends on the
characteristics of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows nulls and the specified E is 0, err_coll_nulls is
signaled.

• If the collection is an array, all elements after the inserted element are pushed
down.

• If the collection disallows duplicates and the specified E is already an element of
the collection, the insertion is ignored; that is, nothing is inserted into the
collection.
Release 6.3 87

Introduction
os_Collection::insert_last()
void insert_last(const E);

Adds the specified instance of E to the end of the collection for which the function
was called.

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows nulls and the specified E is 0, err_coll_nulls is
signaled.

• If the collection disallows duplicates and the specified E is already an element of
the collection, the insertion is ignored; that is, nothing is inserted into the
collection.

os_Collection::only()
E only() const;

Returns the only element of the specified collection. If the collection has more than
one element, err_coll_not_singleton is signaled. If the collection is empty, 0 is
returned.

os_Collection::operator os_Array()
operator os_Array<E>&();

Returns an array with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of arrays.

os_Collection::operator const os_Array()
operator const os_Array<E>&() const;

Returns an array with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of arrays.

os_Collection::operator os_Bag()
operator os_Bag<E>&();

Returns a bag with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of bags.

os_Collection::operator const os_Bag()
operator const os_Bag<E>&() const;

Returns a bag with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of bags.
88 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Collection::operator os_List()
operator os_List<E>&();

Returns a list with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of lists.

os_Collection::operator const os_List()
operator const os_List<E>&() const;

Returns a list with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of lists.

os_Collection::operator os_Set()
operator os_Set<E>&();

Returns a set with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of sets.

os_Collection::operator const os_Set()
operator const os_Set<E>&() const;

Returns a set with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of sets.

os_Collection::operator ==()
os_int32 operator ==(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) == s.count(element) and both collections have the same
cardinality. Note that the comparison does not take order into account.

os_int32 operator ==(const E s) const;

Returns a nonzero value if and only if the collection contains s and nothing else.

os_Collection::operator !=()
os_int32 operator !=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if it is not the case both that (1) for each element
in the this collection, count(element) == s.count(element), and (2) both
collections have the same cardinality. Note that the comparison does not take order
into account.

os_int32 operator !=(const E s) const;

Returns a nonzero value if and only if it is not the case that the collection contains s
and nothing else.
Release 6.3 89

Introduction
os_Collection::operator <()
os_int32 operator <(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) <= s.count(element) and cardinality() <
s.cardinality().

os_int32 operator <(const E s) const;

Returns a nonzero value if and only if the specified collection is empty.

os_Collection::operator <=()
os_int32 operator <=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) <= s.count(element).

os_int32 operator <=(const E s) const;

Returns a nonzero value if and only if the specified collection is empty or e is the only
element in the collection.

os_Collection::operator >()
os_int32 operator >(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element of s.count(element) >=
s.count(element) and cardinality() > s.cardinality().

os_int32 operator >(const E s) const;

Returns a nonzero value if and only if count(s) >= 1 and cardinality() > 1.

os_Collection::operator >=()
os_int32 operator >=(const os_Collection<E> &s) const;

Returns a nonzero value if and only if for each element of s
count(element) >= s.count(element).

os_int32 operator >=(const E s) const;

Returns a nonzero value if and only if count(s) >= 1.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, but the associated semantics are maintained.
90 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Collection::operator =()
os_Collection<E> &operator =(const os_Collection<E> &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection semantics are
enforced as usual during the insertion process.

os_Collection<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_Collection::operator |=()
os_Collection<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_Collection<E> &operator |=(const E e);

Inserts the element e into the target collection and returns the target collection.

os_Collection::operator |()
os_Collection<E> &operator |(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then performs c |= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_Collection<E> &operator |(const E e) const;

Copies the contents of this into a new collection, c, and then performs c |= e. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_Collection::operator &=()
os_Collection<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. If the
collection is ordered and contains duplicates, it does so by retaining the appropriate
number of leading elements. The function returns the target collection.

os_Collection<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. The function returns the target
collection.
Release 6.3 91

Introduction
os_Collection::operator &()
os_Collection<E> &operator &(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then performs c &= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_Collection<E> &operator &(E e) const;

Copies the contents of this into a new collection, c, and then performs c &= e. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_Collection::operator –=()
os_Collection<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. If the collection is ordered, it is the first s.count(e)
elements that are removed. It returns the target collection.

os_Collection<E> &operator –=(E e);

Removes the element e from the target collection. If the collection is ordered, it is the
first occurrence of the element that is removed from the target collection. It returns
the target collection.

os_Collection::operator –()
os_Collection<E> &operator –(const os_Collection<E> &s) const;

Copies the contents of this into a new collection, c, and then performs c –= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_Collection<E> &operator –(E e) const;

Copies the contents of this into a new collection, c, and then performs c –= s. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_Collection::remove()
os_int32 remove(const E);

Removes the specified instance of E from the collection for which the function was
called, if present. If the collection is ordered, the first occurrence of the specified E is
removed. If the collection is an array, all elements after this element are pushed up.
92 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Collection::remove_first()
os_int32 remove_first(const E&);

Removes the first element from the specified collection and returns the removed
element, or 0 if the collection is empty. If successful, the function modifies its
argument to refer to the removed element. If the specified collection is not ordered,
err_coll_not_supported is signaled. If the collection is an array, all elements after
the removed element are pushed up.

E remove_first();

Removes the first element from the specified collection and returns the removed
element, or 0 if the collection is empty. Note that for collections that allow null
elements, the significance of the return value can be ambiguous. The preceding
alternative overloading of remove_first() can be used to avoid the ambiguity. If
the specified collection is not ordered, err_coll_not_supported is signaled. If the
collection is an array, all elements after the removed element are pushed up.

os_Collection::remove_last()
os_int32 remove_last(const E&);

Removes the last element from the specified collection if the collection is not empty,
returns a nonzero os_int32 if the collection is not empty, and modifies its argument
to refer to the removed element. If the specified collection is not ordered, err_coll_
not_supported is signaled.

E remove_last();

Removes the last element from the specified collection and returns the removed
element, or 0 if the collection was empty. Note that for collections that allow null
elements, the significance of the return value can be ambiguous. The preceding
alternative overloading of remove_last() can be used to avoid the ambiguity. If the
specified collection is not ordered, err_coll_not_supported is signaled.

os_Collection::replace_at()
E replace_at(const E, const os_Cursor<E>&);

Returns the element at which the specified cursor is positioned and replaces it with
the specified instance of E. The cursor must be a default cursor (that is, one that
results from a constructor call with only a single argument). If the cursor is null, err_
coll_null_cursor is signaled. If the cursor is invalid, err_coll_illegal_cursor
is signaled.

E replace_at(const E, os_unsigned_int32 position);

Returns the element at the specified position and replaces it with the specified
instance of E. If the position is not less than the collection’s cardinality, err_coll_
out_of_range is signaled. If the collection is not ordered, err_coll_not_
supported is signaled.
Release 6.3 93

Introduction
os_Collection::retrieve()
E retrieve(const os_Cursor<E>&) const;

Returns the element at which the specified cursor is positioned. The cursor must be
a default cursor (that is, one that results from a constructor call with only a single
argument). If the cursor is null, err_coll_null_cursor is signaled. If the cursor is
invalid, err_coll_illegal_cursor is signaled.

E retrieve(os_unsigned_int32 position) const;

Returns the element at the specified position. If the position is not less than the
collection’s cardinality, err_coll_out_of_range is signaled. If the collection is not
ordered, err_coll_not_supported is signaled.

os_Collection::retrieve_first()
E retrieve_first() const;

Returns the specified collection’s first element, or 0 if the collection is empty. For
collections that contain zeros, see the other overloading of this function, following. If
the collection is not ordered, err_coll_not_supported is signaled.

os_int32 retrieve_first(const E&) const;

Returns 0 if the specified collection is empty; returns a nonzero os_int32 otherwise.
Modifies the argument to refer to the collection’s first element. If the collection is not
ordered, err_coll_not_supported is signaled.

os_Collection::retrieve_last()
E retrieve_last() const;

Returns the specified collection’s last element, or 0 if the collection is empty. For
collections that contain zeros, see the other overloading of this function, following. If
the collection is not ordered, err_coll_not_supported is signaled.

os_int32 retrieve_last(const E&) const;

Returns 0 if the specified collection is empty; returns a nonzero os_int32 otherwise.
Modifies the argument to refer to the collection’s last element. If the collection is not
ordered, err_coll_not_supported is signaled.
94 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_collection
A collection is an object that serves to group together other objects. The objects so
grouped are the collection’s elements. For some collections, a value can occur as an
element more than once. The count of a value in a given collection is the number of
times (possibly 0) it occurs in the collection.

Like an os_Collection, an os_collection is not meant to be instantiated. It is a
base class for the other collection subtypes. It can be used as a generic handle to be
passed around to user-defined functions that can take any collection subtype as an
argument.

This class has a parameterized subtype. See os_Collection on page 82.

The element type of any instance of os_collection must be a pointer type.

In addition, the static member function os_collection::initialize() must be
executed in a process before using any ObjectStore collection or relationship
functionality is made.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions defined by os_
collection, together with their formal argument lists and return types. The second
table lists the enumerators defined by os_collection. The full explanation of each
function and enumerator follows these tables.

Name Arguments Returns

cardinality () const os_int32

clear () void

contains (const void*) const

count (const void*) const os_int32

empty () os_int32

get_behavior () const os_unsigned_int32

insert (const void*) void

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

insert_first (const void*) void

insert_last (const void*) void

only () const void*

operator os_array& ()

operator const os_array& () const
Release 6.3 95

Introduction
operator os_bag& ()

operator const os_bag& () const

operator os_list& ()

operator const os_list& () const

operator os_set& ()

operator const os_set& () const

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

operator = (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator |= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator | (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator &= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator & (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator –= (const os_collection&) const

(const void*) const

os_collection&

os_collection&

operator - (const os_collection&) const

(const void*) const

os_collection&

os_collection&

remove (const void*) os_int32

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

remove_first (const void*&)

()

os_int32

void*

Name Arguments Returns
96 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_collection
enumerators

The following lists enumerators for os_collection.

Enumerators
• allow_duplicates

• allow_nulls

• EQ

• GE

• GT

• LE

• LT

• maintain_order

• NE

• optimized_list

os_collection::allow_duplicates
Possible element of the bit-wise disjunction return value of the os_
collection::get_behavior() members of os_collection, os_Collection, and
their subtypes. Indicates that the collection allows duplicate insertions of elements,
and increments the count of each element by 1 with each insertion.

os_collection::allow_nulls
Possible element of the bit-wise disjunction return value of the os_
collection::get_behavior() members of os_collection, os_Collection, and
their subtypes. Indicates that the collection allows the insertion of null pointers.

os_collection::cardinality()
os_unsigned_int32 cardinality() const;

Returns the sum of the counts of each element of the specified collection.

remove_last (const void*&)

()

os_int32

void*

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

retrieve_first () const

(const void*&) const

void*

os_int32

retrieve_last () const

(const void*&) const

void*

os_int32

Name Arguments Returns
Release 6.3 97

Introduction
os_collection::cardinality_estimate()
os_unsigned_int32 cardinality_estimate() const;

Returns an estimate of a collection’s cardinality. This is an O(1) operation in the size
of the collection. This function returns the cardinality as of the last call to os_
collection::update_cardinality(); or, for collections that maintain cardinality,
the actual cardinality is returned. Also, see os_Dictionary::os_Dictionary() on
page 123 and os_Dictionary::os_Dictionary() on page 123.

os_collection::cardinality_is_maintained()
os_int32 cardinality_is_maintained() const;

Returns nonzero if the collection maintains cardinality; returns 0 otherwise. Also, see
os_Dictionary::os_Dictionary() on page 123 and os_Dictionary::os_
Dictionary() on page 123.

os_collection::clear()
void clear();

Removes all elements of the specified collection.

os_collection::contains()
os_int32 contains(const void*) const;

Returns a nonzero os_int32 if the specified void* is an element of the specified
collection, and 0 otherwise.

os_collection::count()
os_int32 count(const void*) const

Returns the number of occurrences (possibly 0) of the specified void* in the
collection for which the function was called.

os_collection::empty()
os_int32 empty();

Returns a nonzero os_int32 if the specified collection is empty, and 0 otherwise.

os_collection::EQ
Possible return value of the user-supplied rank functions and possible argument to
os_coll_range constructors, signifying equal.

os_collection::GE
Possible argument to os_coll_range constructors, signifying greater than or equal to.

os_collection::GT
Possible return value of the user-supplied rank functions, and possible argument to
os_coll_range constructors, signifying greater than.
98 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_collection::get_behavior()
os_unsigned_int32 get_behavior() const;

Returns a bit pattern indicating the specified collection’s behavior. The return value
is a bit-wise disjunction of enumerators indicating all the properties of the collection.
For information about the enumerators, see

• os_collection::allow_duplicates

• os_collection::allow_nulls

• os_collection::maintain_order

os_collection::initialize()
static void initialize();

Must be called before using any ObjectStore collection or relationship functionality.
Calling initialize() initializes the collections facility for the entire process.
Calling initialize() more than once has no effect.

os_collection::insert()
void insert(const void*);

Adds the specified void* to the collection for which the function was called. The
behavior of insert() depends on the characteristics of the collection you are using:

• If the collection is ordered, the element is inserted at the end of the collection.

• If the collection disallows duplicates, and the specified void* is already present
in the collection, the insertion is silently ignored.

• If the collection disallows nulls, and the specified void* is 0, err_coll_nulls is
signaled.

os_collection::insert_after()
void insert_after(const void*, const os_cursor&);

Adds the specified void* to the collection for which the function was called. The new
element is inserted immediately after the element at which the specified cursor is
positioned. The index of all elements after the new element increases by 1. The cursor
must be a default cursor (that is, one that results from a constructor call with only a
single argument). If the cursor is null, err_coll_null_cursor is signaled. If the
cursor is invalid, err_coll_illegal_cursor is signaled. If the collection
maintained internally by the cursor is not the same as the collection maintained by
the dictionary, the err_coll_cursor_mismatch exception is signaled.

void insert_after(const void*, os_unsigned_int32);

Adds the specified void* to the collection for which the function was called. The new
element is inserted after the position indicated by the os_unsigned_int32. The
index of all elements after the new element increases by 1. If the index is not less than
the collection’s cardinality, err_coll_out_of_range is signaled.
Release 6.3 99

Introduction
The behavior of insert_after() (both signatures) depends on the characteristics
of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows duplicates, and the specified void* is already present
in the collection, the insertion is silently ignored.

• If the collection disallows nulls, and the specified void* is 0, err_coll_nulls is
signaled.

• If the collection is an array, all elements after the inserted element are pushed
down.

os_collection::insert_before()
void insert_before(const void*, const os_cursor&);

Adds the specified void* to the collection for which the function was called. The new
element is inserted immediately before the element at which the specified cursor is
positioned. The index of all elements after the new element increases by 1. The cursor
must be a default cursor (that is, one that results from a constructor call with only a
single argument). If the cursor is null, err_coll_null_cursor is signaled. If the
cursor is invalid, err_coll_illegal_cursor is signaled. If the collection
maintained internally by the cursor is not the same as the collection maintained by
the dictionary, the err_coll_cursor_mismatch exception is signaled.

void insert_before(const void*, os_unsigned_int32);

Adds the specified instance of void* to the collection for which the function was
called. The new element is inserted immediately before the position indicated by the
os_unsigned_int32. The index of all elements after the new element increases by 1.
If the index is not less than the collection’s cardinality, err_coll_out_of_range is
signaled.

The behavior of insert_before() (both signatures) depends on the characteristics
of the collection you are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows duplicates, and the specified void* is already present
in the collection, the insertion is silently ignored.

• If the collection disallows nulls, and the specified void* is 0, err_coll_nulls is
signaled.

• If the collection is an array, all elements after this element are pushed down.

os_collection::insert_first()
void insert_first(const void*);

Adds the specified void* to the beginning of the collection for which the function
was called. The index of all elements after the new element increases by 1.

The behavior of insert_first() depends on the characteristics of the collection
you are using:
100 PSE Pro for C++ Collections Guide and Reference

Class Reference
• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows duplicates, and the specified void* is already present in
the collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified void* is 0, the insertion is
silently ignored.

• If the collection is an array, all elements after this element are pushed down.

os_collection::insert_last()
void insert_last(const void*);

Adds the specified void* to the end of the collection for which the function was
called.

The behavior of insert_last() depends on the characteristics of the collection you
are using:

• If the collection is not ordered, err_coll_not_supported is signaled.

• If the collection disallows duplicates, and the specified void* is already present in
the collection, err_coll_duplicates is signaled.

• If the collection disallows nulls, and the specified void* is 0, the insertion is
silently ignored.

os_collection::LE
Possible argument to os_coll_range constructors, signifying less than or equal to.

os_collection::LT
Possible return value of the user-supplied rank() functions, and possible argument
to os_coll_range constructors, signifying less than.

os_collection::maintain_order
Possible element of the bit-wise disjunction return value of the os_
collection::get_behavior() members of os_collection, os_Collection, and
their subtypes. Indicates that the collection maintains its elements in their order of
insertion. This order is used as the default iteration order, as well as the relevant
order for the members insert_after(), insert_before(), insert_first(),
insert_last(), remove_at(), remove_first(), remove_last(), retrieve_
first(), retrieve_last(), and replace_at().

os_collection::NE
Possible argument to os_coll_range constructors, signifying not equal to.
Release 6.3 101

Introduction
os_collection::only()
void* only() const;

Returns the only element of the specified collection. If the collection has more than
one element, err_coll_not_singleton is signaled. If the collection is empty, 0 is
returned.

os_collection::operator os_int32()
operator os_int32() const;

Returns a nonzero os_int32 if the specified collection is not empty, and 0 otherwise.

os_collection::operator os_array&()
operator os_array&();

Returns an array with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of arrays.

os_collection::operator const os_array&()
operator const os_array&() const;

Returns a const array with the same elements and behavior as the specified
collection. An exception is signaled if the collection’s behavior is incompatible with
the required behavior of arrays.

os_collection::operator os_bag&()
operator os_bag&();

Returns a bag with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of bags.

os_collection::operator const os_bag&()
operator const os_bag&() const;

Returns a const bag with the same elements and behavior as the specified collection.
An exception is signaled if the collection’s behavior is incompatible with the
required behavior of bags.

os_collection::operator os_list&()
operator os_list&();

Returns a list with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of lists.
102 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_collection::operator const os_list&()
operator const os_list&() const;

Returns a const list with the same elements and behavior as the specified collection.
An exception is signaled if the collection’s behavior is incompatible with the
required behavior of lists.

os_collection::operator os_set&()
operator os_set&();

Returns a set with the same elements and behavior as the specified collection. An
exception is signaled if the collection’s behavior is incompatible with the required
behavior of sets.

os_collection::operator const os_set&()
operator const os_set&() const;

Returns a const set with the same elements and behavior as the specified collection.
An exception is signaled if the collection’s behavior is incompatible with the
required behavior of sets.

os_collection::operator ==()
os_int32 operator ==(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) == s.count(element), and both collections have the same
cardinality. Note that the comparison does not take order into account.

os_int32 operator ==(const void* s) const;

Returns a nonzero value if and only if the collection contains s and nothing else.

os_collection::operator !=()
os_int32 operator !=(const os_collection &s) const;

Returns a nonzero value if and only if it is not the case both that (1) for each element
in the this collection count(element) == s.count(element), and (2) both
collections have the same cardinality. Note that the comparison does not take order
into account.

os_int32 operator !=(const void* s) const;

Returns a nonzero value if and only if it is not the case that the collection contains s
and nothing else.
Release 6.3 103

Introduction
os_collection::operator <()
os_int32 operator <(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) <= s.count(element) and cardinality() < s.cardinality().

os_int32 operator <(const void* s) const;

Returns a nonzero value if and only if the specified collection is empty.

os_collection::operator <=()
os_int32 operator <=(const os_collection &s) const;

Returns a nonzero value if and only if for each element in the this collection
count(element) <= s.count(element).

os_int32 operator <=(const void* s) const;

Returns a nonzero value if and only if the specified collection is empty or e is the only
element in the collection.

os_collection::operator >()
os_int32 operator >(const os_collection &s) const;

Returns a nonzero value if and only if for each element of s, count(element)
>=s.count(element) and cardinality() > s.cardinality().

os_int32 operator >(const void* s) const;

Returns a nonzero value if and only if count(s) >= 1 and cardinality() > 1.

os_collection::operator >=()
os_int32 operator >=(const os_collection &s) const;

Returns a nonzero value if and only if for each element of s, count(element)
>=s.count(element).

os_int32 operator >=(const void* s) const;

Returns a nonzero value if and only if count(s) >= 1.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, while still maintaining the associated semantics.
104 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_collection::operator =()
os_collection &operator =(const os_collection &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection semantics are
enforced as usual during the insertion process.

os_collection &operator =(const void* e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_collection::operator |=()
os_collection &operator |=(const os_collection &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_collection &operator |=(const void* e);

Inserts the element e into the target collection and returns the target collection.

os_collection::operator |()
os_collection &operator |(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then performs c |= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_collection &operator |(const void *e) const;

Copies the contents of this into a new collection, c, and then performs c |= e. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_collection::operator &=()
os_collection &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. If the
collection is ordered and contains duplicates, it does so by retaining the appropriate
number of leading elements. It returns the target collection.

os_collection &operator &=(const void* e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. It returns the target collection.
Release 6.3 105

Introduction
os_collection::operator &()
os_collection &operator &(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then performs c &= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_collection &operator &(const void *e) const;

Copies the contents of this into a new collection, c, and then performs c &= e. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_collection::operator –=()
os_collection &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. If the collection is ordered, it is the first s.count(e)
elements that are removed. It returns the target collection.

os_collection &operator –=(const void* e);

Removes the element e from the target collection. If the collection is ordered, it is the
first occurrence of the element that is removed from the target collection. It returns
the target collection.

os_collection::operator -()
os_collection &operator -(const os_collection &s) const;

Copies the contents of this into a new collection, c, and then performs c –= s. The
new collection, c, is then returned. If either operand allows duplicates or nulls, the
result does. If both operands maintain order, the result does.

os_collection &operator -(const void *e) const;

Copies the contents of this into a new collection, c, and then performs c –= e. The
new collection, c, is then returned. If this allows duplicates, maintains order, or
allows nulls, the result does.

os_collection::remove_first()
os_int32 remove_first(const void*&);

Removes the first element from the specified collection, if the collection is not empty.
Returns a nonzero os_int32 if the collection was not empty, and 0 otherwise; and
modifies its argument to refer to the removed element. If the specified collection is
not ordered, err_coll_not_supported is signaled.

void* remove_first();

Removes the first element from the specified collection; returns the removed
element, or 0 if the collection was empty. Note that for collections that allow null
elements, the significance of the return value can be ambiguous. The alternative
overloading of remove_first(), above, can be used to avoid the ambiguity. If the
106 PSE Pro for C++ Collections Guide and Reference

Class Reference
specified collection is not ordered, err_coll_not_supported is signaled. If the
collection is an array, all elements after this element are pushed up.

os_collection::remove_last()
os_int32 remove_last(const void*&);

Removes the last element from the specified collection, if the collection is not empty;
returns a nonzero os_int32 if the collection was not empty, and modifies its
argument to refer to the removed element. If the specified collection is not ordered,
err_coll_not_supported is signaled.

void* remove_last();

Removes the last element from the specified collection; returns the removed element,
or 0 if the collection was empty. Note that for collections that allow null elements, the
significance of the return value can be ambiguous. The alternative overloading of
remove_last(), above, can be used to avoid the ambiguity. If the specified
collection is not ordered, err_coll_not_supported is signaled.

os_collection::replace_at()
void* replace_at(const void*, const os_cursor&);

Returns the element at which the specified cursor is positioned, and replaces it with
the specified void*. The cursor must be a default cursor (that is, one that results from
a constructor call with only a single argument). If the cursor is null, err_coll_null_
cursor is signaled. If the cursor is nonnull but not positioned at an element, err_
coll_illegal_cursor is signaled. If the collection maintained internally by the
cursor is not the same as the collection maintained by the dictionary, the err_coll_
cursor_mismatch exception is signaled.

• If the cursor is null, err_coll_null_cursor is signaled.

• If the cursor is invalid, err_coll_illegal_cursor is signaled.

• If the collection is not ordered, err_coll_not_supported is signaled.

void* replace_at(const void*, os_unsigned_int32 position);

Returns the element with the specified position, and replaces it with the specified
void*. If the position is not less than the collection’s cardinality, err_coll_out_of_
range is signaled. If the collection is not ordered, err_coll_not_supported is
signaled.
Release 6.3 107

Introduction
os_collection::retrieve()
void* retrieve(const os_cursor&) const;

Returns the element at which the specified cursor is positioned. The cursor must be
a default cursor (that is, one that results from a constructor call with only a single
argument). If the cursor is null, err_coll_null_cursor is signaled. If the cursor is
nonnull but not positioned at an element, err_coll_illegal_cursor is signaled. If
the collection maintained internally by the cursor is not the same as the collection
maintained by the dictionary, the err_coll_cursor_mismatch exception is
signaled.

• If the cursor is null, err_coll_null_cursor is signaled.

• If the cursor is invalid, err_coll_illegal_cursor is signaled.

• If the collection is not ordered, err_coll_not_supported is signaled.

void* retrieve(os_unsigned_int32 position) const;

Returns the element with the specified position. If the position is not less than the
collection’s cardinality, err_coll_out_of_range is signaled. If the collection is not
ordered, err_coll_not_supported is signaled.

os_collection::retrieve_first()
void* retrieve_first() const;

Returns the specified collection’s first element, or 0 if the collection is empty. For
collections that contain zeros, see the following overloading of this function. If the
collection is not ordered, err_coll_not_supported is signaled.

os_int32 retrieve_first(const void*&) const;

Returns 0 if the specified collection is empty; returns a nonzero os_int32 otherwise.
Modifies the argument to refer to the collection’s first element. If the collection is not
ordered, err_coll_not_supported is signaled.

os_collection::retrieve_last()
void* retrieve_last() const;

Returns the specified collection’s last element, or 0 if the collection is empty. For
collections that contain zeros, see the following overloading of this function. If the
collection is not ordered, err_coll_not_supported is signaled.

os_int32 retrieve_last(const void*&) const;

Returns 0 if the specified collection is empty; returns a nonzero os_int32 otherwise.
Modifies the argument to refer to the collection’s last element. If the collection is not
ordered, err_coll_not_supported is signaled.

os_collection::update_cardinality()
os_unsigned_int32 update_cardinality();

Updates the value returned by os_collection::cardinality_estimate(), by
scanning the collection and computing the actual cardinality.
108 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Cursor
template <class E>
class os_Cursor : public os_cursor

An instance of this class serves to record the state of an iteration by pointing to the
current element of an associated collection. A cursor’s associated collection is
specified when the cursor is created. The user can position the cursor in a relative
fashion (using next() and previous()) or in absolute fashion (using first() and
last()). The current element is retrieved using the positioning functions or
retrieve().

You can allocate a cursor in either transient or persistent memory.

Every cursor has an associated ordering for the elements of its associated collection.
This ordering can be the order in which elements appear in the collection (for
ordered collections), an arbitrary order (for unordered collections), or the order in
which elements appear in persistent memory (see os_cursor::order_by_address
on page 116).

Upon creation of a persistent, ordered cursor, a write lock is acquired on segment 0
that effectively locks the entire database.

If a cursor is positioned at a collection’s last element (in the cursor’s associated
ordering) and next() is performed on it, the cursor becomes null. Similarly, if a
cursor is positioned at a collection’s first element (in the cursor’s associated ordering)
and previous() is performed on it, the cursor becomes null. In other words, a cursor
becomes null when it is either advanced past the last element or positioned before
the first element. The function os_Cursor::more() returns a nonzero os_int32
(true) if the specified cursor is not null, and returns 0 (false) if it is null.

If a cursor is positioned at an element of a collection, and then that element is
removed from the collection, the cursor becomes invalid. Repositioning such a cursor
has undefined results unless the flag os_cursor::update_insensitive was passed
to the cursor constructor when the cursor was created. The function os_
Cursor::valid() returns nonzero (true) if the specified cursor is valid, and returns
0 (false) if it is invalid.
Release 6.3 109

Introduction
The states null and invalid are mutually exclusive.

The class os_Cursor is parameterized, with a parameter indicating the element type
of the associated collection — if an attempt is made to associate a cursor with a
collection whose element type does not match the cursor’s parameter, a compile-
time error results. (For the nonparameterized version of this class, see os_cursor on
page 114.) The parameter E occurs in the signatures of some of the functions
described below. The parameter is used by the compiler to detect type errors.

os_Cursor::first()
E first();

Locates the specified cursor at the first element, in the cursor’s associated ordering,
of the cursor’s associated collection. The first element is returned. If the collection is
empty, the cursor is set to null and 0 is returned.

os_Cursor::insert_after()
void insert_after(const E p) const;

Inserts p into the cursor’s associated collection immediately after the cursor’s current
location. If performed on a null cursor, err_coll_null_cursor is signaled. If the
collection is an array, all elements after this one being inserted are pushed down.

os_Cursor::insert_before()
void insert_before(const E p) const;

Inserts p into the cursor’s associated collection immediately before the cursor’s
current location. If performed on a null cursor, err_coll_null_cursor is signaled.
If the collection is an array, all elements after this one being inserted are pushed
down.

null invalid valid

collection element

removed from collection

null

a cursor

Key:

validvalid
110 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Cursor::last()
E last();

Locates the specified cursor at the last element, in the cursor’s associated ordering,
of the cursor’s associated collection. The last element is returned. If the collection is
empty, the cursor is set to null and 0 is returned.

os_Cursor::more()
os_int32 more();

Returns a nonzero os_int32 (true) if the specified cursor is not null, that is, if the
cursor is located at an element of the specified set or is invalid. The function returns
0 (false) otherwise.

os_Cursor::next()
E next();

Advances the specified cursor to the immediate next element of the cursor’s
associated collection, according to the cursor’s associated ordering. The next element
is returned. If there is no next element, or if the set is empty, the cursor is set to null
and 0 is returned. If the cursor is null, a run-time error is signaled.

os_Cursor::null()
os_int32 null();

Returns a nonzero os_int32 (true) if the specified cursor is null. The function returns
0 (false) if the cursor is located at an element of the specified set or is invalid.
Inherited from os_cursor.

os_Cursor::os_Cursor()
os_Cursor<E> (
 const os_collection & coll,
 os_int32 os_cursor_enums = 0
);

Constructs a cursor associated with coll. If the collection is not ordered, the cursor’s
associated order is arbitrary, unless os_cursor_enums is os_cursor::order_by_
address, in which case the cursor’s associated order is the order in which elements
appear in persistent memory. If the collection is ordered and os_cursor_enums is 0,
the cursor’s associated order is the order in which elements appear in the collection.

If you update a collection while traversing it without using an update-insensitive
cursor, the results of the traversal are undefined.

If os_cursor_enums is os_cursor::optimized, it specifies that the cursor is
transient. This option improves the performance of transient cursors that are used to
iterate over persistent collections. This option is ignored if the cursor is persistent or
restricted.

If os_cursor_enums is os_cursor::order_by_address, the cursor’s associated
order is the order in which elements appear in persistent memory. If you dereference
Release 6.3 111

Introduction
each collection element as you retrieve it, and the objects pointed to by collection
elements do not all fit in the client cache at once, this order can dramatically reduce
paging overhead. An order-by-address cursor is update insensitive.

If os_cursor_enums is os_cursor::update_insensitive, the collection supports
updates to it during traversal. The traversal visits exactly the elements of the
collection at the time the cursor was bound. No insertions or removals performed
during the traversal are reflected in the traversal.

If os_cursor_enums is 0, the default, the cursor does not support updates to its
associated collection during iteration.

os_Cursor<E>(
 const os_Collection<E> & coll,
 _Rank_fcn rfcn,
 os_int32 os_cursor_enums = 0
);

An _Rank_fcn is a rank function for the element type of coll. Iteration using that
cursor follows the order determined by the specified rank function. The rank
function must be registered with the os_index_key macro. Rank-function-based
cursors are update insensitive.

os_Cursor<E> (
 const os_Collection<E> & coll,
 const char *typename,
 os_int32 os_cursor_enums = 0
);

typename is the name of the element type. Iteration using that cursor follows the
order determined by the element type’s rank function. The rank function must be
registered with the os_index_key macro. Rank-function-based cursors are update
insensitive.

os_Cursor::owner()
const os_collection *owner() const;

Returns a pointer to the specified cursor’s associated collection. Inherited from os_
cursor.

os_collection *owner();

Returns a pointer to the specified cursor’s associated collection. Inherited from os_
cursor.

os_Cursor::previous()
E previous();

Moves the specified cursor to the immediate previous element of the cursor’s
associated collection, according to the cursor’s associated ordering. If there is no
previous element, or if the collection is empty, the cursor is set to null and 0 is
returned. If the cursor is null, a run-time error is signaled.
112 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Cursor::rebind()
void rebind(const os_Collection<E>&);

Associates the specified cursor with the specified collection, positioning the cursor at
the collection’s first element. If the collection is empty, the cursor is not valid.

void rebind(const os_collection &, _Rank_Fcn);

Associates the specified cursor with the specified collection, positioning the cursor at
the collection’s first element according to the ordering provided by the rank
function. If the collection is empty, the cursor is not valid.

os_Cursor::remove_at()
void remove_at() const;

Removes that element of the cursor’s associated collection at which the specified
cursor is currently located. If performed on a null or invalid cursor, err_coll_null_
cursor is signaled. If the collection is an array, all elements after this one are pushed
up.

os_Cursor::retrieve()
E retrieve();

Returns the element of the specified cursor’s associated collection at which the
specified cursor is currently located. A run-time error is signaled if the cursor is not
located at an element of the set.

os_Cursor::valid()
os_int32 valid();

Returns a nonzero os_int32 (true) if the specified cursor is null or is located at an
element of the associated collection. The function returns 0 (false) if the cursor was
located at an element that has been removed. Inherited from os_cursor.

os_Cursor::~os_Cursor()
void ~os_Cursor();

Breaks the association between the cursor and its associated collection.
Release 6.3 113

Introduction
os_cursor
An instance of this class serves to record the state of an iteration by pointing to the
current element of an associated collection. A cursor’s associated collection is
specified when the cursor is created. The user can position the cursor in a relative
fashion (using next() and previous()) or in absolute fashion (using first() and
last()). The current element is retrieved using the positioning functions or
retrieve().

You can allocate a cursor in either transient or persistent memory.

Every cursor has an associated ordering for the elements of its associated collection.
This ordering can be the order in which elements appear in the collection (for
ordered collections), an arbitrary order (for unordered collections), or the order in
which elements appear in persistent memory (see os_cursor::order_by_address
on page 116).

Upon creation of a persistent, ordered cursor, a write lock is acquired on segment 0
that effectively locks the entire database.

If a cursor is positioned at a collection’s last element (in the cursor’s associated
ordering) and next() is performed on it, the cursor becomes null. Similarly, if a
cursor is positioned at a collection’s first element (in the cursor’s associated ordering)
and previous() is performed on it, the cursor becomes null. In other words, a cursor
becomes null when it is either advanced past the last element or positioned before
the first element. The function os_cursor::more() returns a nonzero os_int32
(true) if the specified cursor is not null, and returns 0 (false) if it is null.

If a cursor is positioned at an element of a collection, and then that element is
removed from the collection, the cursor becomes invalid. Repositioning such a cursor
has undefined results. The function os_cursor::valid() returns nonzero (true) if
the specified cursor is valid, and returns 0 (false) if it is invalid.

Valid and invalid
cursors

The states null and invalid are mutually exclusive.

null invalid valid

collection element

removed from collection

null

a cursor

Key:

validvalid
114 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_cursor::first()
void *first();

Locates the specified cursor at the first element of the cursor’s associated collection,
according to the cursor’s associated ordering. The first element is returned. If the
collection is empty, the cursor is set to null and 0 is returned.

os_cursor::insert_after()
void insert_after(const void *p) const;

Inserts p into the cursor’s associated collection immediately after the cursor’s current
location. If performed on a null cursor, err_coll_null_cursor is signaled. If the
collection is an array, all elements after this one being inserted are pushed down.

os_cursor::insert_before()
void insert_before(const void *p) const;

Inserts p into the cursor’s associated collection immediately before the cursor’s
current location. If performed on a null cursor, err_coll_null_cursor is signaled.
If the collection is an array, all elements after this element are pushed down.

os_cursor::last()
void *last();

Locates the specified cursor at the last element of the cursor’s associated collection,
according to the cursor’s associated ordering. The last element is returned. If the
collection is empty, the cursor is set to null and 0 is returned.

os_cursor::more()
os_int32 more();

Returns a nonzero os_int32 (true) if the specified cursor is not null, that is, if the
cursor is located at an element of the specified set or is invalid. The function returns
0 (false) otherwise.

os_cursor::next()
void *next();

Advances the specified cursor to the immediate next element of the cursor’s
associated collection, according to the cursor’s associated ordering. The next element
is returned. If there is no next element, or if the set is empty, the cursor is set to null
and 0 is returned. If the cursor is null, a run-time error is signaled.

os_cursor::null()
os_int32 null();

Returns a nonzero os_int32 (true) if the specified cursor is null. The function returns
0 (false) if the cursor is located at an element of the specified set or is invalid.
Release 6.3 115

Introduction
os_cursor::optimized
Possible argument to the os_cursor constructor, indicating that the cursor is
transient. This option improves the performance of transient cursors that are used to
iterate over persistent collections. This option is ignored if the cursor is persistent or
restricted.

os_cursor::order_by_address
Possible argument to os_cursor or os_Cursor constructor, indicating that the
cursor’s associated ordering is the order in which elements appear in persistent
memory.

If you dereference each collection element as you retrieve it, and the objects pointed
to by collection elements do not all fit in the client cache at once, this order can
dramatically reduce paging overhead. An order-by-address cursor is update
insensitive.

os_cursor::os_cursor()
os_cursor(
 const os_collection & coll,
 os_int32 os_cursor_enums = 0
);

Constructs a cursor associated with coll. If the collection is not ordered, the cursor’s
associated order is arbitrary, unless os_cursor_enums is os_cursor::order_by_
address, in which case the cursor’s associated order is the order in which elements
appear in persistent memory. If the collection is ordered and os_cursor_enums is 0,
the cursor’s associated order is the order in which elements appear in the collection.

If you update a collection while traversing it without using an update-insensitive
cursor, the results of the traversal are undefined.

If os_cursor_enums is os_cursor::optimized, it specifies that the cursor is
transient. This option improves the performance of transient cursors that are used to
iterate over persistent collections. This option is ignored if the cursor is persistent or
restricted.

If os_cursor_enums is os_cursor::order_by_address, the cursor’s associated
order is the order in which elements appear in persistent memory. If you dereference
each collection element as you retrieve it, and the objects pointed to by collection
elements do not all fit in the client cache at once, this order can dramatically reduce
paging overhead. An order-by-address cursor is update insensitive.

If os_cursor_enums is os_cursor::update_insensitive, the collection supports
updates to it during traversal. The traversal visits exactly the elements of the
collection at the time the cursor was bound. No insertions or removals performed
during the traversal are reflected in the traversal.

If os_cursor_enums is 0, the cursor does not support updates to its associated
collection during iteration.
116 PSE Pro for C++ Collections Guide and Reference

Class Reference
for this overloading of os_cursor(), if os_cursor::update_insensitive is
specified for the os_cursor_enums argument, it is ignoredos_cursor(
 const os_dictionary & coll,
 const os_coll_range &range,
 os_int32 os_cursor_enums = 0
);

Constructs a cursor that can be used to traverse ordered dictionaries. A traversal
with this cursor visits only those collection elements whose key satisfies range. The
order of iteration is all the elements at a key value, followed by all the elements at the
next key value, and so on. The order of the elements at each key value is arbitraryfor
this overloading of os_cursor(), if os_cursor::update_insensitive is specified
for the os_cursor_enums argument, it is ignored.

Copying a
cursor

os_cursor (const os_cursor &c);

Constructs a new cursor by copying the contents of the cursor specified by c.

os_cursor::owner()
const os_collection *owner() const;

Returns a pointer to the specified cursor’s associated collection.

os_collection *owner();

Returns a pointer to the specified cursor’s associated collection.

os_cursor::previous()
void *previous();

Moves the specified cursor to the immediate previous element of the cursor’s
associated collection, according to the cursor’s associated ordering. If there is no
previous element, or if the collection is empty, the cursor is set to null and 0 is
returned. If the cursor is null, a run-time error is signaled.

os_cursor::rebind()
void rebind(const os_collection&);

Associates the specified cursor with the specified collection, positioning the cursor at
the collection’s first element. If the collection is empty, the cursor is not valid.

void rebind(const os_collection&, _Rank_fcn);

Associates the specified cursor with the specified collection, positioning the cursor at
the collection’s first element according to the rank function. If the collection is empty,
the cursor is not valid.

os_cursor::remove_at()
void remove_at() const;

Removes that element of the cursor’s associated collection at which the specified
cursor is currently located. If performed on a null or invalid cursor, err_coll_null_
cursor is signaled. If the collection is an array, all elements after this element are
pushed up.
Release 6.3 117

Introduction
os_cursor::retrieve()
void *retrieve();

Returns the element of the specified cursor’s associated collection at which the
specified cursor is currently located. A run-time error is signaled if the cursor is not
located at an element of the collection.

os_cursor::update_insensitive
Possible argument to os_cursor or os_Cursor constructor, indicating that the
collection supports updates during traversal of the cursor. The traversal visits
exactly the elements of the collection at the time the cursor was bound.

os_cursor::valid()
os_int32 valid();

Returns a nonzero os_int32 (true) if the specified cursor is null or is located at an
element of the associated collection. The function returns 0 (false) if the cursor was
located at an element that has been removed.

os_cursor::~os_cursor()
void ~os_cursor();

Breaks the association between the cursor and its associated collection.
118 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Dictionary
template <class K, class E>
class os_Dictionary<K, E> : public os_Collection<E>

A dictionary is a collection that can be either ordered or unordered, allows duplicate
elements, and associates a key with each element. The key can be a value of any C++
fundamental type or user-defined class. If the key is a pointer, it must be a void*.
When you insert an element into a dictionary, you specify the key along with the
element. You can retrieve an element with a given key or retrieve those elements
whose keys fall within a given range. os_Dictionary inherits from os_collection.

Dictionaries are always implemented as B-trees or hash tables, so look-up of
elements based on their keys is efficient.

If you use persistent dictionaries, you must call the macro OS_MARK_DICTIONARY()
in your source file for each key-type/element-type pair that you use. If you are using
only transient dictionaries, call the macro OS_TRANSIENT_DICTIONARY() in your
source file.

The element type of any instance of os_Dictionary must be a pointer type.

Required
attributes

Requirements for classes used as keys are listed below.

• The class must have a constructor that takes no arguments, and the destructor
must be able to handle a class that is constructed with the no-argument
constructor.

• The class must have an operator=() defined.

• The class must have a destructor, and the destructor must delete any storage
allocated either by the no-argument constructor or by operator=. The destructor
must also set any pointers in the object to 0. The destructor should also be
prepared to handle the deletion of the object where all the data is zeroed out.

• You must define and register (using os_index_key) rank/hash functions for the
class type.

These requirements apply only to default unordered dictionaries. For dictionaries
that are ordered, the key is initialized using memcpy().

For integer keys, specify one of the following as the key type:

• os_int32 (a signed 32-bit integer)

• os_unsigned_int32 (an unsigned 32-bit integer)

• os_int16 (a signed 16-bit integer)

• os_unsigned_int16 (an unsigned 16-bit integer)

Use the type void* for pointer keys other than char* keys.

For char[] keys, use the parameterized type os_char_array<S>, where the actual
parameter is an integer literal indicating the size of the array in bytes.
Release 6.3 119

Introduction
The key type char* is treated as a class whose rank and hash functions are defined
in terms of strcmp() or strcoll(). For example:

a_dictionary.pick("Smith")

returns an element of a_dictionary whose key is the string “Smith” (that is, whose
key, k, is such that strcmp(k, "Smith") is 0).

If a dictionary’s key type is char* and it is unordered, the dictionary makes its own
copies of the character array upon insertion. If the key type is char* and the
dictionary has the behavior maintain_key_order, it points to the string rather than
makes a copy of it. If the dictionary does not allow duplicate keys, you can
significantly improve performance by using the type os_char_star_nocopy as the
key type. With this key type, the dictionary copies the pointer to the array and not
the array itself. You can freely pass char*s to this type.

Note that you cannot use os_char_star_nocopy with dictionaries that allow
duplicate keys.

Required
header files

Any program using dictionaries must include the header files <os_pse/ostore.hh>
followed by <os_pse/coll.hh>. In addition, your program will require the
inclusion of <os_pse/coll/dict_pt.hh> or <os_pse/coll/dict_pt.cc>.

If your program instantiates a template, include dict_pt.cc at the point where you
instantiate the template. If you are using the template, but not instantiating it,
include dict_pt.hh. Since dict_pt.cc includes dict_pt.hh, you do not need both.
You have to include dict_pt.cc because it contains the bodies of the functions
declared in dict_pt.hh.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_Dictionary. The second table lists the enumerators inherited by os_
Dictionary from os_collection. Many functions are also inherited by os_
Dictionary from os_Collection or os_collection. The full explanation of each
inherited function or enumerator appears in the entry for the class from which it is
inherited. The full explanation of each function defined by os_Dictionary appears
in this entry, after the tables. In each case, the Defined By column gives the class
whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_unsigned_int32 os_collection

clear () void os_collection

contains (const K &key_ref,
 const E element) const

(const K *key_ptr,
 const E element) const

os_int32

os_int32

os_Dictionary

count (const E) const os_int32 os_Collection

count_values (const K &key_ref) const

(const K * key_ptr) const

os_unsigned_int32

os_unsigned_int32

os_Dictionary

default_behavior
(static)

() os_unsigned_int32 os_Dictionary
120 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Dictionary
enumerators

The following table lists enumerators for the os_Dictionary class.

empty () os_int32 os_collection

get_behavior () const os_unsigned_int32 os_collection

insert (const K &key_ref,
 const E element)

(const K *key_ptr,
 const E element)

void

void

os_Dictionary

only () const E os_Collection

os_Dictionary (os_unsigned_int32 expected_card
= 10,
 os_unsigned_int32 behavior_
enums = 0)

os_Dictionary

pick (const K &key_ref) const

(const K *key_ptr) const

() const

E

E

E

os_Dictionary

remove (const K &key_ref,
 const E element)

(const K *key_ptr,
 const E element)

(const E element)

void

void

os_int32

os_Dictionary

remove_value (const K &key_ref,
 const E os_unsigned_int32 n = 1)

(const K *key_ptr,
 os_unsigned_int32 n = 1)

E

E

os_Dictionary

retrieve (const os_cursor&) const E os_Dictionary

retrieve_key (const os_cursor&) K* or K os_Dictionary

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_cardinality os_dictionary

maintain_key_order os_dictionary

maintain_order os_collection

no_dup_keys os_dictionary

signal_dup_keys os_dictionary
Release 6.3 121

Introduction
os_Dictionary::contains()
os_boolean contains(const K &key_ref, const E element) const;

Returns nonzero (true) if this contains an entry with the specified element and the
key referred to by key_ref. If there is no such entry, 0 (false) is returned. This
overloading of contains() differs from the next overloading only in that the key is
specified with a reference instead of a pointer.

os_boolean contains(const K *key_ptr, const E element) const;

Returns nonzero (true) if this contains an entry with the specified element and the
key pointed to by key_ptr. If there is no such entry, 0 (false) is returned. This
overloading of contains() differs from the previous overloading only in that the
key is specified with a pointer instead of a reference.

os_Dictionary::count_values()
os_unsigned_int32 count_values(const K &key_ref) const;

Returns the number of entries in this with the key referred to by key_ref. This
overloading of count_values() differs from the next overloading only in that the
key is specified with a reference instead of a pointer.

os_unsigned_int32 count_values(const K *key_ptr) const;

Returns the number of entries in this with the key pointed to by key_ptr. This
overloading of count_values() differs from the previous overloading only in that
the key is specified with a pointer instead of a reference.

os_Dictionary::insert()
void insert(const K &key_ref, const E element);

Inserts the specified element with the key referred to by key_ref. This overloading
of insert() differs from the next overloading only in that the key is specified with
a reference instead of a pointer.

Each insertion increases the collection’s cardinality by 1 and increases by 1 the count
(or number of occurrences) of the inserted element in the collection, unless the
dictionary already contains an entry that matches both the key and the element (in
which case the insertion is silently ignored).

If you insert a null pointer (0), the exception err_coll_nulls is signaled.

For dictionaries with signal_dup_keys behavior, if an attempt is made to insert
something with a key that already exists, err_am_dup_key is signaled.

void insert(const K *key_ptr, const E element);

Inserts the specified element with the key pointed to by key_ptr. This overloading
of insert() differs from the previous overloading only in that the key is specified
with a pointer instead of a reference.
122 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Dictionary::os_Dictionary()
os_Dictionary(
 os_unsigned_int32 expected_cardinality = 10,
 os_unsigned_int32 behavior_enums = 0
);

Creates a new dictionary. The following paragraphs describe the arguments.

Presizing
cardinality

By default, dictionaries are presized with an internal structure suitable for
cardinality 10. If you want a new dictionary presized for a different cardinality,
specify the expected_cardinality argument. Specifying this argument allows the
user to incur the cost of growing the internal structure at creation time rather than
during the life of the dictionary.

Dictionary
properties

Every dictionary has the following properties:

• Duplicate elements are allowed.

• Null pointers cannot be inserted.

• There is no guarantee that an element inserted or removed during a traversal will
be visited later in the same traversal.

• Performing pick() on an empty result of querying the dictionary returns 0.

By default, a new dictionary also has the following properties:

• Its elements have no intrinsic order.

• Duplicate keys are allowed; that is, two or more elements can have the same key.

• Range look-ups are not supported; that is, key order is not maintained.

You can enable or disable these last three properties in new dictionaries. To do so,
specify the behavior_enums argument with a bit pattern that indicates the
collection’s properties. The bit pattern is obtained by forming the bit-wise
disjunction (using the bit-wise OR operator) of the following enumerators:

• os_Dictionary::signal_dup_keys: Duplicate keys are not allowed; err_coll_
duplicate_key is signaled if an attempt is made to establish two or more
elements with the same key.

• os_Dictionary::maintain_key_order: Range look-ups are supported using
pick() or restricted cursors. By default this implies os_Dictionary::dont_
maintain_cardinality. You can mantain cardinality, but it is discouraged for
dictionaries with large cardinality because performance is compromised.

• os_Dictionary::maintain_cardinality: For dictionaries that maintain key
order, the insert() and remove() functions will update cardinality information.
This enumerator will improve performance if the cardinality() function is used
(which otherwise is an 0(n) operation when cardinality is not maintained.
However, maintaining cardinality can also cause contention in the dictionary
header that can have an impact on large databases. For dictionaries that do not
maintain key order, cardinality is always maintained but is done without causing
contention in the dictionary header; in this case setting the maintain_
cardinality enumerator is ignored.
Release 6.3 123

Introduction
These enumerators are instances of an enumeration defined in the scope of os_
Dictionary. Each enumerator is associated with a different bit; including an
enumerator in the disjunction sets its associated bit.

For large dictionaries that maintain key order, the enumerator os_
Dictionary::dont_maintain_cardinality can also be used to reduce contention.
When this enumerator is specified in the disjunction, behavior_enums, insert(),
and remove() do not update cardinality information, avoiding contention in the
collection header. This behavior can significantly improve performance for large
dictionaries subject to contention. The disadvantage of this behavior is that
cardinality() is an O(n) operation, requiring a scan of the whole dictionary.

For more information, see

• os_collection::cardinality_estimate() on page 98

• os_collection::cardinality_is_maintained() on page 98

• os_collection::update_cardinality() on page 108

os_Dictionary<K, E>::os_Dictionary<K, E>(
 os_unsigned_int32 expected_cardinality = 10,
 os_unsigned_int32 behavior_enums = 0
);

Creates a new dictionary. The key type is specified by the parameter K and the value
type by the parameter E. If the key type is a pointer type, the parameter K should be
void*. The arguments have the same meaning as for the nonparameterized
constructor.

os_Dictionary::pick()
E pick(const K &key_ref) const;

Returns an element of this that has the value of the key referred to by the value of
key_ref. If there is more than one such element, an arbitrary one is picked and
returned. If there is no such element, 0 is returned. If the dictionary is empty, returns
0.

E pick(const K *key_ptr) const;

Returns an element of this that has the value of the key pointed to by key_ptr. If
there is more than one such element, an arbitrary one is picked and returned. If there
is no such element, 0 is returned. If the dictionary is empty, returns 0.

E pick() const;

Picks an arbitrary element of this and returns it. If the dictionary is empty, 0 is
returned.
124 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Dictionary::remove()
void remove(const K &key_ref, const E element);

Removes the dictionary entry with the element element at the value of the key
referred to by key_ref. This overloading of remove() differs from the next
overloading only in that the key is specified with a reference instead of a pointer. If
removing this element leaves no other elements at this key value, the key is removed
and deleted.

If there is no such entry, the dictionary remains unchanged. If there is such an entry,
the collection’s cardinality decreases by 1 and the count (or number of occurrences)
of the removed element in the collection decreases by 1.

void remove(const K *key_ptr, const E element);

Removes the dictionary entry with the element element and the key pointed to by
key_ptr. This overloading of remove() differs from the previous overloading only
in that the key is specified with a pointer instead of a reference. If removing this
element leaves no other elements at this key value, the key is removed and deleted.

os_int32 remove(const E element)

Removes one dictionary entry specified by element. The element removed may have
any key value. If removing this element leaves no other elements at its corresponding
key value, the corresponding key value is removed and deleted.

If there is no such entry, the dictionary remains unchanged. If there is such an entry,
the collection's cardinality decreases by 1 and the count (or number of occurrences)
of the removed element in the collection decreases by 1.

Returns a nonzero os_int32 if an element was removed, and 0 otherwise.

os_Dictionary::remove_value()
E remove_value(const K &key_ref, os_unsigned_int32 n = 1);

Removes n dictionary entries with the value of the key referred to by key_ref. If
there are fewer than n, all entries in the dictionary with that key are removed. If there
is no such entry, the dictionary remains unchanged.

This overloading of remove_value() differs from the next overloading only in that
the key is specified with a reference instead of a pointer.

For each entry removed, the collection’s cardinality decreases by 1 and the count (or
number of occurrences) of the removed element in the collection decreases by 1. If
removing this element leaves no other elements at this key value, the key is removed
and deleted.

void remove_value(const K *key_ptr, os_unsigned_int32 n = 1);

Removes n dictionary entries with the value of the key pointed to by key_ptr. This
overloading of remove_value() differs from the previous overloading only in that
the key is specified with a pointer instead of a reference. If removing this element
leaves no other elements at this key value, the key is removed and deleted.
Release 6.3 125

Introduction
os_Dictionary::retrieve()
E retrieve(const os_cursor&) const;

Returns the element of this at which the specified cursor is located. If the cursor is
null, err_coll_null_cursor is signaled. If the cursor is invalid, err_coll_
illegal_cursor is signaled. If the collection maintained internally by the cursor is
not the same as the collection maintained by the dictionary, the err_coll_cursor_
mismatch exception is signaled.

os_Dictionary::retrieve_key()
const K *retrieve_key(const os_cursor&) const;

const K retrieve_key(const os_cursor&) const;

Returns a pointer to a dictionary key unless the key is a char* or void* in which case
retrieve_key() returns the key itself. You must not modify this key. Like all
collection functions that take cursor arguments, this function works only with
vanilla cursors — that is, cursors that were not created with a cursor option or rank
function. If the collection maintained internally by the cursor is not the same as the
collection maintained by the dictionary, the err_coll_cursor_mismatch exception
is signaled.
126 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_List
template <class E>
class os_List : public os_Collection<E>

A list is an ordered collection. As with other ordered collections, list elements can be
inserted, removed, replaced, or retrieved based on a specified numerical index or
based on the position of a specified cursor.

Lists allow duplicates and disallow null elements.

If an element is inserted or removed from an os_List, all other elements are either
pushed up or down with respect to their ordinal index in the list.

The class os_List is parameterized, with a parameter for constraining the type of
values allowable as elements (for the nonparameterized version of this class, see os_
list on page 132). The element type parameter, E, occurs in the signatures of some
of the functions described below. The parameter is used by the compiler to detect
type errors.

It is possible to optimize os_List for maximum performance, using os_nList; see
os_nList and os_nlist on page 137.

The element type of any instance of os_List must be a pointer type.

You must mark parameterized collections types in the schema source file.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_List. The second table lists the enumerators inherited by os_List
from os_collection. Many functions are also inherited by os_List from os_
Collection or os_collection. The full explanation of each inherited function or
enumerator appears in the entry for the class from which it is inherited. The full
explanation of each function defined by os_List appears in this entry, after the
tables. In each case, the Defined By column gives the class whose entry contains the
full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

empty () os_int32 os_collection

get_behavior () const os_unsigned_int32 os_collection

insert (const E) void os_Collection

insert_after (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

os_Collection
Release 6.3 127

Introduction
insert_before (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

void

void

os_Collection

insert_first (const E) void os_Collection

insert_last (const E) void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection

operator const
 os_Bag<E>&

() const os_Collection

operator
 os_bag&

() os_collection

operator const
 os_bag&

() const os_collection

operator
 os_list&

() os_collection

operator const
 os_list&

() const os_collection

operator
 os_Set<E>&

() os_Collection

operator const
 os_Set<E>&

() const os_Collection

operator
 os_set&

() os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

Name Arguments Returns Defined By
128 PSE Pro for C++ Collections Guide and Reference

Class Reference
operator > (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(const E) const

os_int32

os_int32

os_Collection

operator = (const os_List<E>&) const

(const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List<E>&

os_List

operator |= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator | (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator & (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator –= (const os_Collection<E>&) const

(const E) const

os_List<E>&

os_List<E>&

os_List

operator - (const os_Collection<E>&) const

(const E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_List ()

(os_int32 expected_size)

(const os_List<E>&)

(const os_Collection<E>&)

os_List

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&)

(os_unsigned_int32)

void

void

os_Collection

remove_first (const E&)

()

os_int32

E

os_Collection

remove_last (const E&)

()

os_int32

E

os_Collection

replace_at (const E,
 const os_Cursor<E>&)

(const E,
 os_unsigned_int32)

E

E

os_Collection

retrieve (os_unsigned_int32) const

(const os_Cursor<E>&) const

E

E

os_Collection

Name Arguments Returns Defined By
Release 6.3 129

Introduction
os_List
enumerators

The following table lists the enumerators inherited by os_List from os_
collection.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, while still maintaining the associated semantics.

os_List::operator =()
os_List<E> &operator =(const os_List<E> &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection (in order), and inserting each element into the target collection. The
target collection semantics are enforced as usual during the insertion process.

os_List<E> &operator =(const os_Collection<E> &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection (in order), and inserting each element into the target collection. The
target collection semantics are enforced as usual during the insertion process.

os_List<E> &operator =(const E e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

retrieve_first () const

(const E&) const

E

os_int32

os_Collection

retrieve_last () const

(const E&) const

E

os_int32

os_Collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
130 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_List::operator |=()
os_List<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_List<E> &operator |=(const E e);

Inserts the element e into the target collection and returns the target collection.

os_List::operator &=()
os_List<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. It does so by
retaining the appropriate number of leading elements. It returns the target collection.

os_List<E> &operator &=(const E e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. It returns the target collection.

os_List::operator –=()
os_List<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. The first s.count(e) elements are removed. It returns the
target collection.

os_List<E> &operator –=(const E e);

Removes the element e from the target collection. The first occurrence of the element
is removed from the target collection. It returns the target collection.

os_List::os_List()
os_List();

Returns an empty list.

os_List(os_int32 expected_size, os_int32 behavior = 0);

Returns an empty list whose initial implementation is based on the expectation that
the expected_size argument approximates the usual cardinality of the list, once the
list has been loaded with elements.

os_List(const os_List<E> &coll);

Returns a list that results from assigning the specified list to an empty list.

os_List(const os_Collection<E> &coll);

Returns a list that results from assigning the specified collection to an empty list.
Release 6.3 131

Introduction
os_list
class os_list : public os_collection

A list is an ordered collection. As with other ordered collections, list elements can be
inserted, removed, replaced, or retrieved based on a specified numerical index or
based on the position of a specified cursor.

The class os_list is nonparameterized. For the parameterized version of this class,
see os_List on page 127.

Lists allow duplicates and disallow null elements.

If an element is inserted or removed from an os_list, all other elements are either
pushed up or down with respect to their ordinal index in the list.

It is possible to optimize os_list for maximum performance, using os_nlist; see
os_nList and os_nlist on page 137.

The element type of any instance of os_list must be a pointer type.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_list. The second table lists the enumerators inherited by os_list
from os_collection. The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The full explanation of
each function defined by os_list appears in this entry, after the tables. In each case,
the Defined By column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const void*) const os_collection

count (const void*) const os_int32

empty () os_int32 os_collection

get_behavior () const os_unsigned_int32 os_collection

insert (const void*) void os_collection

insert_after (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_before (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void

void

os_collection

insert_first (const void*) void os_collection

insert_last (const void*) void os_collection

only () const void* os_collection
132 PSE Pro for C++ Collections Guide and Reference

Class Reference
operator
 os_bag&

() os_collection

operator const
 os_bag&

() const os_collection

operator
 os_set&

() os_collection

operator const
 os_set&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_list&) const

(const os_collection&) const

(const void*) const

os_list&

os_list&

os_list&

os_list

operator |= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator | (const os_collection&) const

(const void*) const

os_collection

os_collection

os_collection

operator &= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator & (const os_collection&) const

(const void*) const

os_collection

os_collection

os_collection

operator –= (const os_collection&) const

(const void*) const

os_list&

os_list&

os_list

operator - (const os_collection&) const

(const void*) const

os_collection

os_collection

os_collection

Name Arguments Returns Defined By
Release 6.3 133

Introduction
os_list
enumerators

The following table lists the enumerators inherited by os_list from os_
collection.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, while still maintaining the associated semantics.

os_list ()

(os_int32 expected_size)

(const os_list&)

(const os_collection&)

os_list

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&)

(os_unsigned_int32)

void

void

os_collection

remove_first (const void*&)

()

os_int32

void*

os_collection

remove_last (const void*&)

()

os_int32

void*

os_collection

replace_at (const void*,
 const os_cursor&)

(const void*,
 os_unsigned_int32)

void*

void*

os_collection

retrieve (os_unsigned_int32) const

(const os_cursor&) const

void*

void*

os_collection

retrieve_first () const

(const void*&) const

void*

os_int32

os_collection

retrieve_last () const

(const void*&) const

void*

os_int32

os_collection

Name Arguments Returns Defined By

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
134 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_list::operator =()
os_list &operator =(const os_collection &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection semantics are
enforced as usual during the insertion process.

os_list &operator =(const void *e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_list::operator |=()
os_list &operator |=(const os_collection &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_list &operator |=(const void *e);

Inserts the element e into the target collection and returns the target collection.

os_list::operator &=()
os_list &operator &=(const os_collection &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. It does so by
retaining the appropriate number of leading elements. It returns the target collection.

os_list &operator &=(const void *e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. It returns the target collection.

os_list::operator –=()
os_list &operator –=(const os_collection &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. The first s.count(e) elements are removed. It returns the
target collection.

os_list &operator –=(const void *e);

Removes the element e from the target collection. The first occurrence of the element
is removed from the target collection. It returns the target collection.
Release 6.3 135

Introduction
os_list::os_list()
os_list();

Returns an empty list.

os_list(os_int32 expected_size, os_int32 behavior = 0);

Returns an empty list whose initial implementation is based on the expectation that
the expected_size argument approximates the usual cardinality of the list, once the
list has been loaded with elements.

os_list(const os_list &coll);

Returns a list that results from assigning the specified list to an empty list.

os_list(const os_collection &coll);

Returns a list that results from assigning the specified collection to an empty list.
136 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_nList and os_nlist
template <class E>
class os_nList : public os_List<E,
 NUM_PTRS_IN_HEAD,
 NUM_PTRS_IN_BLOCK>

class os_nlist : public os_list<
 NUM_PTRS_IN_HEAD,
 NUM_PTRS_IN_BLOCK>

The os_nList and os_nlist classes are parameterized forms of the os_List and
os_list classes. Use the os_nList and os_nlist classes to tune the internal list
structures for better performance.

If you use os_nList or os_nlist persistently, you must call the macro OS_MARK_
NLIST_PT or OS_MARK_NLIST, respectively, in your schema source file for each os_
nList or os_nlist that you use. If you are only using os_nList and os_nlist
transiently, call the macro OS_TRANSIENT_NLIST in your source file. OS_TRANSIENT_
NLIST will define the required stub functions. OS_TRANSIENT_NLIST_NO_BLOCK
must be used if you have more than one os_Nlist or os_nlist with the same
number of pointers in a block.

For more informations about these macros, see:

• OS_MARK_NLIST() on page 150

• OS_MARK_NLIST_PT() on page 151

• OS_TRANSIENT_NLIST() on page 152

• OS_TRANSIENT_NLIST_NO_BLOCK() on page 153

This section discusses the parameters you can specify for the os_nList and os_
nlist classes. For all other API information, see os_List on page 127 and os_list
on page 132.

A basic internal structure of an os_list consists of blocks of arrays. Each slot in the
array contains a soft pointer to a collection element. When an application creates a
list, ObjectStore defines an initial array of slots in the header. The size of this array is
determined by NUM_PTRS_IN_HEAD. ObjectStore uses this array to store the initial
elements inserted into the collection. When this array becomes full, ObjectStore
allocates additional blocks of slots. The size of each block is determined by NUM_
PTRS_IN_BLOCKS.

When ObjectStore allocates instances of os_list and os_List, NUM_PTRS_IN_HEAD
is set to 4 and NUM_PTRS_IN_BLOCK is set to 8. To perform numerical positional
operations on a list, ObjectStore iterates over the blocks to find the block that contains
the position. After that, ObjectStore uses simple math to index the correct slot.

To tune a list for faster positional operations, use os_nlist or os_nList. In general,
modify NUM_PTRS_IN_BLOCK when you want to tune a collection. Modify NUM_PTRS_
IN_HEAD only when you want to tune a very small collection (12 elements or less).
Release 6.3 137

Introduction
If you create a block or header with too large a number of slots, it has a negative effect
during update operations. This can happen when the slots need to be moved up or
down, depending on the type of operation.

For example, iteration over blocks for large collections is time consuming. To
improve performance, set NUM_PTRS_IN_BLOCKS to a number that is larger than 8.
This increases the array size for each block. Consequently, there are fewer blocks to
iterate over.

Modification of the NUM_PTRS_IN_HEAD parameter is more suitable for small
collections. You can create the actual list directly in the header, which eliminates
additional paging. ObjectStore Technical Support recommends that you never set
the NUM_PTRS_IN_HEAD parameter to a value larger than 12. A larger value for this
parameter defeats its purpose.

Required
header file

To use either os_nList or os_nlist, your application must include the header file:

<os_pse/coll/nlist.cc>
138 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Set
template <class E>
class os_Set : public os_Collection<E>

A set is an unordered collection that does not allow duplicate element occurrences.
The count of a value in a given set is the number of times it occurs in the set — either
0 or 1.

The class os_Set is parameterized, with a parameter for constraining the type of
values allowable as elements (for the nonparameterized version of this class, see os_
set on page 144). The element type parameter, E, occurs in the signatures of some of
the functions described here. The parameter is used by the compiler to detect type
errors.

The element type of any instance of os_Set must be a pointer type.

You must mark parameterized collection types in the schema source file.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_Set. The second table lists the enumerators inherited by os_Set from
os_collection. Many functions are also inherited by os_Set from os_Collection
or os_collection. The full explanation of each inherited function or enumerator
appears in the entry for the class from which it is inherited. The full explanation of
each function defined by os_Set appears in this entry, after the tables. In each case,
the Defined By column gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const E) const os_int32 os_Collection

count (const E) const os_int32 os_Collection

empty () os_int32 os_collection

get_behavior () const os_unsigned_int32 os_collection

insert (const E) void os_Collection

only () const E os_Collection

operator
 os_Array<E>&

() os_Collection

operator const
 os_Array<E>&

() const os_Collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator
 os_Bag<E>&

() os_Collection
Release 6.3 139

Introduction
operator const
 os_Bag<E>&

() const os_Collection

operator
 os_bag&

() os_collection

operator const
 os_bag&

() const os_collection

operator
 os_List<E>&

() os_Collection

operator const
 os_List<E>&

() const os_Collection

operator
 os_list&

() os_collection

operator const
 os_list&

() const os_collection

operator os_set& () os_collection

operator const
 os_set&

() const os_collection

operator == (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator != (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator < (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator <= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator > (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator >= (const os_Collection<E>&) const

(E) const

os_int32

os_int32

os_Collection

operator = (const os_Set<E>&) const

(const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set<E>&

os_Set

operator |= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

operator | (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

operator &= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

operator & (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

Name Arguments Returns Defined By
140 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Set
enumerators

The following table lists the enumerators inherited by os_Set from os_collection.

os_Set::default_behavior()
static os_unsigned_int32 default_behavior();

Returns a bit pattern indicating this type’s default behavior.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, while still maintaining the associated semantics.

operator –= (const os_Collection<E>&) const

(E) const

os_Set<E>&

os_Set<E>&

os_Set

operator - (const os_Collection<E>&) const

(E) const

os_Collection<E>&

os_Collection<E>&

os_Collection

os_Set ()

(os_int32)

(const os_Set<E>&)

(const os_Collection<E>&)

os_Set

remove (const E) os_int32 os_Collection

remove_at (const os_Cursor<E>&) void os_Collection

replace_at (const E,
 const os_Cursor<E>&)

E os_Collection

retrieve (const os_Cursor<E>&) const E os_Collection

Name Arguments Returns Defined By

Name Inherited From

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection

order_by_address os_collection

unordered os_collection
Release 6.3 141

Introduction
os_Set::operator =()
os_Set<E> &operator =(const os_Collection<const E> &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection semantics are
enforced as usual during the insertion process.

os_Set<E> &operator =(E e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_Set::operator |=()
os_Set<E> &operator |=(const os_Collection<E> &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_Set<E> &operator |=(E e);

Inserts the element e into the target collection and returns the target collection.

os_Set::operator &=()
os_Set<E> &operator &=(const os_Collection<E> &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. It returns
the target collection.

os_Set<E> &operator &=(E e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. It returns the target collection.

os_Set::operator –=()
os_Set<E> &operator –=(const os_Collection<E> &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. It returns the target collection.

os_Set<E> &operator –=(E e);

Removes the element e from the target collection. It returns the target collection.
142 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_Set::os_Set()
os_Set();

Returns an empty set.

os_Set(os_int32 size);

Returns an empty set whose initial implementation is based on the expectation that
the size argument indicates the approximate usual cardinality of the set, once the
set has been loaded with elements.

os_Set(const os_Set<E>&);

Returns a set that results from assigning the specified set to an empty set.

os_Set(const os_Collection<E>&);

Returns a set that results from assigning the specified collection to an empty set.
Release 6.3 143

Introduction
os_set
class os_set : public os_collection

A set is an unordered collection that does not allow duplicate element occurrences.
The count of a value in a given set is the number of times it occurs in the set — either
0 or 1.

The class os_set is nonparameterized. For the parameterized version of this class,
see os_Set on page 139.

Tables of
member
functions and
enumerators

The first of the following tables lists the member functions that can be performed on
instances of os_set. The second table lists the enumerators inherited by os_set from
os_collection. Many functions are also inherited by os_set from os_collection.
The full explanation of each inherited function or enumerator appears in the entry
for the class from which it is inherited. The full explanation of each function defined
by os_set appears in this entry, after the tables. In each case, the Defined By column
gives the class whose entry contains the full explanation.

Name Arguments Returns Defined By

cardinality () const os_int32 os_collection

clear () void os_collection

contains (const void*) const os_collection

count (const void*) const os_int32

default_behavior
(static)

() os_unsigned_int32 os_set

empty () os_int32 os_collection

get_behavior () const os_unsigned_int32 os_collection

insert (const void*) void os_collection

only () const void* os_collection

operator
 os_array&

() os_collection

operator const
 os_array&

() const os_collection

operator os_bag& () os_collection

operator const
 os_bag&

() const os_collection

operator os_
list&

() os_collection

operator const
 os_list&

() const os_collection

operator == (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator != (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection
144 PSE Pro for C++ Collections Guide and Reference

Class Reference
operator < (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator <= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator > (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator >= (const os_collection&) const

(const void*) const

os_int32

os_int32

os_collection

operator = (const os_set&) const

(const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

os_set

operator |= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator | (const os_collection&) const

(const void*) const

os_set&

os_set&

os_collection

operator &= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator & (const os_collection&) const

(const void*) const

os_set&

os_set&

os_collection

operator –= (const os_collection&) const

(const void*) const

os_set&

os_set&

os_set

operator - (const os_collection&) const

(const void*) const

os_set&

os_set&

os_collection

os_set ()

(os_int32)

(const os_set&)

(const os_collection&)

os_set

remove (const void*) os_int32 os_collection

remove_at (const os_cursor&) void os_collection

replace_at (const void*,
 const os_cursor&)

void* os_collection

retrieve (const os_cursor&) const void* os_collection

Name Arguments Returns Defined By
Release 6.3 145

Introduction
os_set
enumerators

The following table lists the enumerators inherited by os_set from os_collection.

Assignment Operator Semantics
Assignment operator semantics are described for the following functions in terms of
insert operations into the target collection. The actual implementation of the
assignment might be different, while still maintaining the associated semantics.

os_set::operator =()
os_set &operator =(const os_set &s);

Copies the contents of the collection s into the target collection and returns the target
collection. The copy is performed by effectively clearing the target, iterating over the
source collection, and inserting each element into the target collection. The iteration
is ordered if the source collection is ordered. The target collection semantics are
enforced as usual during the insertion process.

os_set &operator =(const void *e);

Clears the target collection, inserts the element e into the target collection, and
returns the target collection.

os_set::operator |=()
os_set &operator |=(const os_set &s);

Inserts the elements contained in s into the target collection and returns the target
collection.

os_set &operator |=(const void *e);

Inserts the element e into the target collection and returns the target collection.

Name Inherited From

allow_duplicates os_collection

allow_nulls os_collection

EQ os_collection

GT os_collection

LT os_collection

maintain_order os_collection
146 PSE Pro for C++ Collections Guide and Reference

Class Reference
os_set::operator &=()
os_set &operator &=(const os_set &s);

For each element in the target collection, reduces the count of the element in the
target to the minimum of the counts in the source and target collections. If the
collection is ordered and contains duplicates, it does so by retaining the appropriate
number of leading elements. It returns the target collection.

os_set &operator &=(const void *e);

If e is present in the target, converts the target into a collection containing just the
element e. Otherwise, it clears the target collection. It returns the target collection.

os_set::operator –=()
os_set &operator –=(const os_set &s);

For each element in the collection s, removes s.count(e) occurrences of the element
from the target collection. If the collection is ordered, it is the first s.count(e)
elements that are removed. It returns the target collection.

os_set &operator –=(const void *e);

Removes the element e from the target collection. If the collection is ordered, it is the
first occurrence of the element that is removed from the target collection. It returns
the target collection.

os_set::os_set()
os_set();

Returns an empty set.

os_set(os_int32 size);

Returns an empty set whose initial implementation is based on the expectation that
the size argument indicates the approximate usual cardinality of the set, once the
set has been loaded with elements.

os_set(const os_set&);

Returns a set that results from assigning the specified set to an empty set.

os_set(const os_collection&);

Returns a set that results from assigning the specified collection to an empty set.
Release 6.3 147

Introduction
148 PSE Pro for C++ Collections Guide and Reference

Chapter 7
Macros and User-Defined
Functions Reference

Dictionary
macros

OS_MARK_DICTIONARY() 150

OS_MARK_NLIST() 150

OS_MARK_NLIST_PT() 151

OS_TRANSIENT_DICTIONARY() 151

OS_TRANSIENT_DICTIONARY_NOKEY() 152

OS_TRANSIENT_NLIST() 152

OS_TRANSIENT_NLIST_NO_BLOCK() 153

os_assign_function() 154

os_assign_function_body() 154

os_index_key() 155

os_index_key_hash_function() 155

os_index_key_rank_function() 156

OS_INDEXABLE_LINKAGE() 156

os_query_function_body_with_namespace() 157

Relationship
macros

os_rel_1_1_body() 158

os_rel_1_m_body() 159

os_rel_m_1_body() 160

os_rel_m_m_body() 161

os_rel_1_1_body_options() 162

os_rel_1_m_body_options() 163

os_rel_m_1_body_options() 164

os_rel_m_m_body_options() 165

os_relationship_1_1() 167

os_relationship_1_m() 168

OS_RELATIONSHIP_LINKAGE() 169

os_relationship_m_1() 170

os_relationship_m_m() 171
Release 6.3 149

OS_MARK_DICTIONARY()
If you use persistent dictionaries, or any combination of persistent and transient
dictionaries, you must call the macro OS_MARK_DICTIONARY() for each key-
type/element-type pair that you use.

Form of the call OS_MARK_DICTIONARY(key_type, element_type)

Put these calls in the same function with your calls to OS_MARK_SCHEMA_TYPE(). For
example:

/*** schema.cc ***/

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/coll/dict_pt.hh>
#include <ostore/manschem.hh>
#include "dnary.hh"

 OS_MARK_DICTIONARY(void*,Course*);
 OS_MARK_DICTIONARY(int,Employee**);
 OS_MARK_SCHEMA_TYPE(Course);
 OS_MARK_SCHEMA_TYPE(Employee);
 OS_MARK_SCHEMA_TYPE(Department);

For pointer keys, specify void* as the key_type.

For class keys, the class must have a destructor, and you must register rank and hash
functions for the class.

If you use transient dictionaries, you must call the macro OS_TRANSIENT_
DICTIONARY(). The arguments are the same as for OS_MARK_DICTIONARY(), but you
call OS_TRANSIENT_DICTIONARY() at file scope in an application source file, rather
than at function scope in a schema source file.

OS_MARK_NLIST()
If you use a persistent os_nlist, you must call the macro OS_MARK_NLIST for each
set of os_nlist parameters that you use.

Form of the call OS_MARK_NLIST(num_ptrs_in_head,num_ptrs_in_block)

Put these calls in the same function with your calls to OS_MARK_SCHEMA_TYPE(). You
must include the header file <os_pse/coll/nlist.hh>. For example:

/*** schema.cc ***/
OS_MARK_NLIST(8,16);
OS_MARK_NLIST(4,20);

If you use os_nlist transiently, you must call the macro OS_TRANSIENT_NLIST(). If
you use a combination of persistent and transient os_nlists, it is sufficient to just
call OS_MARK_NLIST() for each unique set of template parameters.
150 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
OS_MARK_NLIST_PT()
If you use a persistent os_nList, you must call the macro OS_MARK_NLIST_PT for
each set of os_nList parameters that you use.

Form of the call OS_MARK_NLIST_PT(E,num_ptrs_in_head,num_ptrs_in_block)

Put these calls in the same function with your calls to OS_MARK_SCHEMA_TYPE(). You
must include the header file <os_pse/coll/nlist.hh>. For example:

/*** schema.cc ***/
OS_MARK_NLIST_PT(Object*,8,16);
OS_MARK_NLIST_PT(Object*,4,20);
OS_MARK_NLIST_PT(X*,4,20);

If you use os_nList transiently, you must call the macro OS_TRANSIENT_NLIST().
If you use a combination of persistent and transient os_nLists, it is sufficient to just
call OS_MARK_NLIST_PT() for each unique set of template parameters.

OS_TRANSIENT_DICTIONARY()
If you use only transient dictionaries, you must call the macro OS_TRANSIENT_
DICTIONARY() for each key-type/element-type pair that you use. This is true unless
there are ObjectStore dictionaries with the same key marked persistently. In this
case, the macro is not needed and its use produces error messages at link time.

Form of the call OS_TRANSIENT_DICTIONARY(key_type, element_type)

Here are some examples:

OS_TRANSIENT_DICTIONARY(void*,Course*);

OS_TRANSIENT_DICTIONARY(int,Employee**);

Put these calls at file scope in an application source file.

For pointer keys, specify void* as the key_type.

For class keys, the class must have an operator= and a destructor that zeroes out any
pointers in the key object.

If a transient os_Dictionary is instantiated and OS_TRANSIENT_DICTIONARY() is
missing, _Rhash_pt<KEYTYPE>::get_os_typespec() and _Dict_pt_
slot<KEYTYPE>::get_os_typespec() are undefined at link time.

Using user-
defined classes

In order to use a user-defined class as a key, you must have get_os_typespec()
declared and defined as follows, where KEYTYPE is the name of the user-defined
class:

{ return new os_typespec("KEYTYPE"); }
Release 6.3 151

OS_TRANSIENT_DICTIONARY_NOKEY()
If you use only transient dictionaries, you must call the macro OS_TRANSIENT_
DICTIONARY_NOKEY() in certain cases where you have more than one dictionary
defined with the same key type.

Form of the call OS_TRANSIENT_DICTIONARY_NOKEY(key_type)

OS_TRANSIENT_DICTIONARY() defines stubs for get_os_typespec() member
functions of internal data structures parameterized by either the key type and the
value type, or by just the key type. If you have in your application more than one
dictionary with the same key type, specifying OS_TRANSIENT_DICTIONARY()
multiple times will result in multiply-defined symbols at link time. Instead, use OS_
TRANSIENT_DICTIONARY_NOKEY(), which defines just the get_os_typespec()
functions for internal data structures parameterized by both the key and value type.

For example, if you had

os_Dictionary<int, Object1*> d1;

os_Dictionary<int, Object2*> d2;

You would use

OS_TRANSIENT_DICTIONARY(int, Object1*);
OS_TRANSIENT_DICTIONARY_NOKEY(int, Object2*);

Put these calls at file scope in an application source file.

For pointer keys, specify void* as key_type.

For class keys, the class must have a destructor.

The user-defined class that is used as a key must have get_os_typespec() declared
and defined. get_os_typespec() should be defined as follows, where KEYTYPE is
the name of the user-defined class:

{ return new os_typespec("KEYTYPE"); }

OS_TRANSIENT_NLIST()
If you use only transient os_nlist and os_nList, you must call the macro OS_
TRANSIENT_NLIST() for each unique set of template parameters given to your os_
nlist or os_nList. This is true unless there is a persistent os_nlist or os_nList
with the same template parameters and for which you have called OS_MARK_NLIST
or OS_MARK_NLIST_PT in your schema source file. In this case, the macro is not
needed and will produce an error message at link time.

Form of the call OS_TRANSIENT_NLIST(num_ptrs_in_head,num_ptrs_in_block)

Here are some examples:

os_nlist(8,16) nl1;
os_nList(Object*,8,20) nl2;
...
152 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
OS_TRANSIENT_NLIST(8,16)
OS_TRANSIENT_NLIST(8,20)

Put the calls to OS_TRANSIENT_NLIST at file scope in an application source file.

If a transient os_nlist or os_nList is instantiated and OS_TRANSIENT_NLIST() is
missing, os_nlist<num_ptrs_in_head,num_ptrs_in_block>::get_os_
typespec() and os_chained_list_block_pt<num_ptrs_in_block>::get_os_
typespec() are undefined at link time.

OS_TRANSIENT_NLIST_NO_BLOCK()
If you use a transient os_nlist or os_nList, you must call the macro OS_
TRANSIENT_NLIST_NO_BLOCK in certain cases where you have more than one os_
nlist or os_nList with the same num_ptrs_in_block template parameter.

Form of the call OS_TRANSIENT_NLIST_NO_BLOCK(num_ptrs_in_head)

OS_TRANSIENT_NLIST defines stubs for get_os_typespec() member functions of
internal data structures parameterized by either the num_ptrs_in_head and num_
ptrs_in_block arguments, or by just the num_ptrs_in_block argument. If you
have in your application more than one os_nlist or os_nList with the same num_
ptrs_in_block argument, specifying OS_TRANSIENT_NLIST multiple times will
result in multiply defined symbols at link time. Instead, use OS_TRANSIENT_NLIST
for one set of parameters, and use OS_TRANSIENT_NLIST_NO_BLOCK for any others
with the same value for num_ptrs_in_block.

Here are some examples:

os_nlist(8,16) nl1;
os_nlist(8,16) nl2;
os_nlist(4,16) nl3;
...
OS_TRANSIENT_NLIST(8,16)
OS_TRANSIENT_NLIST_NO_BLOCK(4)

Put the calls to OS_TRANSIENT_NLIST_NO_BLOCK at file scope in an application source
file.
Release 6.3 153

os_assign_function()
This macro is used to register an assignment function for an ordered os_Dictionary
key class or for an ordered or unordered index key class. Use this macro to make it
possible to use a key class that contains a soft pointer or to use an assignment
operator instead of memcpy when inserting or reorganizing objects in the dictionary
or index.

Use this macro in conjunction with the macro os_assign_function_body() on
page 154. This function must be called after os_collection::initialize().

To use the collections facility, you must include the file <os_pse/coll.hh> after
including <os_pse/ostore.hh>.

Form of the call os_assign_function(class)

class is the class used as a key.

The os_assign_function() macro should be invoked before creating the ordered
os_Dictionary or adding the index.

os_assign_function_body()
This macro is used to create an assignment function body for an ordered os_
Dictionary key class or for an ordered or unordered index key class. The function
body consists of an operator= statement. This macro makes it possible to use a key
class that contains a soft pointer or to use an assignment operator instead of memcpy
when inserting or reorganizing objects in the dictionary or index.

Use this macro in conjunction with the macro os_assign_function() on page 154.

To use the collections facility, you must include the file <os_pse/coll.hh> after
including <os_pse/ostore.hh>.

Form of the call os_assign_function_body(class)

class is the class used as a key.

The os_assign_function_body() macro should be invoked at module level in a
source file (for example, the file containing the definition of the member function).
154 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_index_key()
This macro is used to register user-defined rank and hash functions with PSE Pro.

To use the collections facility, you must include the file <os_pse/coll.hh> after
including <os_pse/ostore.hh>. This function must be called after os_
collection::initialize().

Form of the call os_index_key(class,rank_function,hash_function)

class is the class whose instances are ranked or hashed by the specified functions.

rank_function is a user-defined function that, for any pair of instances of class,
provides an ordering indicator for the instances, much as strcmp() does for arrays
of characters. You must supply this function. The rank function should return one of
os_collection::LT, os_collection::GT, or os_collection::EQ. See Supplying
Rank and Hash Functions on page 58.

hash_function is a user-defined function that, for each instance of class, returns an
os_unsigned_int32 value that can be used as a key in a hash table. Supplying this
function is optional. If you do not supply a hash function for the class, specify 0 as
the hash function argument.

Caution The macro arguments are used (among other things) to concatenate unique names.
The details of macro preprocessing differ from compiler to compiler, and in some
cases it is necessary to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.

os_index_key_hash_function()
This macro is used to register user-defined hash functions with ObjectStore. Use it
only to replace a hash function registered previously.

To use the collections facility, you must include the file <os_pse/coll.hh> after
including <os_pse/ostore.hh>. This function must be called after os_
collection::initialize().

Form of the call os_index_key_hash_function(class,hash_function)

class is the class whose instances are hashed by the specified function.

hash_function is a user-defined function that, for each instance of class, returns an
os_unsigned_int32 value that can be used as a key in a hash table.

Caution The macro arguments are used (among other things) to concatenate unique names.
The details of macro preprocessing differ from compiler to compiler, and in some
cases it is necessary to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.
Release 6.3 155

os_index_key_rank_function()
This macro is used to register user-defined rank functions with ObjectStore. Use it
only to replace a rank function registered previously.

To use the collections facility, you must include the file <os_pse/coll.hh> after
including <os_pse/ostore.hh>. This function must be called after os_
collection::initialize().

Form of the call os_index_key_rank_function(class,rank_function)

class is the class whose instances are ranked by the specified function. class can
also be char* when you register os_strcoll_for_char_pointer(), and char[]
when you register os_strcoll_for_char_array(). These versions of strcoll(),
provided by ObjectStore, will be used, if registered, instead of strcmp() to support
indexes keyed by char* or char[].

rank_function is a user-defined function that, for any pair of instances of class,
provides an ordering indicator for the instances, much as strcmp() does for arrays
of characters. The rank function should return one of os_collection::LT, os_
collection::GT, or os_collection::EQ. See Supplying Rank and Hash Functions
on page 58.

Caution The macro arguments are used (among other things) to concatenate unique names.
The details of macro preprocessing differ from compiler to compiler, and in some
cases it is necessary to enter these macro arguments without white space to ensure that
the argument concatenation will work correctly.

OS_INDEXABLE_LINKAGE()
Note This macro is for use on Windows platforms only.

Specifies the linkage for classes generated by the os_indexable_xxx macros. This
macro can be used with component schemas on Windows platforms. For example,
you could define the macro as Microsoft's __declspec (dllexport) to allow one
DLL to create a subclass of a class defined in another DLL when there are
relationship members.

You must define OS_INDEXABLE_LINKAGE() before including <ostore/coll.hh>.
For example:

...
#define OS_INDEXABLE_LINKAGE __declspec(dllexport)
#include <ostore/coll.hh>

If the macro is not defined, the default is blank.
156 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_query_function_body_with_namespace()
Applications that use a member function in a query or path string, where the
function is a member of a class encapsulated within a namespace, must call this
macro.

Form of the call os_query_function_body_body_with_namespace(
 class,qualified_class,return_type,bpname)

class is the name of the class that defines the member function

qualified_class is the name of the class, qualified with its namespace, for
example. NameSpace::class_name, that defines the member function

return_type names the type of value returned by the member function

bpname is the name of the os_backptr-valued member of class

The os_query_function_body_with_namespace() macro should be invoked at
module level in a source file (for example, the file containing the definition of the
member function). No white space should appear in the argument list.
Release 6.3 157

os_rel_1_1_body()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class that encapsulates the pointer (or collection-of-pointer)
so that it can intercept updates to the encapsulated value and perform the necessary
inverse maintenance tasks. The encapsulated-pointer values are stored as soft
pointers so as to maintain the values across address space release and transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh>. If you also include <os_pse/coll.hh>, include <os_
pse/relat.hh> after both <os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a single-valued data member
with a single-valued inverse data member. Calls to this macro should appear at the
top level in a source file associated with the class defining the member.

Form of the call os_rel_1_1_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to concatenate unique names
for the encapsulating relationship class and its accessor functions. The details of
macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly.
158 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_rel_1_m_body()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a single-valued data member
with a many-valued inverse data member. Calls to this macro should appear at the
top level in the source file associated with the class defining the member.

Form of the call os_rel_1_m_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to concatenate unique names
for the embedded relationship class and its accessor functions. The details of macro
preprocessing differ from compiler to compiler, and in some cases it is necessary to
enter these macro arguments without white space to ensure that the argument
concatenation will work correctly.
Release 6.3 159

os_rel_m_1_body()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a many-valued data member
with a single-valued inverse data member. Calls to this macro should appear at the
top level in the source file associated with the class defining the member.

Form of the call os_rel_m_1_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.
member is the name of the member being declared.
inv_class is the name of the class that defines the inverse member.
inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to concatenate unique names
for the embedded relationship class and its accessor functions. The details of macro
preprocessing differ from compiler to compiler, and in some cases it is necessary to
enter these macro arguments without white space to ensure that the argument
concatenation will work correctly.
160 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_rel_m_m_body()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a many-valued data member
with a many-valued inverse data member. Calls to this macro should appear at the
top level in the source file associated with the class defining the member.

Form of the call os_rel_m_m_body(class,member,inv_class,inv_mem)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

Caution The macro arguments are used (among other things) to concatenate unique names
for the encapsulating relationship class and its accessor functions. The details of
macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly.
Release 6.3 161

os_rel_1_1_body_options()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh>. If you also include <os_pse/coll.hh>, include <os_
pse/relat.hh> after both <os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a single-valued data member
with a single-valued inverse data member, when deletion propagation is desired.
Calls to this macro should appear at the top level in the source file associated with
the class defining the member.

Form of the call os_rel_1_1_body_options(class,member,inv_class,inv_mem,
 deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

deletion is either os_rel_propagate_delete or os_rel_dont_propagate_
delete. By default, deleting an object that participates in a relationship
automatically updates the other side of the relationship so that there are no dangling
pointers to the deleted object. In some cases, however, the desired behavior is
actually to delete the object on the other side of the relationship (for example, for
subsidiary component objects). This behavior is specified with os_rel_propagate_
delete.

index specifies whether the current member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.
162 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
inv_index specifies whether the inverse member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.

os_rel_1_m_body_options()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a single-valued data member
with a many-valued inverse data member, when deletion propagation is desired.
Calls to this macro should appear at the top level in the source file associated with
the class defining the member.

Form of the call os_rel_1_m_body_options(class,member,inv_class,inv_mem,
 deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.
Release 6.3 163

deletion is either os_rel_propagate_delete or os_rel_dont_propagate_
delete. By default, deleting an object that participates in a relationship
automatically updates the other side of the relationship so that there are no dangling
pointers to the deleted object. In some cases, however, the desired behavior is
actually to delete the object on the other side of the relationship (for example, for
subsidiary component objects). This behavior is specified with os_rel_propagate_
delete.

index specifies whether the current member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

inv_index specifies whether the inverse member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.

os_rel_m_1_body_options()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a many-valued data member
with a single-valued inverse data member, when deletion propagation is desired.
164 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
Calls to this macro should appear at the top level in the source file associated with
the class defining the member.

Form of the call os_rel_m_1_body_options(class,member,inv_class,inv_mem,
 deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

deletion is either os_rel_propagate_delete or os_rel_dont_propagate_
delete. By default, deleting an object that participates in a relationship
automatically updates the other side of the relationship so that there are no dangling
pointers to the deleted object. In some cases, however, the desired behavior is
actually to delete the object on the other side of the relationship (for example, for
subsidiary component objects). This behavior is specified with os_rel_propagate_
delete.

index specifies whether the current member is indexable. For nonindexable
members, use os_no_index.

inv_index specifies whether the inverse member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.

os_rel_m_m_body_options()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.
Release 6.3 165

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to instantiate accessor functions for a many-valued data member
with a many-valued inverse data member, when deletion propagation is desired.
Calls to this macro should appear at the top level in the source file associated with
the class defining the member.

Form of the call os_rel_m_m_body_options(class,member,inv_class,inv_mem,
 deletion, index, inv_index)

class is the class defining the data member being declared.

member is the name of the member being declared.

inv_class is the name of the class that defines the inverse member.

inv_mem is the name of the inverse member.

deletion is either os_rel_propagate_delete or os_rel_dont_propagate_
delete. By default, deleting an object that participates in a relationship
automatically updates the other side of the relationship so that there are no dangling
pointers to the deleted object. In some cases, however, the desired behavior is
actually to delete the object on the other side of the relationship (for example, for
subsidiary component objects). This behavior is specified with os_rel_propagate_
delete.

index specifies whether the current member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

inv_index specifies whether the inverse member is indexable. For nonindexable
members, use os_no_index. PSE Pro does not support indexable members.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.
166 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_relationship_1_1()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh>. If you also include <os_pse/coll.hh>, include <os_
pse/relat.hh> after both <os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to declare a single-valued data member with a single-valued
inverse data member. The macro call is used instead of the value type in the member
declaration.

class class-name
{
 ...
 macro-call member-name;
 ...
};

Form of the call os_relationship_1_1(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.
member is the name of the member being declared.
inv_class is the name of the class that defines the inverse member.
inv_mem is the name of the inverse member.
value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.
Release 6.3 167

os_relationship_1_m()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to declare a single-valued data member with a many-valued
inverse data member. The macro call is used instead of the value type in the member
declaration.

class class-name
{
 ...
 macro-call member-name;
 ...
};

Form of the call os_relationship_1_m(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.
member is the name of the member being declared.
inv_class is the name of the class that defines the inverse member.
inv_mem is the name of the inverse member.
value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.
168 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
OS_RELATIONSHIP_LINKAGE()
Windows
platforms

Specifies the linkage for classes generated by the os_relationship_xxx macros. This
macro can be used with component schemas on Windows platforms. For example,
you could define the macro as Microsoft’s __declspec(dllexport), which allows
one DLL to create a subclass of a class defined in another DLL when there are
relationship members.

You must define OS_RELATIONSHIP_LINKAGE() before including
<ostore/relat.hh>. For example:

...
#define OS_RELATIONSHIP_LINKAGE __declspec(dllexport)
#include <ostore/relat.hh>

If the macro is not defined, the default is blank.
Release 6.3 169

os_relationship_m_1()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to declare a many-valued data member with a single-valued
inverse data member. The macro call is used instead of the value type in the member
declaration.

class class-name
{
 ...
 macro-call member-name;
 ...
};

Form of the call os_relationship_m_1(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.
member is the name of the member being declared.
inv_class is the name of the class that defines the inverse member.
inv_mem is the name of the inverse member.
value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.
170 PSE Pro for C++ Collections Guide and Reference

Macros and User-Defined Functions Reference
os_relationship_m_m()
ObjectStore allows the user to model binary relationships with pointer-valued (or
collection-of-pointer-valued) data members that maintain the referential integrity of
their inverse data members. You implement this inverse maintenance by defining an
embedded relationship class, which encapsulates the pointer (or collection-of-
pointer) so that it can intercept updates to the encapsulated value and perform the
necessary inverse maintenance tasks. The encapsulated-pointer values are stored as
soft pointers so as to maintain the values across address space release and
transactions.

Required
include files

To use this macro, you must include the file <os_pse/relat.hh> after including
<os_pse/ostore.hh> and <os_pse/coll.hh>.

The actual value type of a data member with an inverse is a special class whose
instances encapsulate the member’s apparent value. This implicitly defined class
defines operator =() (for setting the apparent value), as well as operator ->(),
operator *(), and a conversion operator for converting its instances to instances of
the apparent value type (for getting the apparent value). Under most circumstances,
these operators make the encapsulating objects transparent.

The implicitly defined class also defines the member functions getvalue(), which
returns the apparent value, and setvalue(), which takes an instance of the apparent
value type as argument. These functions can always be used to set and get the
member’s apparent value explicitly.

This macro is used to declare a many-valued data member with a many-valued
inverse data member. The macro call is used instead of the value type in the member
declaration.

class class-name
{
 ...
 macro-call member-name;
 ...
};

Form of the call os_relationship_m_m(class,member,inv_class,inv_mem,value_type)

class is the class defining the data member being declared.
member is the name of the member being declared.
inv_class is the name of the class that defines the inverse member.
inv_mem is the name of the inverse member.
value_type is the value type of the member being declared.

Caution The first four macro arguments are used (among other things) to concatenate unique
names for the encapsulating relationship class and its accessor functions. The details
of macro preprocessing differ from compiler to compiler, and in some cases it is
necessary to enter these macro arguments without white space to ensure that the
argument concatenation will work correctly. There should be no white space in the
argument list between the opening parenthesis and the comma separating the fourth
and fifth arguments.
Release 6.3 171

172 PSE Pro for C++ Collections Guide and Reference

Release 6.3
Index
A
allow_duplicates

os_collection, defined by 97
allow_nulls

os_collection, defined by 97
arrays

description 21

B
bags

compared to sets 78
description 20
iterating over 36

C
cardinality

os_collection, defined by 97
cardinality()

finding the size of a collection 33
os_collection, defined by 97

cardinality_estimate()
os_collection, defined by 98

cardinality_is_maintained()
os_collection, defined by 98

classes, system-supplied
nonparameterized

os_array 68
os_bag 78
os_collection 95
os_cursor 114
os_list 132
os_set 144

os_Array 62
os_array 68
os_Bag 73
os_bag 78
os_Collection 82

os_collection 95
os_Cursor 109
os_cursor 114
os_Dictionary 119
os_List 127
os_list 132
os_nList 137
os_nlist 137
os_Set 139
os_set 144
parameterized

os_Array 62
os_Bag 73
os_Collection 82
os_Cursor 109
os_Dictionary 119
os_List 127
os_nList 137
os_nlist 137
os_Set 139

clear()
os_collection, defined by 98

collections
array 21
bag 20
choosing a type 20
combining 33
comparing 33
consolidating duplicates 58
copying 33
decision tree 21
defined 15
determining cardinality of 33
dictionary 21
element type parameter 24
initializing the collections facility 17
inserting elements into 29
iteration 37
list 20
173

D

loading phase 60
parameterized and nonparameterized 25
removing elements from 31
set 20
testing to see if empty 33
traversal 37

contains()
os_Collection, defined by 85
os_collection, defined by 98
os_Dictionary, defined by 122

count()
os_Collection, defined by 85
os_collection, defined by 98

count_values()
os_Dictionary, defined by 122

cursors
default 37

D
default cursor 37
default_behavior()

os_Set, defined by 141
dictionaries

definition 21
example 46
header files required 41
removing elements from 31
retrieving by key 57

dont_maintain_cardinality
os_collection, defined by 98

E
element

in collections 82
element type 82
element type parameter 24
empty()

os_collection, defined by 98
EQ

os_collection, defined by 98
returned by rank functions 155

err_coll_illegal_cursor exception
nonnull cursors 55

err_coll_not_singleton exception
more than one element 55

err_coll_not_supported exception
operations on unordered collections 39

unordered collection 56
err_coll_null_cursor exception

retrieve() function 55
err_coll_out_of_range exception

retrieve() function 56

F
first()

os_Cursor, defined by 110
os_cursor, defined by 115
returning collection’s first element 37

G
GE

os_collection, defined by 98
get_behavior()

os_collection, defined by 99
GT

os_collection, defined by 98
return value of os_index-key() 155
returned by rank functions 156

H
hash functions

iteration order 58
registering 155
replacing 155

I
initialize()

objectstore, defined by 17
os_collection, defined by 99

insert()
os_Collection, defined by 86
os_collection, defined by 99
os_Dictionary, defined by 122

insert_after()
os_Collection, defined by 86
os_collection, defined by 99
os_Cursor, defined by 110
os_cursor, defined by 115

insert_before()
os_Collection, defined by 86
os_collection, defined by 100
os_Cursor, defined by 110
os_cursor, defined by 115
174 PSE Pro for C++ Collections Guide and Reference

Index
insert_first()
os_Collection, defined by 87
os_collection, defined by 100

insert_last()
os_Collection, defined by 88
os_collection, defined by 101

iteration
controlling order 58
traversing a collection with cursor 37

L
last()

os_Cursor, defined by 111
os_cursor, defined by 115

LE
os_collection, defined by 101

lists 127
description 20

LT
os_collection, defined by 101
return value of os_index_key() 155
returned by rank functions 156

M
macros, system-supplied

os_assign_function() 154
os_assign_function_body() 154
os_index_key_hash_function() 155
os_indexable_body() 156
OS_INDEXABLE_LINKAGE() 156
OS_MARK_DICTIONARY() 150
OS_MARK_NLIST() 150
OS_MARK_NLIST_PT() 151
os_query_function_body_with_namespace()() 157
os_rel_1_1_body_options() 162
os_rel_1_m_body() 159
os_rel_1_m_body_options() 163
os_rel_m_1_body() 160
os_rel_m_1_body_options() 164
os_rel_m_m_body() 161
os_rel_m_m_body_options() 165
os_relationship_1_1() 167
os_relationship_1_m() 168
OS_RELATIONSHIP_LINKAGE() 169
os_relationship_m_1() 170
os_relationship_m_m() 171
OS_TRANSIENT_DICTIONARY() 151

OS_TRANSIENT_DICTIONARY_NOKEY() 152
OS_TRANSIENT_NLIST() 152
OS_TRANSIENT_NLIST_NO_BLOCK() 153

maintain_order
os_collection, defined by 101

more()
os_Cursor, defined by 111
os_cursor, defined by 115

N
NE

os_collection, defined by 101
next()

os_Cursor, defined by 111
os_cursor, defined by 115
positioning cursor at next element 37

null()
os_Cursor, defined by 111
os_cursor, defined by 115

O
objectstore, the class

initialize() 17
only()

os_Collection, defined by 88
os_collection, defined by 102
retrieving only element of a collection 55

operator !=()
os_Collection, defined by 89
os_collection, defined by 103

operator &()
os_Collection, defined by 92
os_collection, defined by 106

operator &=()
os_Array, defined by 66
os_array, defined by 71
os_Bag, defined by 76
os_bag, defined by 80
os_Collection, defined by 91
os_collection, defined by 105
os_List, defined by 131
os_list, defined by 135
os_Set, defined by 142
os_set, defined by 147

operator –()
os_Collection, defined by 92
os_collection, defined by 106
Release 6.3 175

O

operator <()
os_Collection, defined by 90
os_collection, defined by 104

operator <=()
os_Collection, defined by 90
os_collection, defined by 104

operator -=()
os_Array, defined by 66
os_array, defined by 72
os_Bag, defined by 77
os_bag, defined by 81
os_Collection, defined by 92
os_collection, defined by 106
os_List, defined by 131
os_list, defined by 135
os_Set, defined by 142
os_set, defined by 147

operator =()
os_Array, defined by 66
os_array, defined by 71
os_Bag, defined by 76
os_bag, defined by 80
os_Collection, defined by 91
os_collection, defined by 105
os_List, defined by 130
os_list, defined by 135
os_Set, defined by 142
os_set, defined by 146

operator ==()
os_Collection, defined by 89
os_collection, defined by 103

operator >()
os_Collection, defined by 90
os_collection, defined by 104

operator >=()
os_Collection, defined by 90
os_collection, defined by 104

operator |()
os_Collection, defined by 91
os_collection, defined by 105

operator |=()
os_Array, defined by 66
os_array, defined by 71
os_Bag, defined by 76
os_bag, defined by 80
os_Collection, defined by 91
os_collection, defined by 105
os_List, defined by 131

os_list, defined by 135
os_Set, defined by 142
os_set, defined by 146

operator const os_array&()
os_collection, defined by 102

operator const os_Array()
os_Collection, defined by 88

operator const os_bag&()
os_collection, defined by 102

operator const os_Bag()
os_Collection, defined by 88

operator const os_list&()
os_collection, defined by 103

operator const os_List()
os_Collection, defined by 89

operator const os_set&()
os_collection, defined by 103

operator const os_Set()
os_Collection, defined by 89

operator os_array&()
os_collection, defined by 102

operator os_Array()
os_Collection, defined by 88

operator os_bag&()
os_collection, defined by 102

operator os_Bag()
os_Collection, defined by 88

operator os_int32()
os_collection, defined by 102

operator os_list&()
os_collection, defined by 102

operator os_List()
os_Collection, defined by 89

operator os_set&()
os_collection, defined by 103

operator os_Set()
os_Collection, defined by 89

operators
comparison and assignment

dual purpose of 34
optimized

os_cursor, defined by 116
order_by_address

os_cursor, defined by 116
os_Array()

os_Array, defined by 67
os_array()

os_array, defined by 72
176 PSE Pro for C++ Collections Guide and Reference

Index
os_Array, the class 62
operator &=() 66
operator -=() 66
operator =() 66
operator |=() 66
os_Array() 67
set_cardinality() 67

os_array, the class 68
operator &=() 71
operator -=() 72
operator =() 71
operator |=() 71
os_array() 72
set_cardinality() 72

os_assign_function(), the macro 154
os_assign_function_body(), the macro 154
os_Bag()

os_Bag, defined by 77
os_bag()

os_bag, defined by 81
os_Bag, the class 73

operator &=() 76
operator -=() 77
operator =() 76
operator |=() 76
os_Bag() 77

os_bag, the class 78
operator &=() 80
operator -=() 81
operator =() 80
operator |=() 80
os_bag() 81

os_Collection, the class 82
contains() 85
count() 85
insert() 86
insert_after() 86
insert_before() 86
insert_first() 87
insert_last() 88
only() 88
operator !=() 89
operator &() 92
operator &=() 91
operator –() 92
operator <() 90
operator <=() 90
operator -=() 92

operator =() 91
operator ==() 89
operator >() 90
operator >=() 90
operator |() 91
operator |=() 91
operator const os_Array() 88
operator const os_Bag() 88
operator const os_List() 89
operator const os_Set() 89
operator os_Array() 88
operator os_Bag() 88
operator os_List() 89
operator os_Set() 89
remove() 92
remove_first() 93
remove_last() 93
replace_at() 93
retrieve() 94
retrieve_first() 94
retrieve_last() 94

os_collection, the class 95
allow_duplicates 97
allow_nulls 97
cardinality 97
cardinality() 97
cardinality_estimate() 98
cardinality_is_maintained() 98
clear() 98
contains() 98
count() 98
dont_maintain_cardinality 98
empty() 98
EQ 98
GE 98
get_behavior() 99
GT 98
initialize() 99
insert() 99
insert_after() 99
insert_before() 100
insert_first() 100
insert_last() 101
LE 101
LT 101
maintain_order 101
NE 101
only() 102
Release 6.3 177

O

operator !=() 103
operator &() 106
operator &=() 105
operator –() 106
operator <() 104
operator <=() 104
operator -=() 106
operator =() 105
operator ==() 103
operator >() 104
operator >=() 104
operator |() 105
operator |=() 105
operator const os_array&() 102
operator const os_bag&() 102
operator const os_list&() 103
operator const os_set&() 103
operator os_array&() 102
operator os_bag&() 102
operator os_int32() 102
operator os_list&() 102
operator os_set&() 103
remove_first() 106
remove_last() 107
replace_at() 107
retrieve() 108
retrieve_first() 108
retrieve_last() 108
update_cardinality() 108

~os_Cursor()
os_Cursor, defined by 113

os_Cursor()
os_Cursor, defined by 111

~os_cursor()
os_cursor, defined by 118

os_cursor()
os_cursor, defined by 116

os_Cursor, the class 109
first() 110
insert_after() 110
insert_before() 110
last() 111
more() 111

nonnull element 38
next() 111
null() 111
~os_Cursor() 113
os_Cursor() 111

owner() 112
previous() 112
rebind() 113
remove_at() 113
retrieve() 113
traversing a collection 37
valid() 113

os_cursor, the class 114
first() 115
insert_after() 115
insert_before() 115
last() 115
more() 115
next() 115
null() 115
optimized 116
order_by_address 116
~os_cursor() 118
os_cursor() 116
owner() 117
previous() 117
rebind() 117
remove_at() 117
retrieve() 118
update_insensitive 118
valid() 118

os_Dictionary()
os_Dictionary, defined by 123

os_Dictionary, the class 119
contains() 122
count_values() 122
insert() 122
os_Dictionary() 123
pick() 124
remove() 125
remove_value() 125
retrieve() 126
retrieve_key() 126

os_index_key(), the macro
rank and hash functions 59

os_index_key_hash_function(), the macro 155
os_indexable_body(), the macro 156
OS_INDEXABLE_LINKAGE(), the macro 156
os_List()

os_List, defined by 131
os_list()

os_list, defined by 136
os_List, the class 127
178 PSE Pro for C++ Collections Guide and Reference

Index
operator &=() 131
operator -=() 131
operator =() 130
operator |=() 131
os_List() 131

os_list, the class 132
operator &=() 135
operator -=() 135
operator =() 135
operator |=() 135
os_list() 136

OS_MARK_DICTIONARY(), the macro 150
OS_MARK_NLIST(), the macro 150
OS_MARK_NLIST_PT(), the macro 151
os_nList, the class 137
os_nlist, the class 137
os_query_function_body_with_namespace()(), the

macro 157
os_rel_1_1_body_options(), the macro 162
os_rel_1_m_body(), the macro 159
os_rel_1_m_body_options(), the macro 163
os_rel_m_1_body(), the macro 160
os_rel_m_1_body_options(), the macro 164
os_rel_m_m_body(), the macro 161
os_rel_m_m_body_options(), the macro 165
os_relationship_1_1(), the macro 167
os_relationship_1_m(), the macro 168
OS_RELATIONSHIP_LINKAGE(), the macro 169
os_relationship_m_1(), the macro 170
os_relationship_m_m(), the macro 171
os_Set()

os_Set, defined by 143
os_set()

os_set, defined by 147
os_Set, the class 139

default_behavior() 141
operator &=() 142
operator -=() 142
operator =() 142
operator |=() 142
os_Set() 143

os_set, the class 144
operator &=() 147
operator -=() 147
operator =() 146
operator |=() 146
os_set() 147

OS_TRANSIENT_DICTIONARY(), the macro 151

OS_TRANSIENT_DICTIONARY_NOKEY(), the
macro 152

OS_TRANSIENT_NLIST(), the macro 152
OS_TRANSIENT_NLIST_NO_BLOCK(), the macro 153
<ostore/coll/dict_pt.hh> header file 41
owner()

os_Cursor, defined by 112
os_cursor, defined by 117

P
parameter

element type 82
pick()

os_Dictionary, defined by 124
previous()

os_Cursor, defined by 112
os_cursor, defined by 117

R
rank functions

possible values returned 59
registering 155
replacing 156

rebind()
os_Cursor, defined by 113
os_cursor, defined by 117

registering rank and hash functions 155
remove()

os_Collection, defined by 92
os_Dictionary, defined by 125

remove_at()
os_Cursor, defined by 113
os_cursor, defined by 117

remove_first()
os_Collection, defined by 93
os_collection, defined by 106

remove_last()
os_Collection, defined by 93
os_collection, defined by 107

remove_value()
os_Dictionary, defined by 125

replace_at()
os_Collection, defined by 93
os_collection, defined by 107

replacing hash functions 155
replacing rank functions 156
retrieve()
Release 6.3 179

S

os_Collection, defined by 94
os_collection, defined by 108
os_Cursor, defined by 113
os_cursor, defined by 118
os_Dictionary, defined by 126
retrieving element with specific cursor

position 55
retrieve_first()

os_Collection, defined by 94
os_collection, defined by 108
retrieving collection’s first element 56

retrieve_key()
os_Dictionary, defined by 126

retrieve_last()
os_Collection, defined by 94
os_collection, defined by 108
retrieving collection’s last element 56

S
sessions

initialization 99
set_cardinality()

os_Array, defined by 67
os_array, defined by 72

sets 139
description 20

T
traversing collections 37

U
update_cardinality()

os_collection, defined by 108
update_insensitive

os_cursor, defined by 118

V
valid()

os_Cursor, defined by 113
os_cursor, defined by 118
180 PSE Pro for C++ Collections Guide and Reference

	Preface
	Introducing Collections
	Overview of Collections
	Collections Class Library
	Collections Manipulation Features
	Requirements for Collections Applications
	Including Collections Header Files
	Initializing the Collections Facility
	Generating the Application Schema
	Linking with ObjectStore Libraries

	Introductory Collections Example
	Choosing a Collection Type
	os_Set and os_set
	os_Bag and os_bag
	os_List and os_list
	os_Array and os_array
	os_Dictionary
	Using a Decision Tree to Select a Collection Type

	Collection Characteristics and Behaviors
	Collections Store Pointers to Objects
	Collections Can Be Transient or Persistent
	Parameterized and Nonparameterized Collections
	Class Hierarchy Diagram
	Collection Behaviors
	Expected Collection Size
	Performing pick() on an Empty Collection

	Templated and Nontemplated Collections
	Using Collections with the Element Type Parameter
	Using Collections Without Parameterization

	Performing Basic Collections Functions
	Creating Collections
	General Guidelines

	Deleting Collections
	Inserting Collection Elements
	Inserting Dictionary Elements
	Duplicate Insertions
	Null Insertions
	Ordered Collections
	Duplicate Keys

	Removing Collection Elements with remove()
	Ordered Collections
	Removing Dictionary Elements

	Testing Collection Membership with contains()
	Finding the Count of an Element with count()
	Finding the Size of a Collection with cardinality()
	Copying, Combining, and Comparing Collections
	Dual Purpose of the Operators
	Ordered Collections and Collections with Duplicates

	Using Cursors to Navigate Collections
	Description of a Cursor
	Creating Default Cursors
	Traversing Collections with Default Cursors
	Positioning the Cursor at the Collection’s First Element
	Moving the Cursor to the Collection’s Next Element
	Is the Cursor at a Nonnull Element?

	Rebinding Cursors to Another Collection
	Accessing Collection Elements with a Cursor or Ordinal Value
	Manipulating First and Last Elements in a Collection

	Using Dictionaries
	Creating Dictionaries
	Marking Persistent Dictionaries
	Marking Transient Dictionaries
	Dictionary Behavior
	Visiting the Elements with Specified Keys
	Writing Destructors for Dictionaries
	Example of Using Dictionaries

	Performing Advanced Collections Operations
	Controlling Traversal Order
	Default Traversal Order
	Address Order Traversal
	Rank-Function-Based Traversal

	Performing Collection Updates During Traversal
	Retrieving Uniquely Specified Collection Elements
	Ordered Collections

	Selecting Individual Collection Elements with pick()
	Dictionaries
	Picking an Arbitrary Element

	Consolidating Duplicates with operator =()
	Supplying Rank and Hash Functions
	os_index_key() Macro

	Specifying Expected Size

	Class Reference
	Introduction
	os_Array
	os_Array::operator =()
	os_Array::operator |=()
	os_Array::operator &=()
	os_Array::operator -=()
	os_Array::os_Array()
	os_Array::set_cardinality()

	os_array
	os_array::operator =()
	os_array::operator |=()
	os_array::operator &=()
	os_array::operator -=()
	os_array::os_array()
	os_array::set_cardinality()

	os_Bag
	os_Bag::operator =()
	os_Bag::operator |=()
	os_Bag::operator &=()
	os_Bag::operator -=()
	os_Bag::os_Bag()

	os_bag
	os_bag::operator =()
	os_bag::operator |=()
	os_bag::operator &=()
	os_bag::operator -=()
	os_bag::os_bag()

	os_Collection
	os_Collection::contains()
	os_Collection::count()
	os_Collection::insert()
	os_Collection::insert_after()
	os_Collection::insert_before()
	os_Collection::insert_first()
	os_Collection::insert_last()
	os_Collection::only()
	os_Collection::operator os_Array()
	os_Collection::operator const os_Array()
	os_Collection::operator os_Bag()
	os_Collection::operator const os_Bag()
	os_Collection::operator os_List()
	os_Collection::operator const os_List()
	os_Collection::operator os_Set()
	os_Collection::operator const os_Set()
	os_Collection::operator ==()
	os_Collection::operator !=()
	os_Collection::operator <()
	os_Collection::operator <=()
	os_Collection::operator >()
	os_Collection::operator >=()
	os_Collection::operator =()
	os_Collection::operator |=()
	os_Collection::operator |()
	os_Collection::operator &=()
	os_Collection::operator &()
	os_Collection::operator -=()
	os_Collection::operator -()
	os_Collection::remove()
	os_Collection::remove_first()
	os_Collection::remove_last()
	os_Collection::replace_at()
	os_Collection::retrieve()
	os_Collection::retrieve_first()
	os_Collection::retrieve_last()

	os_collection
	os_collection::allow_duplicates
	os_collection::allow_nulls
	os_collection::cardinality()
	os_collection::cardinality_estimate()
	os_collection::cardinality_is_maintained()
	os_collection::clear()
	os_collection::contains()
	os_collection::count()
	os_collection::empty()
	os_collection::EQ
	os_collection::GE
	os_collection::GT
	os_collection::get_behavior()
	os_collection::initialize()
	os_collection::insert()
	os_collection::insert_after()
	os_collection::insert_before()
	os_collection::insert_first()
	os_collection::insert_last()
	os_collection::LE
	os_collection::LT
	os_collection::maintain_order
	os_collection::NE
	os_collection::only()
	os_collection::operator os_int32()
	os_collection::operator os_array&()
	os_collection::operator const os_array&()
	os_collection::operator os_bag&()
	os_collection::operator const os_bag&()
	os_collection::operator os_list&()
	os_collection::operator const os_list&()
	os_collection::operator os_set&()
	os_collection::operator const os_set&()
	os_collection::operator ==()
	os_collection::operator !=()
	os_collection::operator <()
	os_collection::operator <=()
	os_collection::operator >()
	os_collection::operator >=()
	os_collection::operator =()
	os_collection::operator |=()
	os_collection::operator |()
	os_collection::operator &=()
	os_collection::operator &()
	os_collection::operator -=()
	os_collection::operator -()
	os_collection::remove_first()
	os_collection::remove_last()
	os_collection::replace_at()
	os_collection::retrieve()
	os_collection::retrieve_first()
	os_collection::retrieve_last()
	os_collection::update_cardinality()

	os_Cursor
	os_Cursor::first()
	os_Cursor::insert_after()
	os_Cursor::insert_before()
	os_Cursor::last()
	os_Cursor::more()
	os_Cursor::next()
	os_Cursor::null()
	os_Cursor::os_Cursor()
	os_Cursor::owner()
	os_Cursor::previous()
	os_Cursor::rebind()
	os_Cursor::remove_at()
	os_Cursor::retrieve()
	os_Cursor::valid()
	os_Cursor::~os_Cursor()

	os_cursor
	os_cursor::first()
	os_cursor::insert_after()
	os_cursor::insert_before()
	os_cursor::last()
	os_cursor::more()
	os_cursor::next()
	os_cursor::null()
	os_cursor::optimized
	os_cursor::order_by_address
	os_cursor::os_cursor()
	os_cursor::owner()
	os_cursor::previous()
	os_cursor::rebind()
	os_cursor::remove_at()
	os_cursor::retrieve()
	os_cursor::update_insensitive
	os_cursor::valid()
	os_cursor::~os_cursor()

	os_Dictionary
	os_Dictionary::contains()
	os_Dictionary::count_values()
	os_Dictionary::insert()
	os_Dictionary::os_Dictionary()
	os_Dictionary::pick()
	os_Dictionary::remove()
	os_Dictionary::remove_value()
	os_Dictionary::retrieve()
	os_Dictionary::retrieve_key()

	os_List
	os_List::operator =()
	os_List::operator |=()
	os_List::operator &=()
	os_List::operator -=()
	os_List::os_List()

	os_list
	os_list::operator =()
	os_list::operator |=()
	os_list::operator &=()
	os_list::operator -=()
	os_list::os_list()

	os_nList and os_nlist
	os_Set
	os_Set::default_behavior()
	os_Set::operator =()
	os_Set::operator |=()
	os_Set::operator &=()
	os_Set::operator -=()
	os_Set::os_Set()

	os_set
	os_set::operator =()
	os_set::operator |=()
	os_set::operator &=()
	os_set::operator -=()
	os_set::os_set()

	Macros and User-Defined Functions Reference
	OS_MARK_DICTIONARY()
	OS_MARK_NLIST()
	OS_MARK_NLIST_PT()
	OS_TRANSIENT_DICTIONARY()
	OS_TRANSIENT_DICTIONARY_NOKEY()
	OS_TRANSIENT_NLIST()
	OS_TRANSIENT_NLIST_NO_BLOCK()
	os_assign_function()
	os_assign_function_body()
	os_index_key()
	os_index_key_hash_function()
	os_index_key_rank_function()
	OS_INDEXABLE_LINKAGE()
	os_query_function_body_with_namespace()
	os_rel_1_1_body()
	os_rel_1_m_body()
	os_rel_m_1_body()
	os_rel_m_m_body()
	os_rel_1_1_body_options()
	os_rel_1_m_body_options()
	os_rel_m_1_body_options()
	os_rel_m_m_body_options()
	os_relationship_1_1()
	os_relationship_1_m()
	OS_RELATIONSHIP_LINKAGE()
	os_relationship_m_1()
	os_relationship_m_m()

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

