
PSE Pro for C++ Tutorial

Release 6.3

Copyright

PSE Pro for C++ Tutorial, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom,,
IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered by Progress, Progress,
Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress
OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and design), ProCare, Progress en Partners,
Progress in Progress, Progress Profiles, Progress Results, Progress Software Developers Network, ProtoSpeed, ProVision,
SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries
or affiliates in the U.S. and/or other countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen,
ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect
XQuery, DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or
one of its subsidiaries or affiliates in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or trade names contained herein
are the property of their respective owners.

September 2005

Contents
Contents

Preface . 5

Chapter 1 Benefits of PSE Pro for C++ . 9

Chapter 2 Description of the Data Model for the Tutorial Example . . 11

Required PSE Pro Header File . 15

Chapter 3 Writing an Application to Use PSE Pro 21

Establishing Fault Handlers . 21

Initializing PSE Pro. 21

Creating and Opening Databases . 22

Using Database Roots as Entry Points . 22

Saving Databases . 23

Closing Databases . 23

Chapter 4 Building Applications That Use PSE Pro 25

Creating the Schema Source File. 25

Generating the Schema. 26

Running the pssg Utility. 26

Regenerating the Schema Object File . 26

Default Compiler Switches . 26

Schema Generation in the VC++ IDE . 27

Compiling the Code . 27

Linking the Components . 27

Typical Link Errors Related to Schema Generation 28

Static Builds. 28

Schema Generation and Static builds . 29

Using MSDEV IDE . 29

Index . 31
Release 6.3 3

Contents
4

4 PSE Pro for C++ Tutorial

Preface

Purpose PSE Pro for C++ Tutorial provides an introduction to writing and building PSE Pro
applications.

Audience This book is for programmers responsible for writing database applications that use
PSE Pro for C++. No previous knowledge of PSE Pro for C++ or the C++ interface to
ObjectStore is required. It is assumed that you are experienced with Visual C++.

Scope This book supports Release 6.3 of PSE Pro for C++.

How This Book Is Organized
Chapter 1, Benefits of PSE Pro for C++, on page 9 describes the advantages of using
PSE Pro to maintain persistent data.

Chapter 2, Description of the Data Model for the Tutorial Example, on page 11
provides sample code for a simple application.

Chapter 3, Writing an Application to Use PSE Pro, on page 21 uses the sample
application described in Chapter 2 to illustrate the steps you must follow to write a
PSE Pro application.

Chapter 4, Building Applications That Use PSE Pro, on page 25 uses the sample
application described in Chapter 2 to illustrate the steps you must follow to build a
PSE Pro application.

Notation Conventions
This document uses the following conventions:

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.
Release 6.3 5

Preface
Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.

Convention Meaning
6 PSE Pro for C++ Tutorial

Preface
Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 7

Preface
8 PSE Pro for C++ Tutorial

Chapter 1
Benefits of PSE Pro for C++

PSE Pro for C++ is a lightweight persistent storage engine that allows you to store
and retrieve objects in their native C++ format. Without PSE Pro, you could store
C++ data in flat files or relational databases, use MFC serialization, and write code
to perform I/O and translation to and from object format. But such code is complex,
error prone, and difficult to maintain. PSE Pro eliminates these problems in favor of

• A simple to use and easy to learn API

• A high-performance virtual memory mapping architecture

The memory mapping architecture guarantees optimal access speeds by using
regular virtual memory pointers instead of soft pointers. With soft pointer schemes,
every pointer dereference carries the overhead of a check to determine if the object
pointed to has been transferred to program memory. With PSE Pro, no checking is
required for objects that have already been transferred. Pointers to transferred
objects are virtual memory pointers processed at hardware speeds.

You do not need to change the structure of your application to take advantage of
these features. PSE Pro comes with an AppWizard that generates standard MFC
windows applications. The only difference is that the application's document class is
derived from a PSE Pro-specific document class that uses PSE Pro for persistence
rather than object serialization.
Release 6.3 9

10 PSE Pro for C++ Tutorial

Chapter 2
Description of the Data Model
for the Tutorial Example

This chapter describes the data model for the example that is discussed in this
tutorial.

This tutorial shows you how to create a simple PSE Pro application for storing and
looking up telephone numbers. The application records names and numbers in a
binary tree, which is stored in a database in its native format. Since the tree is
allocated in database memory, all updates to the tree are automatically stored in the
database (an operating system file), for use by a future run of the application.

The source code for the telephone numbers application is in PSE_Pro_install_
dir\examples\phone.

This chapter presents the following information:

Class Template for Storing Objects in a Persistent Binary Tree 12

Modifications Required for Persistence 14

Description of Persistent New 15

Required PSE Pro Header File

Data Class for Storing Phone Numbers in a Persistent Binary Tree 16

phone.cpp 17
Release 6.3 11

Class Template for Storing Objects in a Persistent Binary Tree
Class Template for Storing Objects in a
Persistent Binary Tree

Here are the header file and source code file for a binary tree class template similar
to one you might already use, although this class template is very basic. These files
do not yet include any PSE Pro APIs.

Header file /*** BinaryTree.h ***/

template <class T>
class BinaryTree
{
 BinaryTree<T> *left;
 BinaryTree<T> *right;
 T &data;

public:
 BinaryTree(T &d);
 ~BinaryTree();

 void add(T &d);
 T *lookup(T &d);
 void print() const;
 void dump() const;
};

Source code file /*** BinaryTree.cpp ***/

#include <stdlib.h>
#include <iostream>
#include <windows.h>
#include "BinaryTree.h"

// Create a binary tree whose root node contains the data item d
template <class T>
BinaryTree<T>::BinaryTree(T &d):
 data(d), left(0), right(0) {}

// destructor
template <class T>
BinaryTree<T>::~BinaryTree()
{
 delete this->left;
 delete this->right;
 delete &data;
}

// add an item. Class T must define operator <()
template <class T>
void BinaryTree<T>::add(T &d)
{
 if (d < data)
 if (left)
 left->add(d);
 else
 left = new BinaryTree<T>(d);
 else
 if (right)
 right->add(d);
 else
12 PSE Pro for C++ Tutorial

Chapter 2: Description of the Data Model for the Tutorial Example
 right = new() BinaryTree<T>(d);
}

// Return a pointer to an item in the tree that is ==
// to the specified item. Return 0 if not found.
// Class T must define operator ==() and operator <()
template <class T>
T *BinaryTree<T>::lookup(T &d)
{
 if (d == data) return &data;

 if (d < data)
 if (left)
 return left->lookup(d);
 else
 return 0;
 else
 if (right)
 return right->lookup(d);
 else
 return 0;
}

// Print a textual representation of the data item
// for the root node.
// Class T must have an associated operator <<()
template <class T>
void BinaryTree<T>::print() const
{
 cout << data << endl;
}

// Run print() on every node of the tree
template <class T>
void BinaryTree<T>::dump() const
{
 if (left)
 left->dump();

 print();

 if (right)
 right->dump();
}

Release 6.3 13

Modifications Required for Persistence
Modifications Required for Persistence
To prepare a class so that its instances can be stored in a PSE Pro database, you might
have to modify some member function implementations. If a member function
allocates any new objects, you must decide whether these new objects should be
allocated in a database. If so, you must change the allocation to use the new operator
defined by the PSE Pro API.

In the phone application, the only member function that performs any allocation is
BinaryTree::add(). It allocates a new node (that is, a subtree) to hold the data item
to be added. Since the tree is going to be persistent, the new nodes must be persistent
as well. To make the new nodes persistent, change the calls to new in add() to use the
PSE Pro overloading of operator new(). None of the other member functions needs
to be changed.

Here is the new implementation of BinaryTree::add():

// add an item. Class T must define operator <()
template <class T>
void BinaryTree<T>::add(T &d)
{
 if (d < data)
 if (left)
 left->add(d);
 else
 left = new(
 os_database::of(this),
 os_ts< BinaryTree<T> >::get()
) BinaryTree<T>(d);
 else
 if (right)
 right->add(d);
 else
 right = new(
 os_database::of(this),
 os_ts< BinaryTree<T> >::get()
) BinaryTree<T>(d);
}

No other function implementations and no class definitions need modification.
14 PSE Pro for C++ Tutorial

Chapter 2: Description of the Data Model for the Tutorial Example
Description of Persistent New
The heart of the PSE Pro API is a special overloading of ::operator new(), known
as persistent new. Allocating data with persistent new is a lot like allocating data with
regular new. The difference is that data allocated with regular new is transient. That
is, it disappears after the allocating application terminates. Data allocated with
persistent new resides on stable storage, in a database, until explicitly deleted. You
can use persistent new to allocate persistent instances of built in types like int or
char*, as well as classes like BinaryTree.

Persistent new takes two arguments:

• An os_database*, which indicates the database in which to allocate the new
object

• An os_typespec*, which specifies the type of the new object

In BinaryTree::add(), the database is specified by a call to os_database::of(),
which returns the database that contains this. This call ensures that the new node is
stored in the same database as the tree it is being added to. It also ensures that, if the
tree is stored on the transient heap, so is the new node (in that case, database::of()
returns the transient database).

The second argument is a call to os_ts<BinaryTree>::get(). It returns an os_
typespec* for the class BinaryTree. You can retrieve os_typespec*s for built in
types with static members of os_typespec such as os_typespec::get_int(). Use
os_typespec::get_pointer() for pointer types.

Required PSE Pro Header File
Since BinaryTree::add() now uses the PSE Pro API, BinaryTree.cpp must
include the header file <os_pse/ostore.hh>:

#include <os_pse/ostore.hh>
Release 6.3 15

Data Class for Storing Phone Numbers in a Persistent Binary Tree
Data Class for Storing Phone Numbers in a
Persistent Binary Tree

BinaryTree is a class template so that you can use instances of any class as the data
items that you store in the tree. The telephone numbers application stores names and
numbers. Consequently, it uses a class with a member for the name and a member
for the number:

Header file /*** Data.h ***/

class Data
{
public:
 char *name;
 char *number;

 Data(const char *na, char *nu);

 friend ostream &operator <<(
 ostream& os,
 Data const &d
);

 // BinaryTree uses op < and op ==
 // to look up and add data items.
 // Lookups are keyed by name, so these operators
 // use strncmp() on Data::name
 int operator <(Data const &d) {
 return strncmp(name, d.name, strlen(name)) < 0; }

 int operator ==(Data const &d) {
 return strncmp(name, d.name, strlen(name)) == 0; }
};

Source code file /*** Data.cpp ***/

#include <stdlib.h>
#include <iostream>
#include <os_pse/ostore.hh> // PSE Pro header file
#include <windows.h>
#include "Data.h"

Data::Data(const char *na, char *nu)
// Sets the name and number to persistent copies of
// na and nu
{
 int len;
 if (na) { // allocate persistent char array for name
 len = strlen(na) + 1;
 name = new(
 os_database::of(this),
 os_typespec::get_char(),
 len
) char[len];
 strcpy(name, na); // initialize the persistent array
 }

 if (nu) { // allocate persistent char array for number
 len = strlen(nu) + 1;
 number = new(
 os_database::of(this),
16 PSE Pro for C++ Tutorial

Chapter 2: Description of the Data Model for the Tutorial Example
 os_typespec::get_char(),
 len
) char[len];
 strcpy(number, nu); // initialize the persistent array
 }
}

// Insert the name and number strings into the stream
ostream &operator <<(ostream& os, Data const &d)
{
 return os << d.name << endl << d.number << endl;
}

The character arrays that hold the names and numbers should be allocated in
persistent memory, so the Data constructor defined in Data.cpp uses persistent new.
This overloading of persistent new is for allocating arrays. It takes a third argument,
which is the length of the array.

phone.cpp
Here is the main routine of the phone application. It

• Establishes fault handlers

• Initializes PSE Pro

• Opens a database or creates one first if necessary

• Retrieves the binary tree or creates one first if necessary

• Executes a loop that allows you to do one of the following each time through the
loop:

- Look up a number

- Add a name and number

- Save the database

- Revert to the last saved database

- Dump the contents of the tree

- Exit from the application

/*** phone.cpp ***/

#include <stdlib.h>
#include <iostream>
#include <os_pse/ostore.hh> // PSE Pro header file
#include <windows.h>
#include "BinaryTree.h"
#include "Data.h"

#define MAX_CHAR 500 // max input characters

int main()

{
 // The top of the stack of every thread of every program
 // must be wrapped in a fault handler.
 // This macro begins the handler’s scope.
 OS_PSE_ESTABLISH_FAULT_HANDLER
Release 6.3 17

phone.cpp
 cout << "Starting..." << endl;

 // Initialize PSE Pro
 cout << "Initializing..." << endl;
 objectstore::initialize();

 cout << "Creating or Opening Database..." << endl;
 // Open the database named "phone.db". If one does
 // not exist, create and open one.
 os_database *db = os_database::open(
 "phone.db", 0, 0666);

 // Find the tree. If it does not exist, create it.

 // Find the database root that points to the tree
 os_database_root *db_root =
 db->find_root("phone_root");

 if (!db_root) {
 // If no such database root, create one

 cout << "Creating Tree..." << endl;

 db_root = db->create_root("phone_root");

 // Create a data item to be associated with
 // the root node of the new tree

 Data *new_data = new(db,
 os_ts<Data>::get())
 Data("Emergency", "911");

 // Create the tree
 BinaryTree<Data> *the_tree =
 new(
 db,
 os_ts< BinaryTree<Data> >::get()
) BinaryTree<Data>(*new_data);

 // Point the database root at the tree
 db_root->set_value(
 the_tree
);

 // Save the updates to the database
 db->save();

 }

 // Retrieve the tree
 BinaryTree<Data> *the_tree = (BinaryTree<Data>*) (
 db_root->get_value()
);
 char next_action = 0; // input from user
 char na[MAX_CHAR+1]; // used by action Add
 char nu[MAX_CHAR+1]; // used by action Add
 Data *data_item = 0; // used by actions Add and Lookup
 Data *answer_data; // used by action Lookup

while (next_action != ‘q’) {

 cout << "\nNext action?" << endl <<
 "(l for Look up a number," << endl <<
 "a for Add new data items to the tree, " << endl <<
 "s for Save database, " << endl <<
 "r for Revert to last save, " << endl <<
18 PSE Pro for C++ Tutorial

Chapter 2: Description of the Data Model for the Tutorial Example
 "d for Dump tree, " << endl <<
 "q for Quit)" << endl << "==> ";

 cin >> next_action;

 switch(next_action) {

 case ‘l’:
 // Look up a number, given a name
 cout << "Name?" << endl << "==> ";
 cin.ignore(1);
 cin.getline(na, MAX_CHAR);
 data_item = new Data(na, 0);
 answer_data = the_tree->lookup(*data_item);
 delete data_item;
 if(answer_data)
 cout << endl << *answer_data;
 else
 cout << "Not found." << "\n\n";
 break;

 case ‘a’:
 // Add a name and number
 cout << "Name?" << endl << "==> ";
 cin.ignore(1);
 cin.getline(na, MAX_CHAR);
 cout << "Number?" << endl << "==> ";
 cin.getline(nu, MAX_CHAR);
 cout << "Adding new persistent data..." << "\n\n";
 data_item = new(db, os_ts<Data>::get())
 Data(na, nu);
 the_tree->add(*data_item);
 break;

 case ‘d’:
 // Dump tree
 cout << endl;
 the_tree->dump();
 cout << endl;
 break;

 case ‘s’:
 // Save database
 cout << "Saving database..." << "\n\n";
 db->save();
 break;

 case ‘r’:
 // Close db, open it again, and retrieve tree
 cout << "Reverting to last save..." << "\n\n";
 db->close();
 db = os_database::open("test.db");
 the_tree = (BinaryTree<Data>*) (
 db->find_root("test_root")->get_value()
);
 break;

 default:
 break;
 }

 }
 // Close database
Release 6.3 19

phone.cpp
 db->close();

 cout << "Done." << endl;

 // This macro ends the fault handler’s scope
 OS_PSE_END_FAULT_HANDLER

 return 0;
}

20 PSE Pro for C++ Tutorial

Chapter 3
Writing an Application to Use
PSE Pro

This chapter describes the additions to your program that are required by PSE Pro.
These include

Establishing Fault Handlers 21

Initializing PSE Pro 21

Creating and Opening Databases 22

Using Database Roots as Entry Points 22

Saving Databases 23

Closing Databases 23

Establishing Fault Handlers
PSE Pro must handle all memory access violations, because some are actually
references to persistent memory in a database. On Windows, there is no function for
registering a signal handler for such access violations that also works when you are
debugging a PSE Pro application. (The SetUnhandledExceptionFilter function
does not work when you use the Visual C++ debugger.)

Therefore, every PSE Pro application must put a handler for access violations at the
top of every stack in the program. This normally means putting a handler in a
program’s main or WinMain function and, if the program uses multiple threads,
putting a handler in the first function of each new thread.

PSE Pro provides two macros for establishing a fault handler:

• OS_PSE_ESTABLISH_FAULT_HANDLER

• OS_PSE_END_FAULT_HANDLER

Initializing PSE Pro
You must call the static function objectstore::initialize() before making any
calls to the PSE Pro API. The function takes no arguments.
Release 6.3 21

Creating and Opening Databases
Creating and Opening Databases
To gain access to a database, you must first open it. The os_database::open()
function opens a database with a specified name. If a database with that name does
not exist, the function can create one, if you want, and then open it. The function
returns an os_database* that represents the opened database. Here is the call to
open() in phone.cpp:

os_database *db = os_database::open(
 "test.db", 0, 0666);

The first argument is the name of the database. This can be an absolute or relative
pathname.

The second argument indicates whether to open the database for read-only (1 for
true and 0 for false). Multiple applications can have a database opened for read-only
simultaneously. Only one application at a time can have a database opened for
update.

The third argument indicates that the function should create a new database with the
specified name if one does not already exist. The value indicates a protection mode.
Pass 0 if you do not want to create a database in the event there is no database with
the specified name. The function throws os_err_database_not_found if there is no
such database and the third argument is 0.

Using Database Roots as Entry Points
A database root provides a way to give an object a persistent name. This allows the
object to serve as an entry point into a database. When an object has a persistent name,
any process can look it up by that name to retrieve it. After you have retrieved one
object, you can retrieve any object related to it by using navigation. That is, you can
retrieve additional objects by following data member pointers. Each database needs
only one or a small number of entry points. Looking up an entry point is significantly
slower than navigating to an object.

A database root, an instance of os_database_root, associates an object with a string.
You specify the name of the object when you create a root, with os_
database::create_root(). You set and get a pointer to the entry-point object with
os_database_root::set_value() and os_database_root::get_value().

The phone application uses database roots as follows:

• It calls os_database::find_root() to look up the root named "phone_root".
The function returns 0 if the root does not exist.

 os_database_root *db_root = db->find_root("phone_root");

• If the root does not exist, the application creates one and sets the value of the root
to point to a new BinaryTree whose root is a new instance of Data.

 if (!db_root) {
 // If no such database root exists, create one.
22 PSE Pro for C++ Tutorial

Chapter 3: Writing an Application to Use PSE Pro
 cout << "Creating Tree..." << endl;

 db_root = db->create_root("phone_root");

 // Create a data item to be associated with
 // the root node of the new tree.

 Data *new_data = new(db,
 os_ts<Data>::get())
 Data("Emergency", "911");

 // Create the tree.
 BinaryTree<Data> *the_tree =
 new(
 db,
 os_ts< BinaryTree<Data> >::get()
) BinaryTree<Data>(*new_data);

 // Point the database root at the tree.
 db_root->set_value(
 the_tree
);

• ‘Finally, the application retrieves the entry-point object pointed to by the root’s
value.

 BinaryTree<Data> *the_tree = (BinaryTree<Data>*) (
 db_root->get_value()
);

Saving Databases
To make your changes to a database permanent, use os_database::save(). After
the save operation is complete, all the database’s data resides safely on disk,
including your latest changes. Subsequently. your data is recoverable as of the time
of the last database save operation.

Closing Databases
You close a database by calling os_database::close(). This makes the database’s
data inaccessible; any pointers to objects in the database are rendered invalid.
Closing a database also deletes the instance of os_database pointed to by this. Of
course, the database itself is not deleted.
Release 6.3 23

Closing Databases
24 PSE Pro for C++ Tutorial

Chapter 4
Building Applications That Use
PSE Pro

The steps for building an application that uses PSE Pro are

Creating the Schema Source File 25

Generating the Schema 26

Compiling the Code 27

Linking the Components 27

Creating the Schema Source File
You must link every PSE Pro application or library with an object file that contains
information about the classes of persistent objects used by the application. You
generate this object file from the schema source file, a simple source file you create
as follows:

• Include the PSE Pro header file <os_pse/ostore.hh>.

• Include the definition of each class the application might allocate, as well as the
definition of each class in each database the application might open.

• Call the OS_MARK_SCHEMA_TYPE() macro for each included class, supplying the
class name as argument. Do not put quotation marks around the class name.
Typedef names are not allowed. Enter the argument without white space.The macro
cannot span more than one (1) line in the schema source file.

• By convention, the schema source files used in the PSE Pro example applications
use the file extension .scm.

You must mark each instantiation of any class template you use. Since BinaryTree
is a class template, you must mark BinaryTree<Data>. For the phone application,
mark BinaryTree<Data> and Data, as follows:

/*** schema.scm ***/

#include <os_pse/ostore.hh> // PSE Pro header file
#include "BinaryTree.cpp"
#include "Data.h"
// Mark the classes to allow persistent allocation:
OS_MARK_SCHEMA_TYPE(BinaryTree<Data>);
OS_MARK_SCHEMA_TYPE(Data);
Release 6.3 25

Generating the Schema
Generating the Schema
As mentioned before, you must link every PSE Pro application or library with an
object file that contains information about the classes of persistent objects the
application uses. Schema generation is the process of generating the schema object file
from the schema source file. You run the PSE Pro schema generator (pssg) to
generate a schema object file from the schema source file.

Running the pssg Utility
Here is the form of the pssg command line:

pssg.exe [compiler-flags][-asof schema-object-file] schema-source-file

compiler-flags: As part of schema generation, the schema source file is compiled
by the C++ compiler. pssg passes compiler-flags to the C++ compiler.

-asof schema-object-file: Specifies the name of the schema object file. If you do
not specify a name, the name defaults to osschm.obj.

schema-source-file: Specifies the name of the schema source file you previously
created. This file’s name must have the extension .scm.

The following pssg option is particularly useful for debugging purposes.

-ashf schema-header-file: Use this option to create a header file that contains
relocation information for the marked classes in the schema-source-file. Note that
the application never includes the schema header file.

Regenerating the Schema Object File
You should regenerate the schema object file whenever you add or remove class
definitions or modify a class definition in your application or library.

You can use a make rule such as the following:

CC_OPTS = /DWIN32 /GX ...
schema-object-file: schema-source-file
 pssg $(CC_OPTS) -asof schema-object-file $@ schema-source-file

Default Compiler Switches
The pssg utility uses the following compiler switches. In case of conflict with user-
supplied flags, these override the user-supplied flags:

• /MD instructs the compiler to use the msvcrt.dll run time.

• /Od Debug.

• /Z7 MS C7 debug mode.

• /Gx Enable C++ exceptions.

• /D_ODI_PSSG=1 Use this preprocessor macro to hide code from pssg.
(ObjectStore's schema generator ossg uses _ODI_OSSG_).
26 PSE Pro for C++ Tutorial

Chapter 4: Building Applications That Use PSE Pro
Schema Generation in the VC++ IDE
In the VC++ IDE, you can create a custom build rule to compile the schema-source-
file:

• Build command(s): pssg /asof $(INTDIR)\osschm.obj schema-source-file

• Output file(s): $(INTDIR)\osschm.obj

• Description: Generating ObjectStore PSE Pro typespecs

You can use the Settings for All configurations.

Click on the Quickstart item in the ObjectStore/PSE program group for an example
of how to set up the custom build rule:

• In the FileView, select schema.scm.

• Select the Settings item under the Project pull-down menu.

• Select the Custom Build tab.

Compiling the Code
Use the Microsoft Visual C++ compiler to compile PSE Pro applications and libraries.
Use the following compiler switches:

• /Gx to enable C++ exceptions

• /MD to use the msvcrt.dll run time (multithreaded, DLL version), or

• /MDd to use the msvcrtd.dll _DEBUG run time

Linking the Components
Use the Microsoft Visual C++ compiler to link PSE Pro applications and libraries
with the

• Schema object file

• PSE Pro library

Link against the library osclt.lib and run against the DLL o5psepr.dll.

For debug, link against the library oscltd.lib and run against the DLL
o5pseprd.dll.

Upon inclusion, os_pse/ostore.hh sets the default library.

To use the MFC extension DLL, link with osmfc.lib or (for debug) osmfcd.lib, and
run against osmfc.dll or (for debug) osmfcd.dll.
Release 6.3 27

Linking the Components
Typical Link Errors Related to Schema Generation
If you get a link error such as the following, your program uses the typespec (os_
ts<Foo> in this case) for a class (Foo in this case), but your schema source file fails to
mark the class.

osschm.obj : error LNK2001: unresolved external symbol
"private: static class os_pse::os_ts<class Foo>
os_pse::os_ts<class Foo>::the_instance"

Include the class’s definition and mark it in the schema source file.

If the above error occurs for os_ts<class Foo*> (indicating a pointer) rather than
os_ts<class Foo>, you marked a pointer type. The pssg utility cannot create
typespecs for a typed pointer. A workaround is to add the following os_ts<T>
specialization (Compare also to the stl42 example that defines STL list<Foo*>).

namespace os_pse {
 template <> class os_ts<Foo*> : public os_typespec {
 public:
 static inline os_typespec *get() { return os_typespec::get_
pointer(); }
 };
 // define more pointer types:
 // template <> class os_ts<Bar*> : ...
}

Yet another schema generation-related error that can occur during linking is an
unresolved external for a virtual function table. An example of this error is

osschm.obj : error LNK2001: unresolved external symbol
"const Foo::`vftable’" (??_7Foo@@6B@)"

In this case, if class Foo has been marked in the schema source file, the pssg utility
creates a reference for a virtual function table if class Foo contains one or more virtual
functions. If an application never calls the constructor of class Foo, the VC++
compiler does not create a vftable for that class. A way to force the creation of that
symbol into the .obj file is to add the following invocation of the constructor to your
program to ensure that the function _force_vftable() is never called:

void _force_vftable(void*) {
 _force_vftable(new Foo());
 _force_vftable(..more classes..);
}

Static Builds
To link with the static version of the PSE Pro library, add the following compile
switch:

• /D_OS_STATIC_LIB=1

• /MD, /MDd, /MT, or /MTd

Upon inclusion, os_pse/ostore.hh sets the default library based on these two
compile switches. The PSE Pro installation contains the following static libraries built
against different versions of the C-run time:

• libclts.lib
28 PSE Pro for C++ Tutorial

Chapter 4: Building Applications That Use PSE Pro
Use the multithreaded DLL version (/MD, msvcrt.dll).

• libcltsd.lib

Use the debug, multithreaded, DLL version (/MDd, msvcrtd.dll).

• libcltst.lib

Use the multithreaded static version (/MT, libcmt.lib).

• libcltstd.lib

Use the debug, multithreaded, static version (/MTd, libcmtd.lib)

In the absence of DllMain() in the static PSE Pro libraries, the application has to
explicitly notify PSE Pro on thread creation and termination. If a thread does not
access persistent data, the functions do not have to be called.

static void objectstore::thread_attach(HANDLE h)
static void objectstore::thread_detach(HANDLE h)

GetCurrentThread() can be used to specify the handle h.

Schema Generation and Static builds
For static builds, make sure to add the /D_OS_STATIC_LIB compiler switch to pssg.
If you do not set it, you see the following LNK4049 warnings, which you can ignore,
on class os_basic_typespec when linking statically with the generated
osschm.obj file:

LINK : warning LNK4049: locally defined symbol protected:
void __thiscall os_pse::os_basic_typespec::cleanup(void)
 (?cleanup@os_basic_typespec@os_pse@@IAEXXZ) imported
void __thiscall os_pse::os_basic_typespec::initialize(void)
(?initialize@os_basic_typespec@os_pse@@IAEXXZ) imported

For all static builds, you see one other LNK4049 warning, which can also be ignored,
when linking statically with the generated osschm.obj file:

LINK : warning LNK4049: locally defined symbol
const os_pse::os_basic_typespec::vftable (
??_7os_basic_typespec@os_pse@@6B@) imported

Using MSDEV IDE
The PSE Pro installation adds the following directories to the IDE’s directory search
paths and to your system environment:

• Include files: c:\odi\PSEPROC63\include

• Executable files: c:\odi\PSEPROC63\bin

• Library files: c:\odi\PSEPROC63\lib

Make sure that these directory files are set correctly: in the Visual Studio IDE, select
Tools | Options, and choose the Directories tab. Verify that the settings for Include files,
Library files, and Executable files match the directories listed above.
Release 6.3 29

Linking the Components
30 PSE Pro for C++ Tutorial

Release 6.3
Index
A
advantages 9
architecture 9
-ashf option to pssg 26
-asof option to pssg 26

B
benefits 9
building applications 25

C
closing databases

description 23
example 19

compiler switches
schema generation 26
source files 27

creating databases 22
creating schema source files 25

D
database roots

creating, example 18
defined 22
description 22
retrieving, example 18
set value example 18
using 22

databases
closing 23
closing example 19
create example 18
create root example 18
creating description 22
open example 18
opening description 22

retrieve root example 18
saving 23
saving example 18
storing objects 15

debug compiler switch 26

E
entry points

creating 22
and data retrieval 22

examples
class header file 12
creating/opening database 18
establishing fault handlers 17
PSE Pro initialization 18
retrieving root 18
set value of root 18
source file 12

exception handler, establishing 21

F
fault handlers

establishing 21
example 17

G
generating schema

static builds 29
typical 26
VC++ IDE 27

H
header files

Data class 16
example 12
PSE Pro 15
31

I

schema 26

I
initializing PSE Pro 21

L
linking

libraries 27
static builds for PSE Pro 28
typical errors 28

M
memory mapping architecture 9
MSDEV IDE 29

N
new operator 14

O
objectstore::initialize() 21
_ODI_PSSG preprocessor macro 26
opening databases 22
operator new

description 15
example 14

os_database::close() 23
os_database::create() 22
os_database::create_root() 22
os_database::open() 22
os_database::save() 23
os_database_root::find_root() 22
os_database_root::get_value() 23
os_err_database_not_found exception 22
OS_MARK_SCHEMA_TYPE() macro 25
os_pse/ostore.hh 15

P
persistence

database roots 22
modifying existing class 14

persistent new
description 15
example 14

persistent objects
creating 22

retrieving 22
saving 23

PSE Pro
benefits 9
building applications 25
header file 15
initialization example 18
initializing, description 21
modifications for persistence 14
sample data model 11

pssg utility 26

R
running pssg utility 26

S
sample data model 11
saving database example 18
saving databases 23
schema header file 26
schema object file 26
schema source files 25
schema.scm file 25
source file example 12
source files

Data class 16
main routine 17

static builds for PSE Pro 28
storing objects in database 15

U
unresolved external symbol 28

V
VC++ IDE 27
32 PSE Pro for C++ Tutorial

	Preface
	Benefits of PSE Pro for C++
	Description of the Data Model for the Tutorial Example
	Class Template for Storing Objects in a Persistent Binary Tree
	Modifications Required for Persistence
	Description of Persistent New
	Required PSE Pro Header File
	Data Class for Storing Phone Numbers in a Persistent Binary Tree
	phone.cpp

	Writing an Application to Use PSE Pro
	Establishing Fault Handlers
	Initializing PSE Pro
	Creating and Opening Databases
	Using Database Roots as Entry Points
	Saving Databases
	Closing Databases

	Building Applications That Use PSE Pro
	Creating the Schema Source File
	Generating the Schema
	Running the pssg Utility
	Regenerating the Schema Object File
	Default Compiler Switches
	Schema Generation in the VC++ IDE

	Compiling the Code
	Linking the Components
	Typical Link Errors Related to Schema Generation
	Static Builds
	Schema Generation and Static builds
	Using MSDEV IDE

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V

