
PSE Pro for C++ Release Notes

Release 6.3

Copyright

PSE Pro for C++ Release Notes, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This
manual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes
no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design),
DataDirect Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center,
eXcelon, Fathom,, IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered
by Progress, Progress, Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program,
Progress Fast Track, Progress OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and
design), ProCare, Progress en Partners, Progress in Progress, Progress Profiles, Progress Results, Progress Software
Developers Network, ProtoSpeed, ProVision, SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, and Your Software, Our Technology-Experience the Connection are registered
trademarks of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and/or other
countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen, ASP-in-a-Box,
BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect XQuery,
DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser,
SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks
of Progress Software Corporation or one of its subsidiaries or affiliates in the U.S. and other countries. Java and all
Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Any other trademarks or trade names contained herein are the property of their respective owners.

September 2005

Contents
Contents

Preface . 5

Release Notes . 9

New and Changed Features . 9

New Platforms for PSE Pro for C++. 9

Utility for Verifying Databases . 10

Environment Variable for Handling Exceptions 10

Finding Invalid Pointers After Relocation . 11

Changed Signatures for self_check() Functions 11

Changed Code for Collections Example . 12

Known Problems . 12

HP-UX Possible Database Incompatibility . 14

Compatibility of PSE Pro and ObjectStore . 14

API Additions in PSE Pro But Not in ObjectStore 14

Browsing and Searching the Documentation 16

Using the HTML Documentation Set . 16

Using the PDF Documentation Set . 16

Changes and Bug Fixes in Earlier Releases . 17

New Feature in 6.2 . 17

New Features in 6.1.2 . 17

Changes in Release 4.0 . 17

Changes in Release 3.0.3 . 18

Changes in Release 3.0.2 . 18

New APIs in Release 3.0.2 . 19

Bug Fixes in 6.2 . 20

Bug Fixes in 6.1.2. 20

Bug Fixes in Release 4.0 . 21

Bug Fixes in Release 3.0.3 . 21

Bug Fixes in Release 3.0.0 . 23
Release 6.3 3

Contents
4

4 PSE Pro for C++ Release Notes

Preface

Purpose PSE Pro for C++ Release Notes provides information about new features, fixed
problems, known problems, upgrading to Release 6.3, compatibility between PSE
Pro and ObjectStore, and how to obtain support. For last-minute considerations, see
the readme file in your PSE Pro installation directory.

Audience This book is for programmers responsible for writing database applications that use
PSE Pro for C++. It is assumed that you are experienced at developing C++
applications.

Scope This book supports Release 6.3 of PSE Pro for C++.

Notation Conventions
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.
Release 6.3 5

Preface
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.
6 PSE Pro for C++ Release Notes

Preface
Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 7

Preface
8 PSE Pro for C++ Release Notes

Release Notes

This document discusses the following topics:

New and Changed Features 9

Known Problems 12

Compatibility with Earlier PSE Pro for C++ Releases 14

Compatibility of PSE Pro and ObjectStore 14

Browsing and Searching the Documentation 16

Changes and Bug Fixes in Earlier Releases 17

New and Changed Features
PSE Pro Release 6.3 contains the following new and changed features:

• New Platforms for PSE Pro for C++

• Schema Generator Can Generate Schema Libraries

• Utility for Verifying Databases

• Environment Variable for Handling Exceptions

• Finding Invalid Pointers After Relocation

• Changed Signatures for self_check() Functions

• Changed Code for Collections Example

New Platforms for PSE Pro for C++
PSE Pro for C++ is available on the following new platforms:

• Linux 64

• Windows Visual Studio .NET 2003

On Windows platforms, only Visual Studio .NET 2003 is supported; Visual Studio
.NET 2002 and Visual C++ 6.0 are no longer supported.
Release 6.3 9

New and Changed Features
Schema Generator Can Generate Schema Libraries
You can now use the pssg utility to generate a schema library. For applications that
run on Windows, a schema library is a dll. For applications that run on UNIX, a
schema library is a shared library. You can use a schema library in the following
ways.

• For verifying a database. See PSE Pro for C++ A P I User Guide, Checking Databases
with the ospseverifydb Utility.

• In place of linking with the traditional schema object file in a PSE Pro application.
When your program loads the schema library, PSE Pro initializes the typespecs for
classes that are marked in the schema library.

For details about specifying the options that generate schema libraries, see Building
Applications with PSE Pro for C++, Format of the Schema Generator Command Line.

Utility for Verifying Databases
To verify a PSE Pro database, execute the ospseverifydb utility. The command line
format is as follows:

ospseverifydb db [-schema_lib schema_library...]

Replace db with the path of the PSE Pro database that you want to verify. If the
database you want to verify contains only built-in types and no user-defined types,
you need to specify only the database path.

If the database you want to verify contains any user-defined types, you must specify
the -schema_lib option and replace schema_library with the path for one or more
schema libraries. Specify the schema libraries that the ospseverifydb utility needs
to verify the database. If you do not specify at least one schema library, the utility
verifies C++ built-in types until it finds a user-defined type. At which point the
utility throws os_err_umarked_type exception and terminates.

Information about the ospseverifydb utility is in PSE Pro for C++ A P I User Guide,
Checking Databases with the ospseverifydb Utility. Information about generating
schema libraries is in Building Applications with PSE Pro for C++, Running the Schema
Generator.

Environment Variable for Handling Exceptions
Setting the OS_PSE_DEF_EXCEP_ACTION environment variable specifies an action
that you want PSE Pro to perform when it is about to throw an exception.

On UNIX, setting this environment variable makes it easier to debug unhandled
exceptions. The value you specify determines whether PSE Pro returns control to the
debugger, dumps core, or exits with a particular return value.

By default, this variable is not set. When PSE Pro encounters an exception and this
variable is not set, PSE Pro throws the exception to the program. If the program does
not catch and handle the exception, the PSE Pro fault handler macros (OS_PSE_
ESTABLISH_FAULT_HANDLER and OS_PSE_END_FAULT_HANDLER) print a message and
then terminate the program.
10

Release Notes
You can specify the following values to set this variable:

Finding Invalid Pointers After Relocation
The obectstore::set_check_illegal_pointers() function indicates whether
you want PSE Pro to find any invalid pointers in a page after relocation. The function
signature is

void set_check_illegal_pointers(os_boolean yes_no);

After you call this function with a true value, then after mapping a page into memory
and performing relocation, PSE Pro checks the pointers in the relocated page to
determine whether they are valid. PSE Pro displays a message that indicates any
invalid pointers, and then continues processing. PSE Pro does not fix any invalid
pointers.

The OS_PSE_CHK_ILLEGAL_PTR environment variable serves the same purpose as a
call to the set_check_illegal_pointers() function.

The default value for the function call and for the environment variable is false.

Changed Signatures for self_check() Functions
The os_database::self_check() function takes a new argument. The function
signature is now

void self_check(os_boolean b_skip_vtbls = 0);

Set the b_skip_vtbls argument to true when your program performs only database
verification and the class definitions are not linked into the program.

The objectstore::self_check() function also takes the same new argument. The
function signature is now

static void self_check(os_boolean b_skip_vtbls = 0);

For details about the self_check() functions, see PSE Pro for C++ A P I User Guide,
Checking for Data Corruption.

Value Description

abort PSE Pro aborts the process. On UNIX, PSE Pro creates a core file
and, if you are running in a debugger, returns control to the
debugger.

integer Specify an integer greater than or equal to 1. PSE Pro exits the
program with the specified integer as the return value.

kill PSE Pro action varies by platform:

• Windows — ExitProcess (0x006600);

• UNIX — kill (getpid(), SIGKILL);

Any other value PSE Pro exits the program with a return value of 1. This is the
default value for setting this variable.
Release 6.3 11

Known Problems
Changed Code for Collections Example
In the PSE Pro collections example, the dnary.hh and dnary.cc files were modified
to use the placement new operator to create a collection.

Known Problems
12994 pssg

For static builds, when linking pssg’s osschm.obj with the static PSE library, the
linker will warn about LNK4049:

locally defined symbol “const os_pse::os_basic_typespec::‘vftable’” imported

The warning can be ignored.

13196 cpse
During os_database::undo/redo(), the fetch hook for the objects on undo/redo-
pages is NOT being called.

13175 pssg
pssg crashes with STL map<key..> where key is enum.

When marking a template instantiation where the template actual argument is an
enum value, pssg will crash. For example:

typedef const enum { K1=1; } KEY;

A workaround is to use an integer value instead, and instantiate the template with
"K1":

#define K1 1
typedef int KEY

13611 pssg
Crash when marking template <int* p> class Foo

When marking something like the following instantiation with a template actual
argument that is a variable, pssg will crash accessing 0x0.

template <int *p> class Foo {}; int i; OS_MARK_SCHEMA_TYPE(Foo<&i>)

There is no workaround.

13700 pssg
Not patching long type names: “void*” and “short int” (STL map)

When supplying “long” class names explicitely in the .scm file (compare with
stl/stl42/readme.txt), pointers need to be specified as “void *” instead of
“void*” (there must be a space between void and *), otherwise the linker will
12

Release Notes
complain about a missing symbol x::the_instance where “x” is the “long” class
name being marked.

Similarly, when instantiation templates, use “short” instead of “short int”.

13721 cpse
Invalid os_ts<T> members if DllEntryPoint() present in DLL

When building a DLL that contains marked types and therefore os_ts<T> instances,
do not add a function DllEntryPoint() with the signature

BOOL WINAPI DllEntryPoint(HINSTANCE, DWORD, LPVOID)

This prevents the static constructors of the os_ts<T> instances from being run in the
osschm.obj that pssg creates. A typical error is that typespec instances return
invalid values. For example:

os_typespec *ts = os_ts<Foo>::get(); int sz = ts->get_size(); //
returns 2328371 instead of 8

13930 pssg
pssg crashes when using #import statements in .scm file

pssg crashes if the .scm file contains a #import directive. To work around this
problem, conditionalize the directive using _ODI_PSSG_, for example:

#ifndef _ODI_PSSG_ #import “mylib.tlb” no_implementation #endif
Release 6.3 13

Compatibility of PSE Pro and ObjectStore
Compatibility with Earlier PSE Pro for C++
Releases

PSE Pro for C++ Release 6.3 is compatible with applications and databases built with
PSE Pro for C++ Release 6.x, 5.0 and 4.0. You can have Release 6.3 and Release 6.x,
5.1, and 5.0 installed on the same machine. Databases created with any release are
compatible.

For PSE Pro for C++ Release 5.1 and Release 5.0, the PSE Pro DLLs have been
renamed to have the o5* prefix to distinguish them from Release 4.0 DLLs.

On the HP-UX platform the schema format has been modified to support virtual base
classes, so customers need to re-generate schemas, and then recompile and re-link
the schema.

HP-UX Possible Database Incompatibility
A bug in version 3.45 of HP’s aCC compiler can cause a database incompatibility
between PSE Pro 6.3 and previous releases of PSE Pro on HP-UX. For some
applications that have schemas that contain virtual base classes, the database schema
generated by previous releases of PSE Pro is incompatible with the database schema
generated by PSE Pro 6.3.

A detailed explanation of the bug and its fix is on the HP Web site at
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_
IDX/1,1701,7866,00.html#faq-compat).

To determine whether your application will have this incompatibility, use PSE Pro
6.3’s schema generator to regenerate your application’s schema. Then compare the
object schema file (the .cpp file) generated by 6.3 with the object schema file
generated by your previous version of PSE Pro.

If you find that the two schemas are incompatible, you must evolve your database to
be able to use it with PSE Pro 6.3.

Compatibility of PSE Pro and ObjectStore
The PSE Pro API is a subset of the ObjectStore API. In general, you should have no
trouble upgrading from PSE Pro to ObjectStore. However, the PSE Pro API differs
from that of ObjectStore in a few ways.

API Additions in PSE Pro But Not in ObjectStore
PSE Pro performs some tasks differently from ObjectStore. Consequently, the PSE
Pro API includes additions to its interface that are not found in the ObjectStore API:

• os_database::save()

ObjectStore requires the use of transactions. With ObjectStore, call os_
transaction::commit() to save the state of the database.
14

Release Notes
• os_database::save_as() and os_database::copy()

With ObjectStore, use the oscopy utility.

• os_database::self_check() and objectstore::self_check()

• Undo/redo facility

- os_database::set_undo_marker()

- objectstore::set_maximum_undo_operations()

- os_database::undo()

- os_database::redo()

- os_database::is_altered()

- os_database::is_undoable()

- os_database::is_redoable()

• Specification of istorage, stream_name, and reserve_mb_adr_space
parameters when you create or open a database.

• objectstore::disable_logging()

• Schema evolution facility

- os_database::rename_type()

- os_database::record_new_object_location()

- os_database::fix_pointers()

• os_database::needs_recovery() and os_database::recover()

• os_database::dump_contents()

• os_database::is_modified()

• os_get_page_stats()

Other differences between PSE Pro and ObjectStore include the following:

• With ObjectStore, transactions are required. With PSE Pro, transactions are
optional.

• ObjectStore supports nested transactions. PSE Pro does not.

• ObjectStore uses the TIX_EXCEPTION handler. PSE Pro uses native exceptions.

• ObjectStore environment variables and macros start with OS_. PSE Pro
environment variables and macros start with OS_PSE_.

• ObjectStore’s schema generator, ossg, creates

T::get_os_typespec()

PSE Pro’s schema generator, pssg, creates

os_ts<T>::get()

• In ObjectStore, os_database::is_open() is not a static function. In PSE Pro, it is
static.
Release 6.3 15

Browsing and Searching the Documentation
Browsing and Searching the Documentation
The documentation for PSE Pro is available in HTML and PDF formats. Each format
is described in the following topics:

• Using the HTML Documentation Set

• Using the PDF Documentation Set

The HTML version of the documentation set contains a full text search feature.

Using the HTML Documentation Set
To open the PSE Pro documentation set on Windows platforms, select the Start |
Programs | ObjectStore PSE Pro for C++ | PSE Pro Bookshelf menu item.

To open the PSE Pro documentation set on UNIX platforms, open the
doc/index.htm file in a browser. The full pathname for this file is typically
/opt/ODI/PSEProC/doc/index.htm.

To use the HTML version of the PSE Pro for C++ documentation set, you need to
have JavaScript enabled.

The HTML version of the PSE Pro documentation set is tested on Internet Explorer
6.0.x, Netscape 7.0.x, and Mozilla Firefox 1.0.x. The documentation set cannot be
displayed properly using Netscape 6.0.

Using the PDF Documentation Set
If you want to view the documentation set in PDF format or if you want print a hard
copy of the documentation, open the PDF versions of the books that are located in
the doc/pdf directory. You can also select PDF versions of the documentation by
opening the doc/index.htm file in a browser. The API reference information is
generated with the javadoc tool; therefore, PDF version of that information is not
available.

To view PDF files in Acrobat Reader, you must use Acrobat Reader 5.0 or a
subsequent release.
16

Release Notes
Changes and Bug Fixes in Earlier Releases
This section provides information about changes and bug fixes in earlier PSE Pro
releases.

New Feature in 6.2
PSE Pro now uses the standard specification for streams in place of the classic
specification. Where your code uses the following:

#include <iostream.h>
#include <fstream.h>

You must change it to this:

#include <iostream>
#include <fstream>

After you make these changes, you must re-compile and re-link your application.

New Features in 6.1.2
PSE Pro for C++ is now supported on the Solaris platform.

The PSE Pro for C++ schema generator (pssg) is fully supported on on all platforms.

Virtual base classes are now supported in PSE Pro for C++.

Changes in Release 4.0

os_database::is_altered()
os_boolean is_altered();

This function deteremines whether or not a database has been modified after an
undo marker was set; it returns non-zero (true) if the database was modified after the
last call to this function or after an os_database::set_undo_marker() is called.
You can call this function to avoid setting unnecessary undo markers when a
database has not been modified.

Support for Variable Page Size Settings
The new OS_PSE_PAGE_SIZE environment variable enables you to set the PSE Pro
database page size. Setting the PSE Pro database page size (or soft page size) to a
higher value than the default of 4K generally increases performance and increases
the maximum allowed address range that could be mapped.

To use this feature, set the environment variable OS_PSE_PAGE_SIZE to the value in
kilobytes of the page size. For example, to set a page size of 32K on a UNIX platform,
use

setenv OS_PSE_PAGE_SIZE 32

For complete information, see OS_PSE_PAGE_SIZE in the PSE Pro for C++ A P I User
Guide.
Release 6.3 17

Changes and Bug Fixes in Earlier Releases
Improved Paging Scheme
The PSE Pro internal paging scheme has been improved to use a hash function. This
enables faster access to database pages and provides increased scalability for large
databases.

New Rogue Wave STL Example
A new example application shows how to use Rogue Wave’s Standard Template
Library (STL) persistently with PSE Pro. See readme.txt in the examples/rwstl
directory for information on how to use this example.

Support for ObjectStore Inspector
With the PSE Pro version of the ObjectStore Inspector you can browse, edit, and
report on data in a PSE Pro database. Inspector comes with a complete online help
system that describes how to use it. In addition, see Using PSE Pro for C++ Inspector
for a brief introduction to Inspector.

Changes in Release 3.0.3
Another approach to map pages using mapaside has been implemented for this
Service Pack. Mapaside relocates a page at a mapaside buffer and then copies it over
to the page being mapped. This considerably reduces the block for which threads are
frozen (only for the duration when the page is mapped and the mapaside buffer
copied). But mapaside has overheads over in-place relocation, that of copying each
page relocated from the mapaside buffer to the page mapped.

mapaside can be enabled/disabled using the API or by setting an environment
variable.

• At runtime using the API objectstore::set_mapaside(os_boolean yes_no).
Use objectstore::set_mapaside(true) to enable mapaside. The default value
for the API call is true.

• By setting the environment variable OS_PSE_DISABLE_MAPASIDE. mapaside can
be disabled by setting OS_PSE_DISABLE_MAPASIDE to 1.

PSE Pro, by default, uses the mapaside scheme to map pages.

Changes in Release 3.0.2
• Collection schema and DLL are incompatible with previous releases. They are

now equal to ObjectStore/C++ 6.0 Service Pack 1. That is, modules using the
collection API have to be recompiled and relinked against PSE 3.0 Service Pack 2.
Existing databases containing collection objects cannot be used with PSE 3.0
Service Pack 2. Databases have to be recreated.

• Collection memory leaks have been resolved (Amber 14602).

• An application using ObjectStore/C++ and PSE C++ can now use the Collection
API as well, since the os_pse namespace has been added to PSE C++ Collections
(Amber 14127). Refer to the PSE Pro ostore example, and note the following order
of include files:
18

Release Notes
a Include files for ObjectStore

b Include files for ObjectStore collections

c Include files for PSE.

d Include files for PSE collections

The ObjectStore/PSE Pro C++ collection headers reuse types and macros and so this
order must be strictly maintained so that the corresponding files pick up the correct
definitions for the types and macros.

New APIs in Release 3.0.2
New and modified APIs in Release 3.0 Service Pack 2 are described briefly here.

os_database::get_n_roots()
os_database::get_all_roots()
os_int32 get_n_roots() const;
void get_all_roots(
 os_int32 max_roots,
 os_database_root_p*roots,
 os_int32& n_roots) const;

Provides access to all the roots in the specified database The os_database_root_p*
is an array of pointers to roots. This array must be allocated by the user. The function
os_database::get_n_roots() can be used to determine the size of an array to
allocate. max_to_return is specified by the user and is the maximum number of
elements the array is to have.

objectstore::
set_thread_locking_during_relocation(os_boolean yes_no)
OS_PSE_DISABLE_THREAD_LOCKING=1
In circumstances where multiple threads are used and where these threads might
operate on the same database, it is possible that, after a thread faults on a page and
during the process of mapping and relocating that page, another thread might
access the same page. in such a case, the second thread is not reading consistent data.
To prevent this from happening, when a page is being relocated, all other threads are
suspended(frozen) before relocation starts and resumed after relocation is complete.
This may cause deadlock situations. You can skip freezing of threads to avoid
deadlock by using the objectstore::set_thread_locking_during_
relocation() api with a false parameter. The user is then responsible for providing
for proper thread synchronization. You can skip thread locking without problems in
applications where different threads operate on different databases.

The default value for the API call is false. Thread locking can also be set using the
environment variable OS_PSE_DISABLE_THREAD_LOCKING. Thread locking is
skipped if OS_PSE_DISABLE_THREAD_LOCKING is set to 1.

objectstore::
set_check_illegal_pointers(os_boolean yes_no)
Release 6.3 19

Changes and Bug Fixes in Earlier Releases
OS_PSE_CHK_ILLEGAL_PTR=1
This API sets the boolean value to checking for validation of invalid pointers in the
database. If set_check_illegal_pointers() is called with a true value, then, on
relocation in a page after a page is mapped in memory, validation of all the pointers
in that page is carried out.

The default value for the API call is false. The environment variable OS_PSE_CHK_
ILLEGAL_PTR can also be used to set checking for validation of invalid pointers in the
database.

Change to os_database::lookup()
static os_database *lookup(

const char *pathname,
os_int32 create_mode = 0

);

Returns a pointer to the database with the specified pathname but does not open it.
If it is not found, an err_database_not_found exception is signaled. create_mode
is a Boolean value; if its value is nonzero and no database named pathname exists, it
creates the database.

Bug Fixes in 6.2

18696 cpse
In the previous release, PSE Pro threw an exception when an application aborted a
transaction that used large objects. PSE Pro no longer throws this exception.

18485 cpse
The objectstore::initialize() function no longer sets the locale. It is set only
when handling filenames and there after reset back to the original.

Bug Fixes in 6.1.2

13165 pssg
Previously, pssg created wrong relocation info for vtbl in classes w/ virtual bases.
The new pssg supports virtual base classes.

17004 cpse
The os_databse::is_altered() method did not return true on data modification.
The os_database::is_altered() method returned true on creation or deletion of
objects but not when an object was modified. This has been corrected.

17036 cpse
Check for adjusted size of allocation incorrect in _ODI_change_typespec()

17268 cpse
In UNIX versions, an error message was printed for missing vtbl symbol even if OS_
PSE_DEBUG_VTBL was not set.
20

Release Notes
17326 cpse
In UNIX versions, the cache file was hardcoded to the /tmp directory.

Bug Fixes in Release 4.0

Bug Fixes in Release 3.0.3

15814 Usage of the OS_PSE_CHK_ILLEGAL_PTR environment variable when
mapaside is enabled caused exception os_err_database_
transient

15829 Under certain circumstances the thread local storage (TLS) entries
for exited threads were not properly deleted, which led to
deadlocks (case number 90962).

16094 Calls to os_transaction::abort() unmapped system pages,
which caused a recursive fault.

15711 Program group items didn’t work if PSE Pro was installed in the
\Program Files directory.

14868 Failure when creating a huge database threw an os_err_internal
error instead of an os_err_out_of_virtual_memory error.

14760
15614

Multiple threads accessing the same database could cause
deadlocks.

15755 Calls to os_transaction::abort() could fail to relocate pages when a
transaction was aborted.
Release 6.3 21

Changes and Bug Fixes in Earlier Releases
Bug Fixes in Release 3.0.2
14025 test/ostore: macro redefinition (txn and exception stuff)

14033 add resource information to DLLs (bad resource for o3mfcu.dll)

14132 VC++ debug C-runtime reports 20B leak on the global os_
transaction object

14594 internal thread-local-storage leaks thread-handle

14761 return_all_pages(): os_err_internal - Assertion “n < n_
bits” utils\bitvec.cc

14936 undefined os_ts<bool>::get(), needs to be added to
include/os_pse/api/os_tspec.

14951 os_database::lookup() has wrong read_only arg

15055 examples/ostore doesn’t work with OStore R6

15057 PCR app-schema-dll support for PSE C++ MOP

14035 os_Dictionary::pick() returns 0

14127 PSE & Collection app not supported (chlist.hh(579): cannot convert
to os_coll_ptr)

14128 btree based os_Dictionary crashes w/ “Calculated filler size ..”

14129 dtest/dtest -t_pchar fails in d_chpt_dups_ordered, test_reorg

14466 _Long_hash and _Long_rank not exported

14517 PSE pro link error - os_rel_many::no_value_descriptor() not
implemented

14602 Case Number 76406 mem leaks in PSE collections

14835 Case Number 81632 : Unresolved external os_rel_protect_being_
deleted

14400 3.0 pssg on VC50 crashes with at instruction at “0x00000020”,
memory could not be read

13552 SDI/MDI apps don’t remove db/log in \temp

14802 crash in OnOpenDocument->WideCharToMultiByte in OSMFC,
Unicode

15323 Log file being deleted by os_database::open() attempting to
open a corrupted database. Previous workaround of copying the log
file just before attempting to open the database is no longer needed.
22

Release Notes
Bug Fixes in Release 3.0.1

Bug Fixes in Release 3.0.0

14197 #SE068059_O# relat.hh in PSE Pro C++ 3.0

14139 custom build rules for PSSG not found, examples/schema_evol, VC60

12572 40B mem leak in util.cc: DllMain(), PROCESS_ATTACH

14122 crash w/ os_Dictionnary<char*, B*>::insert()

14138 VC++ 6.0 recognized: LNK4064: conflicting subsystem

14130 linking STL example on VC++ 6.0: corrupted file osschm.obj
Release 6.3 23

Changes and Bug Fixes in Earlier Releases
24

Index
O
objectstore::set_check_illegal_pointers() 11
OS_PSE_CHK_ILLEGAL_PTR environment variable 11
Release 6.3 25

26

	PSE Pro for C++ Release Notes
	Preface
	Release Notes
	New and Changed Features
	New Platforms for PSE Pro for C++
	Schema Generator Can Generate Schema Libraries
	Utility for Verifying Databases
	Environment Variable for Handling Exceptions
	Finding Invalid Pointers After Relocation
	Changed Signatures for self_check() Functions
	Changed Code for Collections Example

	Known Problems
	Compatibility with Earlier PSE Pro for C++ Releases
	HP-UX Possible Database Incompatibility

	Compatibility of PSE Pro and ObjectStore
	API Additions in PSE Pro But Not in ObjectStore

	Browsing and Searching the Documentation
	Using the HTML Documentation Set
	Using the PDF Documentation Set

	Changes and Bug Fixes in Earlier Releases
	New Feature in 6.2
	New Features in 6.1.2
	Changes in Release 4.0
	Changes in Release 3.0.3
	Changes in Release 3.0.2
	New APIs in Release 3.0.2
	Bug Fixes in 6.2
	Bug Fixes in 6.1.2
	Bug Fixes in Release 4.0
	Bug Fixes in Release 3.0.3
	Bug Fixes in Release 3.0.2
	Bug Fixes in Release 3.0.1
	Bug Fixes in Release 3.0.0

	O

