
PSE Pro for C++ API User Guide

Release 6.3

PSE Pro for C++ API User Guide, Release 6.3, October 2005

© 2005 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

A (and design), Allegrix, Allegrix (and design), Apama, Business Empowerment, DataDirect (and design), DataDirect
Connect, DataDirect Connect OLE DB, DirectAlert, EasyAsk, EdgeXtend, Empowerment Center, eXcelon, Fathom,,
IntelliStream, O (and design), ObjectStore, OpenEdge, PeerDirect, P.I.P., POSSENET, Powered by Progress, Progress,
Progress Dynamics, Progress Empowerment Center, Progress Empowerment Program, Progress Fast Track, Progress
OpenEdge, Partners in Progress, Partners en Progress, Persistence, Persistence (and design), ProCare, Progress en Partners,
Progress in Progress, Progress Profiles, Progress Results, Progress Software Developers Network, ProtoSpeed, ProVision,
SequeLink, SmartBeans, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its subsidiaries
or affiliates in the U.S. and/or other countries. AccelEvent, A Data Center of Your Very Own, AppsAlive, AppServer, ASPen,
ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect, DataDirect Connect64, DataDirect Technologies, DataDirect
XQuery, DataXtend, Future Proof, ObjectCache, ObjectStore Event Engine, ObjectStore Inspector, ObjectStore Performance
Expert, POSSE, ProDataSet, Progress Business Empowerment, Progress DataXtend, Progress for Partners, Progress
ObjectStore, PSE Pro, PS Select, SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software Corporation or
one of its subsidiaries or affiliates in the U.S. and other countries. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Any other trademarks or trade names contained herein
are the property of their respective owners.

September 2005

Contents

Preface . 5

Chapter 1 Introducing PSE Pro . 9

What Is PSE Pro?. 9

How to Use PSE Pro. 11

Chapter 2 An Example Using PSE Pro . 15

Description of the QuickStart Example . 15

Source Code for QuickStart Example. 16

PSE Pro APIs in the Example . 18

Additional PSE Pro Features. 20

PSE Pro Application Requirements. 23

Chapter 3 Managing Databases . 25

Creating Databases . 25

Destroying Databases . 33

Copying Databases . 36

Obtaining Information About a Database . 38

Recovering Databases . 39

Checking for Data Corruption . 41

Finding Invalvid Pointers After Relocation . 43

Dumping Databases. 43

Chapter 4 Storing and Updating Objects in a Database 45

Clustering Objects in a Database. 48

Deleting Objects . 50

Retrieving the Database Containing a Specified Object 53

Retrieving the Transient Database. 53

Determining Whether an Object Is Persistent 54

Establishing Roots as Database Entry Points 54

Retrieving Roots for Database Entry . 56

Type Safety for Database Roots . 58
Release 6.3 3

Contents
4

Chapter 5 Memory and Database Management Tasks61

Setting PSE Pro Behavior Before Throwing Exceptions62

Using Fetch Hooks. .62

Hashing Persistent Addresses .67

Reclaiming Swap Space .67

Retrieving Product Information .68

Using PSE Pro and ObjectStore for C++ in the Same Application69

Using Integer Typedefs .74

PSE Pro Environment Variables .74

Chapter 6 Transactions .79

Introducing Transactions. .79

Initializing the Transaction Facility .80

Ending Transactions .81

Obtaining Information About Transactions .82

Example of Using Transactions .83

Chapter 7 The Undo/Redo Facility .85

Setting Undo Points. .85

Undoing Database Updates .86

Determing If Changes Can Be Undone or Redone.87

Chapter 8 Object Iteration .89

Overview of Object Iteration .89

Creating and Deleting Cursors .90

Navigating with Cursors .90

Retrieving the Object at the Cursor Position .91

Example of Using Object Iterators .91

Chapter 9 Evolving Database Schemas. .93

Introduction to Schema Evolution .93

Description of the Schema Evolution Process94

Step 1: Marking Both Class Definitions Persistent.94

Steps 4 and 5: Allocating Instances of New Classes and Fixing Pointers97

Step 6: Removing the Old Class from Your Application.98

Changing the Definition of a Base Class .99

Index. 101
4 PSE Pro for C++ API User Guide

Preface

Purpose PSE Pro for C++ A P I User Guide provides information and instructions for using the
PSE Pro for C++ API to write database applications.

Audience This book is for programmers responsible for writing database applications that use
ObjectStore PSE Pro for C++. No previous knowledge of PSE Pro for C++ or the C++
interface to ObjectStore is required. It is assumed that you are experienced with
Visual C++.

Scope This book supports Release 6.3 of ObjectStore PSE Pro for C++.

How This Book Is Organized
Chapter 1, Introducing PSE Pro, on page 9, describes the main features in PSE Pro
and ObjectStore. It also describes the product’s architecture.

Chapter 2, An Example Using PSE Pro, on page 15, provides a simple example that
shows how to use PSE Pro.

Chapter 3, Managing Databases, on page 25, includes information about creating,
opening, closing, destroying, copying, and dumping databases.

Chapter 4, Storing and Updating Objects in a Database, on page 45, describes how to
store, retrieve, and update persistent objects.

Chapter 5, Memory and Database Management Tasks, on page 61, discusses fault
handlers, hook functions, environment variables, using PSE Pro and ObjectStore
together, obtaining product information, and using typedefs.

Chapter 6, Transactions, on page 79, provides instructions for accessing persistent
data inside transactions.

Chapter 7, The Undo/Redo Facility, on page 85, shows how to mark sections of
program activity, undo changes in marked sections, and redo changes that were
undone.

Chapter 8, Object Iteration, on page 89, discusses how to use an object cursor to
iterate over the objects in a database.

Chapter 9, Evolving Database Schemas, on page 93, provides instructions for
modifying the classes already stored in a database.
Release 6.3 5

Preface
Notation Conventions
This document uses the following conventions:

Progress Software Real Time Division on the World Wide Web
The Progress Software Real Time Division Web site (www.progress.com/realtime)
provides a variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

To obtain information about purchasing technical support, contact your local sales
office listed at www.progress.com/realtime/techsupport/contact, or in North
America call 1-781-280-4833. When you purchase technical support, the following
services are available to you:

• You can send questions to realtime-support@progress.com. Remember to
include your serial number in the subject of the electronic mail message.

• You can call the Technical Support organization to get help resolving problems. If
you are in North America, call 1-781-280-4005. If you are outside North America,
refer to the Technical Support Web site at
www.progress.com/realtime/techsupport/contact.

• You can file a report or question with Technical Support by going to
www.progress.com/realtime/techsupport/techsupport_direct.

• You can access the Technical Support Web site, which includes

Convention Meaning

Courier Courier font indicates code, syntax, file names, API names,
system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular code,
such as user input.

Italic Courier Italic Courier font indicates the name of an argument or
variable for which you must supply a value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ }* or { }+ When braces are followed by an asterisk (*), the items
enclosed by the braces can be repeated 0 or more times; if
followed by a plus sign (+), one or more times.

{ a | b | c } Braces enclose two or more items. You can specify only one of
the enclosed items. Vertical bars represent OR separators. For
example, you can specify a or b or c.

... Three consecutive periods can indicate either that material
not relevant to the example has been omitted or that the
previous item can be repeated.
6 PSE Pro for C++ API User Guide

Preface
- A template for submitting a support request. This helps you provide the
necessary details, which speeds response time.

- Solution Knowledge Base that you can browse and query.

- Online documentation for all products.

- White papers and short articles about using Real Time Division products.

- Sample code and examples.

- The latest versions of products, service packs, and publicly available patches
that you can download.

- Access to a support matrix that lists platform configurations supported by this
release.

- Support policies.

- Local phone numbers and hours when support personnel can be reached.

Education
Services

To learn about standard course offerings and custom workshops, use the Real Time
Division education services site (www.progress.com/realtime/services).

If you are in North America, you can call 1-800-477-6473 x4452 to register for classes.
If you are outside North America, refer to the Technical Support Web site. For
information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the Technical
Support Web site at www.progress.com/realtime/techsupport/documentation.
The site provides documentation for the most recent release and the previous
supported release. Service Pack README files are also included to provide
historical context for specific issues. Be sure to check this site for new information or
documentation clarifications posted between releases.

Your Comments
Real Time Division product development welcomes your comments about its
documentation. Send any product feedback to realtime-support@progress.com.
To expedite your documentation feedback, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.3 7

Preface
8 PSE Pro for C++ API User Guide

Chapter 1
Introducing PSE Pro

PSE Pro for C++ provides an application programming interface (API) that allows
you to store persistent C++ objects. ObjectStore provides a full-featured DBMS. This
client/server product, ObjectStore, includes C++, Java, and ActiveX interfaces, as
well as a powerful database engine ideal for developing and deploying distributed
processing, multiuser access applications. ObjectStore support for C++ includes
these products:

• ObjectStore PSE Pro

• C++ interface to ObjectStore Development Client

PSE Pro, like the full ObjectStore, provides persistent storage for C++ objects, but is
primarily designed for the development of single-user applications.

To introduce PSE Pro, this chapter discusses the following topics:

What Is PSE Pro? 9

How to Use PSE Pro 11

PSE Pro Architecture 12

What Is PSE Pro?
PSE Pro is a version of ObjectStore for C++ specifically designed for developing
single-user applications. Persistent data is available to programmers in such a way
that it appears as familiar, normal C++ objects. Persistent C++ objects and regular
C++ objects are manipulated in the same way and behave in the same way.
Release 6.3 9

What Is PSE Pro?
PSE Pro Features
PSE Pro features include

• Multidatabase access

• Transactions and recovery capabilities

• Undo/redo support

• Virtual memory management capabilities

• Schema evolution support

• Collections

PSE Pro uses less than 500 KB of disk space, and provides the following:

• Creation and manipulation of databases as operating system files or streams
within OLE compound files

• Allocation of objects in database memory

• Transparent retrieval and storage of persistent objects

• Recoverable save points

• Database-level locking

Support on HP–UX, Linux, Solaris, and Windows platforms include compatibility
with the following operating systems and compilers and libraries:

• HP-UX 11.11 32-bit, aC++ 3.56

• HP-UX 11.11, 64-bit, aC++ 3.56

• Linux 2.4.21-4smp, 32-bit, GCC 3.2.3 (RedHat 8.0 i386)

• Linux 2.4.21-4smp, 64-bit, GCC 3.2.3 (RedHat 8.0 i386)

• Solaris, 32-bit, Sun One Studio 8

• Microsoft Windows XP and 2000, Visual C++ 7.1 (unmanaged)

• Microsoft Foundation Class Library (MFC)

• Microsoft Standard Template Library (STL)

Using STL with
PSE Pro

If you want to use STL in your application, ObjectStore Technical Support
recommends the implementation that comes with MSVC. See the stl42 example
and its accompanying readme file for details.

Using MFC with
PSE Pro

You can use MFC to build your PSE Pro application. See Using MFC and/or Using
MSDEV IDE. in Building Applications with PSE Pro for C++ for detailed information.

ObjectStore Features
Beyond PSE Pro, ObjectStore offers the full-featured ObjectStore DBMS that extends
the PSE Pro API to provide the following features:

• Multiuser access

• Distributed processing

• Data heterogeneity
10 PSE Pro for C++ API User Guide

Chapter 1: Introducing PSE Pro
• High availability

• Large data set support

• Concurrency control

• Query processing

• Integrity control

• Access control

• Data compaction

• Archive logging

• Distributed lock management

You can use PSE Pro and ObjectStore in the same application to migrate your data to
an ObjectStore database. Since the APIs are compatible, you can scale your PSE Pro
applications from single-user desktop applications to distributed, highly available,
multiuser applications without having to rearchitect them.

How to Use PSE Pro
When you use the PSE Pro API, object storage is almost completely automatic. These
are the basic steps you follow to store objects in a database:

1 When you create an object, allocate it in a database with the PSE Pro overloading
of ::operator new() instead of with the usual C++ new().

2 Call os_database::save() or os_transaction::commit() to automatically
store all new persistent objects and all updated persistent objects in their
databases.

Object retrieval is also almost completely automatic. These are the basic steps you
follow to retrieve objects from a database:

1 Retrieve an initial, named entry-point object from a database using the PSE Pro
API.

2 Use navigation (pointer dereferencing) to retrieve other objects from the database
in just the same way that you would with regular C++ data.

When you dereference a pointer to an object that has not yet been retrieved from the
database, PSE Pro retrieves the object automatically and transparently.

When you dereference a pointer to an object that has already been retrieved, access to
it is as fast as access to regular C++ data. This is because objects that have already been
retrieved reside in virtual memory, and pointers to them are regular pointers that
can be processed at regular hardware speeds.
Release 6.3 11

PSE Pro Architecture
PSE Pro Architecture
PSE Pro uses a much simpler architecture than the ObjectStore architecture. As a
result, the transfer of objects between database memory and program memory is
simpler.

When PSE Pro stores a C++ object, it stores it in its native format. A database consists
of pages that contain C++ objects arranged just as they would be stored in virtual
memory. When an application opens a database, PSE Pro reserves a range of
unmapped virtual memory addresses for all the database’s data. This means that
PSE Pro ensures that the range is used for no other purpose than for the database’s
pages, and that the database is mapped to a contiguous range of virtual memory.

When an object is transferred to program memory, it is not necessarily stored at the
same virtual memory address it originally occupied. However, it is stored in the
original location adjusted by the offset used to adjust the database’s pointers. That way,
pointers to the object in other transferred objects are valid virtual memory pointers
that refer to their original targets. Pointers that are used internally by C++, such as
virtual function table pointers, might be changed.

Reserving a virtual memory range effectively assigns each database page to a page of
virtual memory, but the database pages are not yet transferred to their
corresponding pages of virtual memory, and the virtual memory pages remain
unmapped.

To gain initial access to a database, a program looks up an entry-point object by
name, and PSE Pro transfers into virtual memory the database page that contains the
object. Subsequently, the program can follow pointers contained in the transferred
page.

Virtual Memory

Reserved Range

Database

Database Page
12 PSE Pro for C++ API User Guide

Chapter 1: Introducing PSE Pro
Transferring Pages to Virtual Memory
PSE Pro detects pointers to as-yet-untransferred data by using the operating
system’s virtual memory mapping capability. By ensuring that any pointer to
untransferred data points into an unmapped portion of virtual memory, PSE Pro
ensures that the operating system signals an exception (a read fault or write fault)
when a program attempts to dereference such a pointer. PSE Pro traps this signal
when it occurs, and transfers into virtual memory the database page that contains the
pointer’s target.

PSE Pro transfers a database page by mapping a copy of it into virtual memory with
read-only protection (for a read fault) or read/write protection (for a write fault). As
part of the copy process, PSE Pro uses information derived from the schema object
file (a file you generate to describe the classes in your database) to set pointers used
internally by C++. All other pointers are copied as seen below.

Virtual Memory

Reserved Range

Database

Database Page

Mapped VM Pages
Release 6.3 13

PSE Pro Architecture
Writing Pages to the Database
The first attempt by a program to update a page results in an operating
system exception (a write fault). PSE Pro traps the signal, transfers the page
if necessary, and changes the page’s protection to read/write. Then the
program proceeds with the update.

When a PSE Pro program performs a save operation on a database, PSE Pro
copies to the database all pages that are mapped for read/write, and then
changes their protection back to read-only. That way, the pages will not be
written to the database on the next save unless they are updated again.

The os_database::commit() function in PSE Pro plays the same role as os_
database::save(). PSE Pro failures during saves and commits are
recoverable.

Unmapping and Unreserving Pages
When a database is closed, PSE Pro unmaps all its pages from virtual
memory, and unreserves the database’s virtual memory range.

You can also call a PSE Pro API function to explicitly unmap a page or range
of pages from virtual memory, to free up swap space. In that case, the virtual
memory remains reserved for the page or range of pages.

Here is a state/transition diagram that summarizes the various states of a
database page:

Not Assigned

Assigned,
Unmapped

Mapped For
Read-Only

Mapped For
Write (Dirty)

DB Open

DB Close DB Close

DB Close

Write Fault

Read Fault

Write Fault

DB Save

Return Memory
14 PSE Pro for C++ API User Guide

Chapter 2
An Example Using PSE Pro

This chapter provides an example of how to use PSE Pro, along with an overview of
PSE Pro features and build requirements. It discusses the following topics:

Description of the QuickStart Example 15

Source Code for QuickStart Example 16

PSE Pro APIs in the Example 18

Additional PSE Pro Features 20

Threads 22

PSE Pro Application Requirements 23

Description of the QuickStart Example
The QuickStart example is a simple example that consists of two programs. The
source code for the programs is contained in examples/quickstart in the PSE Pro
directory hierarchy. One program creates a PSE Pro database (persistent storage file)
and stores two objects in it. The other program retrieves the objects and prints their
data member values.

The stored objects are instances of the classes Document and Person. The Document
class has ID and author data members, and the Person class has an ID data member.
Although classes in a real application would have many additional members, this
example illustrates all the basics of using PSE Pro.

The first program creates a new Document object that points to a new Person object
(the document’s author), establishes the Document object as a database entry point,
and saves the database.

The second program retrieves the Document object via entry-point lookup, and then
follows the Document::author pointer to the Person object. The Person object is
retrieved automatically.

Also provided is a schema source file, which lists the classes of persistent objects used
by the programs. PSE Pro uses a compiled version of this file at run time to get
information about the database objects being stored and retrieved.

To build the executables, you compile the schema source file with the PSE Pro utility
pssg, which produces the schema object file. You compile the application sources with
your C++ compiler, and then link with the schema object file and the PSE Pro library.
Release 6.3 15

Source Code for QuickStart Example
Source Code for QuickStart Example
The source code for the QuickStart example, which is listed in the following sections,
includes the

• QuickStart header file

• Program that creates a database and stores some objects in the database

• Program that retrieves some objects from the database

• Schema source file

QuickStart Header File
The following is the header file that both programs in the QuickStart example use:

/*** PDoc.h ***/

class Person;
class Document
{
public:
 int doc_id;
 Person *author;
 Document(int id, Person *a) { doc_id = id; author = a; }
};

class Person
{
public:
 int person_id;
 Person(int id) { person_id = id; }
};

Source Code for the Program That Stores Objects
The following is the source code for the program that creates a database and stores
some objects in the database:

/*** create.cpp ***/

#include <os_pse/ostore.hh> // PSE Pro header file
#include <iostream>
#include "PDoc.h"

void main()
// Creates a document and a person in a new PSE Pro database.
// Sets the document to point to the person.
// Establishes the document as a database entry point.
{
 // Establish PSE Pro fault handler.
 OS_PSE_ESTABLISH_FAULT_HANDLER

 // Initialize PSE Pro.
 objectstore::initialize();

 // Create PSE Pro database (persistent storage file).
 os_database *db = os_database::create("DocDB");

 // Store a Person and a Document in the database.
 Person *a_person =
16 PSE Pro for C++ API User Guide

Chapter 2: An Example Using PSE Pro
 new(db, os_ts<Person>::get()) Person(111);
 Document *a_document =
 new(db, os_ts<Document>::get()) Document(001, a_person);

 // Establish a_document as an entry point for db.
 db->create_root("doc_root")->set_value(a_document);

 // Save the database.
 db->save();

 // Close the database.
 db->close();

 cout << "Done." << endl;

 // End PSE Pro fault handler scope.
 OS_PSE_END_FAULT_HANDLER

}

Source Code for the Program That Retrieves Objects
The following is the source code for the program that retrieves some objects from a
database:

/*** read.cpp ***/

#include <os_pse/ostore.hh> // PSE Pro header file
#include <iostream>
#include "PDoc.h"

void main()
// Prints Document and Author IDs.
{
 // Establish PSE Pro fault handler.
 OS_PSE_ESTABLISH_FAULT_HANDLER

 // Initialize PSE Pro.
 objectstore::initialize();

 // Open PSE Pro database (persistent storage file).
 os_database *db = os_database::open("DocDB");

 // Look up entry-point object.
 Document *a_document = (Document*) (
 db->find_root("doc_root")->get_value()
);

 // Navigate to author.
 Person *a_person = a_document->author;

 // Print values.
 cout << "Document ID: " << a_document->doc_id << endl ;
 cout << "Author ID: " << a_person->person_id << endl;

 // Close database.
 db->close();

 cout << "Done." << endl;

 // End PSE Pro fault handler scope.
 OS_PSE_END_FAULT_HANDLER
}

Release 6.3 17

PSE Pro APIs in the Example
Schema Source File for QuickStart Example
Both programs in the QuickStart example use the following schema source file. The
schema source file describes the classes that the application can store in a database.

/*** schema.scm ***/

// In the schema source file,
// include and mark each persistent class.

#include <os_pse/ostore.hh> // PSE Pro header file
#include "PDoc.h"

OS_MARK_SCHEMA_TYPE(Document);
OS_MARK_SCHEMA_TYPE(Person);

PSE Pro APIs in the Example
This section describes the functions and operators for

• Creating and Manipulating Databases on page 18

• Allocating Objects in a Database on page 19

It also provides information on

• Restrictions on Persistent Data Access on page 19

• Creating Roots and Designating Entry-Point Objects20

Creating and Manipulating Databases
A PSE Pro database is an operating system file or a stream within an OLE compound
file. It contains C++ objects stored in their native C++ format. The PSE Pro API
allows you to perform the following database-related tasks:

• Create a database

• Open a database

• Close a database

• Destroy a database

• Save a database

• Copy a database

In the QuickStart example, the program creates a database with this call:

os_database *db = os_database::create("DocDB");

PSE Pro uses the os_database class to represent a database. The create() function
takes an argument that specifies the name of the database.

For more complete information, see Chapter 3, Managing Databases, on page 25.
18 PSE Pro for C++ API User Guide

Chapter 2: An Example Using PSE Pro
Allocating Objects in a Database
You allocate and initialize memory in a database by using an overloaded C++ new
operator, supplied by the PSE Pro API. PSE Pro also provides an implementation of
the delete operator that you use to delete persistent objects and free persistent
memory.

After you allocate persistent memory, you can use pointers to this memory in the
same way you use any pointers to virtual memory. Pointers to persistent memory
always take the form of regular C++ virtual memory pointers.

In the QuickStart example, the program allocates objects in the database with these
calls:

Person *a_person =
 new(db, os_ts<Person>::get()) Person(111);
Document *a_document =
 new(db, os_ts<Document>::get()) Document(001, a_person);

For more complete information about using persistent new and delete, see Chapter
4, Storing and Updating Objects in a Database, on page 45.

Restrictions on Persistent Data Access
PSE Pro imposes the following restrictions on persistent data access:

• If you store a pointer to transient memory in a database object, the pointer is valid
only until the database is closed. You can use fetch hooks to help you handle
pointers to transient memory.

• Cross-database pointers are not allowed. A pointer in one database must not point
to data in another database. ObjectStore does not have this restriction.
Release 6.3 19

Additional PSE Pro Features
Creating Roots and Designating Entry-Point Objects
A database root provides a way to give an object a persistent name. This allows the
object to serve as an initial entry point into the database. When an object has a
persistent name, any process can look it up by that name to retrieve it. After you
retrieve one object, you can retrieve any object related to it by using navigation, that
is, by following data member pointers.

Here is the code in the QuickStart example that creates a database root:

db->create_root("doc_root")->set_value(a_document);

Each database needs only one or a small number of roots, because you usually
retrieve objects through navigation. For example, suppose that you need to store an
assembly in persistent memory. It is typically sufficient to name just the topmost
object in the assembly. You retrieve the topmost object using name lookup, and then
you navigate to the other objects in the assembly. Of course, this assumes that each
component has a data member that points to a collection of its children.

Since most persistent objects are part of a network of related objects, like an
assembly, you usually do not have to name or explicitly retrieve them. Use only a
small number of roots. Navigating to an object is significantly faster than looking up
an entry point.

For more information, see Establishing Roots as Database Entry Points on page 54
and Retrieving Roots for Database Entry on page 56 in Chapter 4.

Additional PSE Pro Features
This section provides an introduction to the following PSE Pro features:

• Transactions on page 20

• Undo/Redo Facility on page 21

• Object Iterators on page 21

• Schema Evolution on page 21

• Threads on page 22

• Fetch Hooks on page 22

• Environment Variables on page 22

• Directories Added to Search Paths on page 22

Transactions
PSE Pro for C++ supports transactions. A transaction is a logical unit of work. It
groups together updates to a database in such a way that either all of those updates
are performed or none of them are — even if a failure occurs in the middle of the
transaction. With transactions, you are guaranteed that the database will not be left
in an inconsistent, intermediate state, with some but not all of the updates stored in
the database.
20 PSE Pro for C++ API User Guide

Chapter 2: An Example Using PSE Pro
If a failure occurs in the middle of a transaction (for example, because of network or
system failure), you can always recover your data as of the beginning of the
transaction. In addition, you can explicitly abort a transaction at any time, rolling
back persistent data to the beginning of the transaction.

Using transactions with PSE Pro is optional. If you want to use transactions, you first
initialize the transaction facility. Once the facility is initialized, all access to databases
must take place within a transaction.

For more information, see Chapter 6, Transactions, on page 79.

Undo/Redo Facility
The PSE Pro undo/redo facility allows you to undo any number of previous
operations, and lets you redo any number of undone operations. PSE Pro provides
an API to

• Set undo points. These define the boundaries of operations.

• Undo the database changes that were made during the previous n operations (that
is, roll the database back to the nth-to-the-last undo point).

• Redo the database changes that were made during the previous n undone
operations.

You can also have PSE Pro enforce a limit on the number of operations that can be
undone.

You cannot undo operations performed prior to the last database save or transaction
commit operation.

For more information, see Chapter 7, The Undo/Redo Facility, on page 85.

Object Iterators
Using an object cursor, an application can iterate through all objects within a
database. This allows you, for example, to copy the contents of a PSE Pro database
into an ObjectStore database. See Chapter 8, Object Iteration, on page 89.

Schema Evolution
The layout of objects in a PSE Pro database is identical to their layout in transient
memory (heap, stack). If a class definition changes in the application, for example a
data member is added to a class, the database must be evolved to be compatible with
the new class definition. This is called schema evolution. See Chapter 9, Evolving
Database Schemas, on page 93.
Release 6.3 21

Additional PSE Pro Features
Threads
PSE Pro supports multithreaded applications. The PSE Pro thread-locking facilities
ensure that PSE Pro does all necessary interlocking between threads to prevent
threads from interfering with each other when within the PSE Pro run time. Note
that you are responsible for coding any thread synchronization required by your
application while threads are not executing within the PSE Pro library.

You do not have to do anything to activate the thread-locking facility. Thread locking
is performed automatically for multithreaded applications.

For static builds, all threads that access persistent data have to be attached to and
detached from PSE Pro. See Building Applications with PSE Pro for C++ .

Fetch Hooks
With PSE Pro, you can register a function that is called whenever instances of a given
class are retrieved. Fetch hooks allow you to, for example, manage pointers to
transient objects.

Environment Variables
PSE Pro provides the following environment variables:

• OS_PSE_AS_SIZE on page 75

• OS_PSE_AS_START on page 75

• OS_PSE_DEF_BREAK_ACTION on page 75

• OS_PSE_PAGE_SIZE on page 76

• OS_PSE_TRACE_ALLOC on page 78

• OS_PSE_VERIFY_ALLOC on page 78

Directories Added to Search Paths
On Windows platforms the PSE Pro installation adds the following directories to the
Microsoft IDE’s directory search paths and to your system environment:

• Include files: c:\odi\PSEPROC63\include

• Executable files: c:\odi\PSEPROC63\bin

• Library files: c:\odi\PSEPROC63\lib

On UNIX systems, set the following environement variables:

• Set OS_PSE_ROOTDIR to /opt/ODI/PSEPROC63

• Set PATH to include $OS_PSE_ROOTDIR/bin.

• Set SHLIB_PATH to include $OS_PSE_ROOTDIR/lib
22 PSE Pro for C++ API User Guide

Chapter 2: An Example Using PSE Pro
PSE Pro Application Requirements
The following sections describe the required components of a PSE Pro application,
and how to build an application or library:

• Including the PSE Pro Header File on page 23

• Creating Schema Source Files on page 23

• Establishing Fault Handlers on page 24

• Initializing PSE Pro on page 24

• Building PSE Pro Applications and Libraries on page 24

Including the PSE Pro Header File
For an application to use any PSE Pro features, it must include the file os_
pse/ostore.hh.

Creating Schema Source Files
Every PSE Pro application or library must be linked with an object file that contains
information about the classes of persistent objects used by the application. You
generate this object file from the schema source file. An application’s schema consists of
the classes of objects in the databases it uses. You create a schema source file as
follows:

• Include the PSE Pro header file <os_pse/ostore.hh>.

• Include the definition of each class of object the application might store in a
database, as well as the definition of each class of object in each database the
application might open.

• Call the OS_MARK_SCHEMA_TYPE()macro for each included class, supplying the
class name as argument. Do not put quotation marks around the class name. Enter
the argument without white space. The macro cannot span more than one row in the
.scm file.

• Give the file a name with the extension .scm.

Here is an example of a schema source file:

/*** schema.scm ***/
#include <os_pse/ostore.hh>
#include "image_map.h"
#include "image.h"
#include "document.h"
OS_MARK_SCHEMA_TYPE(image_map);
OS_MARK_SCHEMA_TYPE(image);
OS_MARK_SCHEMA_TYPE(document);

For classes whose definition is embedded within a private or protected section of
another class’s definition, use OS_MARK_SCHEMA_NESTED_TYPE() instead of OS_
MARK_SCHEMA_TYPE().

For complete information about creating schema source files, see “Chapter 2,
Generating the Application Schema” in Building Applications with PSE Pro for C++ .
Release 6.3 23

PSE Pro Application Requirements
Establishing Fault Handlers
PSE Pro must handle all memory access violations, because some are actually
references to persistent memory in a database. On Windows, there is no function for
registering a signal handler for such access violations that will also work when you
are debugging a PSE Pro application (the SetUnhandledExceptionFilter()
function does not work when you use the Visual C++ debugger).

Every PSE Pro application must put a handler for access violation at the top of every
stack in the program. This normally means putting a handler in a program’s main()
or WinMain() function and, if the program uses multiple threads, putting a handler
in the first function of each new thread.

PSE Pro provides two macros to use in establishing a fault handler:

• OS_PSE_ESTABLISH_FAULT_HANDLER

• OS_PSE_END_FAULT_HANDLER

On UNIX platforms PSE Pro can register a signal handler for such access violations
and the handler needs to be registered only once using the macros OS_PSE_
ESTABLISH_FAULT_HANDLER and OS_PSE_END_FAULT_HANDLER. You can also invoke
the macro for every thread, as on Windows, with no ill effects.

Initializing PSE Pro
To use the PSE Pro API, you must first call the static member function
objectstore::initialize(). The function signature is

static void initialize() ;

A process can call initialize()more than once; however, after the first execution,
calling this function has no effect.

Building PSE Pro Applications and Libraries
Follow these steps to build an application or library that uses PSE Pro:

1 Use the PSE Pro schema generator (pssg) to generate a schema object file from the
schema source file.

2 Use your C++ compiler to compile your application or library source files.

3 Link your application or library with the schema object file and the PSE Pro
library.

For more information, see Building Applications with PSE Pro for C++ .
24 PSE Pro for C++ API User Guide

Chapter 3
Managing Databases

This chapter provides information about how to manage the databases you create to
store your objects. It discusses the following topics:

Creating Databases 25

Opening Databases 30

Closing Databases 33

Destroying Databases 33

Saving Databases 34

Copying Databases 36

Obtaining Information About a Database 38

Recovering Databases 39

Checking for Data Corruption 41

Finding Invalvid Pointers After Relocation

Dumping Databases 43

Creating Databases
You can create databases in which to store your objects. PSE Pro uses the os_
database class to represent your database. You create databases with os_
database::create() or os_database::open().
Release 6.3 25

Creating Databases
Creating Databases with os_database::create()
The following function creates and opens a new database as an operating system file
with the specified pathname:

static os_database* create(
 const char* pathname,
 os_int32 prot_mode = 0664,
 os_boolean if_exists_overwrite = 0,
 os_unsigned_int32 reserve_mb_addr_space = 8
) ;

The following overloadings create and open a new database as a stream within the
given Istorage:

static os_database* create(
 IStorage* istorage,
 const char* stream_name,
 os_unsigned_int32 istorage_mode,
 os_unsigned_int32 reserve_mb_adr_space= 8
);

static os_database* create(
 IStorage* istorage,
 const wchar_t* stream_name,
 os_unsigned_int32 istorage_mode,
 os_unsigned_int32 reserve_mb_adr_space= 8
);

Since os_database::create() is static, it has no this argument.

PSE Pro allows you to open multiple databases at the same time. You cannot create
a database inside a transaction. If you try to, PSE Pro throws os_err_trans.

The following sections describe the function arguments for os_database::create.

pathname
Specify the name you want the new database to have. It is the only required
argument. The pathname is an operating system pathname. It can be a relative or a
rooted pathname. Here is an example:

os_database *db1 = os_database::create("c:kendb1") ;

If you supply the pathname of a database that already exists, PSE Pro throws os_
err_database_exists, unless if_exists_overwrite is nonzero.

If you supply the pathname of a file that is not a PSE Pro database, PSE Pro throws
os_err_not_a_database.

If pathname is not a valid operating system name, PSE Pro throws os_err_invalid_
pathname.

The function takes into account local network mount points when interpreting the
pathname, so the pathname can refer to a database on a remote host.

PSE Pro cannot recognize when two different pathnames refer to the same database.
Different pathnames are always assumed to refer to different databases.
26 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
prot_modes
Specify the protection mode of the new database. This controls access permissions for
the new database.

A protection mode is an octal number constructed from the OR of the following
modes (note that execute is meaningful only for directories):

This argument must begin with a zero (0) to indicate that it is an octal number. The
mode defaults to 0664. This specifies read and write permission for user and group,
and read-only by others. For example:

os_database *db1 = os_database::create("\kendb1", 0666) ;

specifies read and write permission for user, group, and other.

if_exists_overwrite
Specify whether or not to throw an exception when overwriting an existing database.
Specify a nonzero value for the argument to overwrite any existing database with the
specified name to avoid throwing an exception. For example:

os_database *db1 = os_database::create("\kendb1", 0666, 1);

This argument defaults to 0 (false). If no database of that name already exists, this
argument has no effect.

reserve_mb_add_space
Specify the number of megabytes of address space to reserve for the database’s data
for the current session (the period from database open to database close). The default
is 8 MB.

Each time you initialize PSE Pro, it reserves a range of virtual addresses for the
current application. This range is called the persistent storage region (PSR).

Each time you open a database, PSE Pro reserves a subrange of the PSR for that
database. This range accommodates all the database’s data, or the amount specified
by reserve_mb_addr_space, whichever is larger.

If you try to allocate space for new data in a database, and the data does not fit in the
database’s reserved range, the range must be extended. The added address space

Mode Description

400 Read by user

200 Write by user

100 Execute (search in directory) by user

040 Read by group

020 Write by group

010 Execute (search) by group

004 Read by others

002 Write by others

001 Execute (search) by others
Release 6.3 27

Creating Databases
must be contiguous with the already reserved range. If possible, the address range is
extended automatically, even if this requires extending the PSR as well. But this
might not be possible for two reasons:

• The database’s range already approaches the end of the PSR, and the PSR cannot
be extended.

• You are using PSE Pro with multiple databases open at once, and other databases
have already reserved some of the required addresses.

If it is not possible to extend the database’s reserved range, PSE Pro throws os_err_
address_space_exhausted.

To help you avoid getting this exception, database::create() and
database::open() allow you to specify the amount of address space to reserve at
open time. If you reserve enough extra address space to avoid the need to extend the
range, you can avoid getting os_err_address_space_exhausted.

istorage
Specify the name of the IStorage object.

stream_name
Specify the name of the stream to create. The char* stream_name in the first
overloading must be a normal multibyte string. The wchar_t* stream_name
argument in the second overloading, is Unicode compatible.

istorage_mode
Specify a storage mode using a bit field taken from the STGM enumeration:

STGM_DIRECT 0x00000000L
STGM_TRANSACTED 0x00010000L
STGM_SIMPLE 0x08000000L
STGM_READ 0x00000000L
STGM_WRITE 0x00000001L
STGM_READWRITE 0x00000002L
STGM_SHARE_DENY_NONE 0x00000040L
STGM_SHARE_DENY_READ 0x00000030L
STGM_SHARE_DENY_WRITE 0x00000020L
STGM_SHARE_EXCLUSIVE 0x00000010L
STGM_PRIORITY 0x00040000L
STGM_DELETEONRELEASE 0x04000000L
STGM_CREATE 0x00001000L
STGM_CONVERT 0x00020000L
STGM_FAILIFTHERE 0x00000000L
STGM_NOSCRATCH 0x00100000L

The mode bits are passed as is to IStorage::CreateStream() and
IStorage::OpenStream().

Controlling Database Size
Database files cannot shrink. When you delete an object in a database, the space goes
to free space. PSE Pro reuses it for a subsequent allocation. If you copy a database,
the target database has the same size as the source database. However, PSE Pro does
work well with compressed disks, so that free space does not use any storage bytes.
28 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
When you open a database, reserve at least enough to accommodate the maximum
amount of data the database will have between the time of the open and the time at
which it is closed. You might have to reserve more address space if data is sometimes
deleted from the database.

Although it is rarely necessary, you can also adjust the size and location of the
application’s PSR.

The Return Value
The static member function os_database::create() returns a pointer to an object
of type os_database. You use this pointer as the this argument to other nonstatic
member functions of the class os_database, such as os_database::close().

The database object is actually transient, unlike the database it represents. That is, it
exists only for the duration of the current process. If you copy it into persistent
storage, it is meaningless when retrieved by another process. If you want to record
the identity of a database in persistent storage, you should record the database’s
pathname or stream name.

Creating Databases with os_database::open()
Typically, you call os_database::create() to create a database, but you can also
use the function os_database::open() to create a database as an operating system
file. This function requires you to specify the pathname of the database you want to
open. You can specify an optional argument to direct the function to create a
database if a database with the specified pathname does not exist.
Release 6.3 29

Opening Databases
Opening Databases
Before you can read or write data, you must open the database in which it resides.
When you create a database with os_database::create(), PSE Pro opens it.
However, to open an existing database, you use os_database::open() described
in this section:

os_database::open()
If you want to open a database previously created as an operating system file, use the
following function:

static os_database *open(
 const char* pathname,
 os_boolean read_only = 0,
 os_int32 create_mode = 0
 os_unsigned_int32 reserve_n_times_db_size = 0
);

If you want to open a database previously created as a stream within a specified
Istorage, use one of the following functions:

static os_database* open(
 IStorage* istorage,
 const char* stream_name,
 os_unsigned_int32 istorage_mode,
 os_unsigned_int32 reserve_n_times_db_size = 0
);

static os_database* open(
 IStorage* istorage,
 const wchar_t* stream_name,
 os_unsigned_int32 istorage_mode,
 os_unsigned_int32 reserve_n_times_db_size = 0
);

PSE Pro allows you to open multiple databases at the same time.

The following sections describe the arguments for os_database::open().

pathname
Specify the name of the database you want to open. It is the only required argument.
The pathname is an operating system pathname. It can be a relative or rooted
pathname. Variants of a pathname are not interpreted as referring to the same file.
The following example opens the database db1:

os_database *db1 = os_database::open("db1") ;

If there is no file with the specified pathname, PSE Pro throws os_err_database_
not_found, unless create_mode is nonzero.

If you supply the pathname of a file that is not a PSE Pro database, PSE Pro throws
os_err_not_a_database. PSE Pro throws the same exception if you attempt to open
a file that resulted from an aborted database creation.

If the pathname is not a valid operating system pathname, PSE Pro throws os_err_
invalid_pathname.
30 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
The function takes into account local network mount points when interpreting the
pathname, so the pathname can refer to a database on a foreign host.

read_only
Specify whether the database is to be opened for read-only or update. A nonzero
integer (true) indicates read-only, and 0 (false) indicates that write access is allowed.
The default is 0. The following example opens the database kendb1 with read-only
access.

os_database *db1 = os_database::open("kendb1", 1) ;

Multiple processes can have a given database open at the same time, if they all open
the database for read-only. While a process has a database opened for write, no other
process can open the database.

If you attempt to write to a database that has been opened for read-only, PSE Pro
throws os_err_write_permission_denied.

The class os_database also provides functions for determining a database’s open
status. See Obtaining Information About a Database on page 38.

create_mode
Specify the mode of a new database to be created if a file with the specified pathname
does not exist.

If create_mode is 0, and there is no file with the specified name, PSE Pro throws os_
err_database_not_found.

If create_mode and read_only are both nonzero, and there is no database with the
specified name, PSE Pro throws os_err_write_permission_denied. You cannot
open a new database for read-only.

Do not create databases inside a transaction. If you try to, PSE Pro throws os_err_
trans.

reserve_n_times_db_size
Specify the amount of address space to reserve for the database’s data for the current
session (the period from database open to database close). If the value of the
argument is nonzero, it specifies a multiple of the database size. If this argument is 0
(the default), the following occurs:

• If the database size is less than 8 MB, PSE Pro reserves 8 MB.

• If the database size is more than 8 MB but less than 64 MB, PSE Pro reserves twice
the database size.

• If the database size is greater than 64 MB, PSE Pro reserves address space that is 8
MB larger than the database.

See reserve_mb_add_space on page 27 for information on deciding how much
address space to reserve.

istorage
Specify the name for an IStorage object.
Release 6.3 31

Opening Databases
stream_name
Specify the name of the stream to open. The char* stream_name in the first
overloading must be a normal multibyte string. The wchar_t* stream_name
argument in the second overloading is Unicode compatible.

istorage_mode
Specify a storage mode using a bit field taken from the STGM enumeration:

STGM_DIRECT 0x00000000L
STGM_TRANSACTED 0x00010000L
STGM_SIMPLE 0x08000000L
STGM_READ 0x00000000L
STGM_WRITE 0x00000001L
STGM_READWRITE 0x00000002L
STGM_SHARE_DENY_NONE 0x00000040L
STGM_SHARE_DENY_READ 0x00000030L
STGM_SHARE_DENY_WRITE 0x00000020L
STGM_SHARE_EXCLUSIVE 0x00000010L
STGM_PRIORITY 0x00040000L
STGM_DELETEONRELEASE 0x04000000L
STGM_CREATE 0x00001000L
STGM_CONVERT 0x00020000L
STGM_FAILIFTHERE 0x00000000L
STGM_NOSCRATCH 0x00100000L

The mode bits are passed as is to IStorage::CreateStream() and
IStorage::OpenStream().

Exceptions If the specified database is opened for write by another process, PSE Pro throws os_
err_database_is_locked.

If the database is already opened by the current process, PSE Pro throws os_err_
database_in_use.

If you try to open a file database that requires recovery, PSE Pro throws os_err_
database_needs_recovery.

Return Value
The static member function os_database::open() returns a pointer to an object of
type os_database. You use this pointer as the this argument to other nonstatic
member functions of the class os_database, such as os_database::close().

The database object is actually transient, unlike the database it represents. That is, it
exists only for the duration of the current process. If you copy it into persistent
storage, it will be meaningless when retrieved by another process. If you want to
record the identity of a database in persistent storage, you should record the
database’s pathname.
32 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
Closing Databases
You close a database by calling os_database::close(). The function signature is

void close() ;

This makes the database’s data inaccessible, and deletes the instance of os_database
pointed to by this. PSE Pro unmaps all the database’s data from virtual memory. Of
course, this does not delete the database itself.

When you close a database, PSE Pro does not automatically save the state of the
database.

Do not call this function inside a transaction. If you try to, PSE Pro throws os_err_
trans.

Destroying Databases
You can delete a database with os_database::destroy(). The function signature is

void destroy() ;

The destroy() function closes and deletes the database represented by this os_
database object. PSE Pro deletes the os_database object as well.

Example os_database* db1;
...
db1–>destroy();

If the database is not opened for write, PSE Pro throws os_err_write_permission_
denied.

Do not call this function inside a transaction. If you try to, PSE Pro throws os_err_
trans.
Release 6.3 33

Saving Databases
Saving Databases
To make your changes to a database permanent, call os_database::save(). To save
a database under a different location, call os_database::save_as(). You can also
call os_transaction::commit() to make database changes permanent.

os_database::save()
The function signature for os_database::save() is

void save() ;

After the save operation, the database’s data, including your latest changes, resides
safely on disk. Once saved, your data is recoverable as of the time of the last save
operation.

If a failure occurs during a save, your data, as of the previous save, is automatically
recoverable. The recovery facility allows you to determine if a failure occurred
during a save operation, and it allows you to restore a file database, if necessary, to
its state as of the last save.

Exceptions
PSE Pro throws os_err_write_permission_denied when save() is called if the
database is opened for read-only.

PSE Pro throws os_err_database_transient if the database is a transient
database. PSE Pro throws os_err_trans if you call this function inside a transaction.

os_database::save_as()
When you want to save a database as an operating system file, the function signature
for os_database::save_as() is

void save_as(
 const char* dest_pathname,
 os_int32 mode = 0664,
 os_boolean if_exists_overwrite = 0
) ;

When you want to save the database as a stream within a specified Istorage, the
function signature is

void save_as(
 IStorage* dest_istorage,
 const char* dest_istream_name,
 os_unsigned_int32 istorage_mode
);

void save_as(
 IStorage* dest_istorage,
 const wchar_t* dest_istream_name,
 os_unsigned_int32 istorage_mode
);

The following sections describe the arguments passed to the various overloadings of
the os_database::save_as() function.
34 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
dest_pathname
Specify the name of the new database. The save_as() function copies the database
referred to by the implied this to dest_pathname, and saves the latest changes to
the new database. After save_as() completes, this represents the destination
database, and the destination database is open. The source database is closed, and no
outstanding changes are saved to it.

if_exists_overwrite
Specify a nonzero value for the argument if_exists_overwrite to overwrite any
existing database with the specified name to avoid throwing an exception. For
example:

os_database *db1 = os_database::create("\kendb1", 0666, 1);

This argument defaults to 0 (false). If no database of that name already exists, this
argument has no effect.

dest_istorage
Specify the name of an IStorage object.

dest_istream_name
Specify the stream within the specified IStorage. The save_as() function copies the
database associated with this to dest_istream_name within dest_istorage and
saves the latest changes to the new database. After save_as() completes, this
represents the destination database, and the destination database is open. The source
database is closed, and no outstanding changes are saved to it.

The char* stream_name in the first overloading must be a normal multibyte string.
The wchar_t* dest_istream_name argument in the second overloading is Unicode
compatible.

istorage_mode
Specify a storage mode using a bit field taken from the STGM enumeration:

STGM_DIRECT 0x00000000L
STGM_TRANSACTED 0x00010000L
STGM_SIMPLE 0x08000000L
STGM_READ 0x00000000L
STGM_WRITE 0x00000001L
STGM_READWRITE 0x00000002L
STGM_SHARE_DENY_NONE 0x00000040L
STGM_SHARE_DENY_READ 0x00000030L
STGM_SHARE_DENY_WRITE 0x00000020L
STGM_SHARE_EXCLUSIVE 0x00000010L
STGM_PRIORITY 0x00040000L
STGM_DELETEONRELEASE 0x04000000L
STGM_CREATE 0x00001000L
STGM_CONVERT 0x00020000L
STGM_FAILIFTHERE 0x00000000L
STGM_NOSCRATCH 0x00100000L

The mode bits are passed as is to IStorage::CreateStream() and
IStorage::OpenStream()
Release 6.3 35

Copying Databases
Exceptions
If an exception is thrown during a save_as() operation, you are responsible for
catching the exception and retrying the operation.

If the source database is opened for read-only or has read-only file system protection,
PSE Pro throws os_err_write_permission_denied.

If the source database is the transient database, PSE Pro throws os_err_database_
transient.

Do not call os_database::save_as() inside a transaction. If you try to, PSE Pro
throws os_err_trans.

Copying Databases
You can copy a database in two ways:

• os_database::copy() on page 36

• ospsecp.exe on page 37

Additionally, you can duplicate a database under another name using os_
database::save_as(). See os_database::save_as() on page 34.

os_database::copy()
The function signature for copying a database to a pathname is

void copy(
 const char* dest_pathname,
 os_int32 prot_mode = 0664,
 os_boolean if_exists_overwrite = 0
) const;

The following are the function signatures for copying a database to a stream within
a specified Istorage:

void copy(
 IStorage* dest_istorage,
 const char* dest_istream_name,
 os_unsigned_int32 istorage_mode
) const;

void copy(
 IStorage* dest_istorage,
 const wchar_t* dest_istream_name,
 os_unsigned_int32 istorage_mode
) const;

For all overloadings, the implicit this specifies the source of the copy. The following
sections describe the arguments passed to the copy() function.
36 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
dest_pathname
Specifies the target.

prot_mode
Specifies the protection mode of the new database.

if_exists_overwrite
Specifies whether the copy can overwrite an existing file. If a file named dest_
pathname already exists and if_exists_overwrite is nonzero, the copy overwrites
the file, provided the file is not a PSE Pro database that is currently in use.

dest_istorage
Specify the name of the IStorage object.

dest_istream_name
Specify the stream within the specified IStorage. The copy() function copies the
database associated with this to dest_istream_name within dest_istorage.

The char* stream_name in the first overloading must be a normal multibyte string.
The wchar_t* dest_istream_name argument in the second overloading is Unicode
compatible.

istorage_mode
The storage_mode argument specifies the Istorage mode of the new database.

Exceptions
If a file named dest_pathname already exists and if_exists_overwrite is 0, PSE
Pro throws os_err_database_exists.

If the source database is opened for write by another process, PSE Pro throws os_
err_database_is_locked.

If a database named dest_pathname already exists and is opened by the current
process, PSE Pro throws os_err_database_in_use.

If the database is a transient database, PSE Pro throws os_err_database_
transient.

During the copy, unmapped pages of the source database are not mapped into
memory. The source database is not altered in any way. Do not call copy() inside a
transaction. If you try to, PSE Pro throws os_err_trans.

ospsecp.exe
You can use the ospsecp utility to copy a database. The format for the command is

ospsecp source-pathname target-pathname

The command copies the source database to the target using the following call to os_
database::copy():

source-db-ptr.copy(target-db-ptr, 0644, 1)
Release 6.3 37

Obtaining Information About a Database
Obtaining Information About a Database
This section describes functions of the os_database class you use to obtain the
following information about a database:

• Is the Database Open? on page 38

• Is the Database Open for Read-Only? on page 38

• Is the Database Open for Write Access? on page 38

• What Is the Size of the Database? on page 38

• What Is the Pathname of an Open Database? on page 39

• Has the Database Been Modified? on page 39

Is the Database Open?
static os_boolean is_open(os_database* db) ;

This function returns nonzero (true) if the specified database is open, and 0 (false)
otherwise. If there is no file with the specified pathname, PSE Pro throws os_err_
database_not_found. If you supply the pathname of a file that is not a valid PSE Pro
database, PSE Pro throws os_err_not_a_database. If the pathname is not a valid
operating system pathname, PSE Pro throws os_err_invalid_pathname.

The function takes into account local network mount points when interpreting the
pathname, so the pathname can refer to a database on a remote host.

Is the Database Open for Read-Only?
os_boolean is_open_read_only() const;

This function returns nonzero (true) if this database is opened for read-only by the
current process; returns 0 (false) otherwise.

Is the Database Open for Write Access?
os_boolean is_writable() const;

This function returns nonzero (true) if this database is opened for write access by the
current process; it returns 0 (false) otherwise.

Example os_database* db1;
...
if (db1–>is_writable())
 db1–>close();

What Is the Size of the Database?
os_unsigned_int32 size() const;

This function returns the size of this database in bytes.
38 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
What Is the Pathname of an Open Database?
char* get_pathname() const;

This function returns the pathname of this database. The returned char* points to
an array allocated on the heap by this function. It is the caller’s responsibility to
deallocate the array when it is no longer needed.

Has the Database Been Modified?
os_boolean os_database::is_modified() const;

This function returns nonzero (true) if this database has been modified since the last
os_database::save() operation. Otherwise, this function returns 0 (false).

Recovering Databases
For databases that are operating system files, you can use os_database::needs_
recovery() or the ospserecov utility to determine if a database needs recovery.

Call the os_database::recover() function to restore a database to a consistent
state. Logging is the mechanism that enables recovery during save operations. If you
want to improve performance, you can disable logging, but it will prevent recovery
from failures during save operations.

For databases that are streams within OLE compound files, use TRANSACTED mode.

Function for Determining If a Database Needs Recovery
Call the os_database::needs_recovery() function to determine if a database
needs to be recovered. The function signature is

static os_boolean needs_recovery(const char* pathname);

This function returns nonzero (true) if a failure occurred during a transaction
commit, or, if transactions were not initialized, during save.

PSE Pro throws os_err_database_not_found if there is no file with the specified
pathname.

PSE Pro throws os_err_not_a_database if you supply the pathname of a file that
is not a PSE Pro database.

PSE Pro throws os_err_invalid_pathname if the pathname is not a valid operating
system pathname.
Release 6.3 39

Recovering Databases
Utility for Determining If a Database Needs Recovery
Another way to determine if a database needs recovery is to invoke the ospserecov
utility. The format is

ospserecov -c database_pathname

The -c option instructs the utility to check whether recovery is required. The value
you specify for database_pathname can be absolute or relative.

The utility calls os_database::needs_recovery() to determine if recovery is
required. The utility sends a message to standard output that indicates whether the
specified database requires recovery.

Example ospserecov -c foo2.db

If you omit the -c option, the utility restores the database to its state as of the last
successful commit or (if transactions were not initialized at the time of the failure) as
of the last successful save operation. If the database does not need recovery, a
message is sent to standard error. The utility calls os_database::recover() to
perform the recovery. For example,

ospserecov foo2.db

Recovering a Database
You can recover a database with the os_database::recover() function. The
function signature is

static void recover(const char* pathname);

If os_database::needs_recovery() returns 1 for the given database, this function
restores the database to its state as of the last successful commit or, if transactions
were not initialized at the time of the failure, as of the last successful save operation.

If you call this function inside a transaction, PSE Pro throws os_err_trans.

If there is no file with the specified pathname, PSE Pro throws os_err_database_
not_found.

If you supply the pathname of a file that is not a PSE Pro database, PSE Pro throws
os_err_not_a_database.

If the pathname is not a valid operating system pathname, PSE Pro throws os_err_
invalid_pathname.

If the log file is not found or is not compatible with the database being recovered, PSE
Pro throws os_err_database_recovery. This can happen if logging was disabled
at the time of the failure or if the database or the log file has been moved since the
failure. If you move them, the database and log file must remain in the same
directory as one another, and the name of the log file must be the database name plus
the suffix .log (or, on FAT, it must be the database name with .log replacing the
database file name extension). Otherwise, this exception is thrown. This exception is
also thrown if the file so named was not the log file for the specified database at the
time of the failure.
40 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
Disabling Logging
objectstore::disable_logging()

This function disables logging, which is enabled by default. If logging is disabled,
failures during saves are not recoverable. However, disabling logging can improve
performance and reduce disk consumption. When logging is enabled, before-images
of each written page are temporarily stored on disk before each save operation. Do
not use transactions if you want logging disabled. If you have disabled logging, os_
transaction::initialize() reenables it. If you call disable_logging() after
calling os_transaction::initialize(), the function has no effect and logging
remains enabled.

Checking for Data Corruption
You can use PSE Pro to detect some forms of data corruption in internal data
structures. Your options for doing this are

• Checking Databases with the ospseverifydb Utility

• Checking Databases with the self_check() Functions

Checking Databases with the ospseverifydb Utility
You can run the ospseverifydb utility to check a PSE Pro database. When PSE Pro
checks a database, it verifies that

• There are no transient pointers.

• Persistent pointers point to objects within the database.

• Metadata values are valid.

The utility displays a message about anything it finds that is invalid. The utility does
not terminate if it finds illegal pointers. The utility does terminate if

• It finds metadata corruption.

• Typespecs are missing for classes that need to be verified.

The command line format for the ospseverifydb utility is as follows:

ospseverifydb db [-schema_lib schema_library...]

Replace db with the path of the PSE Pro database that you want to verify. If the
database you want to verify contains only built-in types and no user-defined types,
you need to specify only the database path.

If the database you want to verify contains any user-defined types, you must specify
the -schema_lib option and replace schema_library with the path for one or more
schema libraries. Specify the schema library or libraries that contain the definitions
of the user-defined types in the database you want to verify. If you do not specify at
least one schema library, the utility verifies C++ built-in types until it finds a user-
defined type. At which point the utility throws os_err_umarked_type exception
and terminates.
Release 6.3 41

Checking for Data Corruption
For applications that run on Windows, a schema library is a dll. For applications that
run on UNIX, a schema library is a shared library. You use the pssg utility to
generate schema libraries. For information about generating schema libraries, see
Building PSE Pro C++ Applications, Running the Schema Generator.

Checking Databases with the self_check() Functions
You can call os_database::self_check() to check a single database or
objectstore::self_check() to check all open databases. When PSE Pro checks a
database, it verifies that

• There are no transient pointers.

• Persistent pointers point to objects within the database.

• Metadata values are valid.

• Virtual table pointers are valid — However, if you set the b_skip_vtbls
argument to true, then the function does not check whether virtual table pointers
are valid.

The operation does not terminate if it finds illegal pointers. The operation does
terminate if

• It finds metadata corruption.

• Typespecs are missing for classes that need to be verified.

A side effect of these functions is that all pages are mapped into memory. However,
if you call self_check() with b_skip_vtbls set to true, then all pages are
unmapped before self_check() returns.

os_database::self_check()
void self_check(os_boolean b_skip_vtbls = 0);

Checks the internal data structures of this database. If corruption is detected, PSE
Pro throws the os_err_heap_corruption exception. The heap corruption can be
due to a memory corruption problem in user code or a product defect.

Set the b_skip_vtbls argument to true when your program performs only database
verification and the class definitions are not linked into the program. In such cases,
the virtual table pointers are not available to the program and so their verification
needs to be skipped, which is accomplished by setting b_skip_vtbls to true.

objectstore::self_check()
static void self_check(os_boolean b_skip_vtbls = 0);

Checks the internal data structures of all open databases, as well as internal
structures not associated with a particular database. If corruption is detected, PSE
Pro throws os_err_heap_corruption. The heap corruption can be due to a memory
corruption problem in user code or a product defect.

Set the b_skip_vtbls argument to true when your program performs only database
verification and the class definitions are not linked into the program. In such cases,
the virtual table pointers are not available to the program and so their verification
needs to be skipped, which is accomplished by setting b_skip_vtbls to true.
42 PSE Pro for C++ API User Guide

Chapter 3: Managing Databases
Finding Invalvid Pointers After Relocation
The obectstore::set_check_illegal_pointers() function indicates whether
you want PSE Pro to find any invalid pointers in a page after relocation. The function
signature is

void set_check_illegal_pointers(os_boolean yes_no);

After you call this function with a true value, then after mapping a page into memory
and performing relocation, PSE Pro checks the pointers in the relocated page to
determine whether they are valid. PSE Pro displays a message that indicates any
invalid pointers, and then continues processing. PSE Pro does not fix any invalid
pointers.

The OS_PSE_CHK_ILLEGAL_PTR environment variable serves the same purpose as a
call to the set_check_illegal_pointers() function.

The default value for the function call and for the environment variable is false.

Dumping Databases
You can dump the contents of a database with os_database::dump_contents().
The function signature is

void dump_contents();

This function dumps the contents of this database to standard output. The dump
includes allocated as well as free blocks. For each block, the function displays the
address, size, type (if allocated), tag value, array count, and block size.

The program calling this function must mark all the classes in the database that
would have to be marked by an application retrieving the classes’ instances in the
usual way (that is, using a root and navigation as opposed to dump_contents()).
Release 6.3 43

Dumping Databases
44 PSE Pro for C++ API User Guide

Chapter 4
Storing and Updating Objects
in a Database

To store objects in a database, you must create them with PSE Pro’s persistent new
function. Once created, you need to know how to manipulate persistent objects, but
also when and how to use a transient database. To help you perform many
operations on your database objects, this chapter discusses the following topics:

Persistent New 46

Creating Nonarrays with Persistent new 46

Creating Arrays with Persistent new 47

Clustering Objects in a Database 48

Deleting Objects 50

Using Typespecs 51

Retrieving the Database Containing a Specified Object 53

Retrieving the Transient Database 53

Determining Whether an Object Is Persistent 54

Establishing Roots as Database Entry Points 54

Retrieving Roots for Database Entry 56

Type Safety for Database Roots 58

Deleting Database Roots 59
Release 6.3 45

Persistent New
Persistent New
The heart of the PSE Pro API is a special overloading of the global function
::operator new(), known as persistent new. Allocating data with persistent new is a
lot like allocating data with regular new. The difference is that data allocated with
regular new is transient. That is, it disappears after the allocating application
terminates. Data allocated with persistent new resides in stable storage, in a database,
until explicitly deleted. You can use persistent new to allocate persistent instances of
built-in types such as int or char*, as well as classes that you define. Both nonarray
and array overloadings provide you with some additional flexibility in the objects
you create.

To prepare a class so that its instances can be stored in a PSE Pro database, you might
have to modify some member function implementations. If a member function
allocates any new objects, you must decide whether these new objects should be
allocated in a database. If so, you must change the allocation to use persistent new as
defined by the PSE Pro API.

Persistent new takes arguments for

• An os_database* that indicates the database in which to allocate the new object

• An os_typespec* that specifies the type of the new object

Creating Nonarrays with Persistent new
Use the following overloading of ::operator new() to create scalar (nonarray)
objects in database memory:

extern void* operator new (
 size_t,
 os_database* db,
 os_typespec* typespec
) ;

db specifies the database in which the new object is to be stored. If you specify a
transient database, PSE Pro allocates the new object on the transient heap.

typespec specifies the type of the new object. If you are creating an instance of a
class, C, use the static member function os_ts<C>::get(). If you are creating an
instance of a fundamental type, use a member of os_typespec. If db specifies a
transient database, you can supply 0 for typespec.

Additional overloadings of persistent new are provided for creating arrays and
supplying a clustering hint.

As with ordinary new, persistent new returns a pointer to the created object. Before
the constructor is called, PSE Pro initializes database memory allocated by new with
zeros.

Restrictions If you store a pointer to transient memory in a persistent object, the pointer is valid
only until you close the database.

Cross-database pointers are not allowed. A pointer in one database must not point
to data in another database.
46 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Example image_map *an_image_map =
 new(db1, os_ts<image_map>::get()) image_map(111) ;

In this example, the new object is stored in the database pointed to by db1.

Exceptions If db or typespec is 0, or if the typespec size does not match the size of the type being
allocated, PSE Pro throws os_err_operator_new_args.

If the program allocates a class instance and the size of the instance according to the
program’s class definition is not the same as the size of instances of the class stored
in the database, PSE Pro throws os_err_alloc.

If new data does not fit into the persistent storage region, the range of virtual
memory addresses reserved for persistent data, PSE Pro throws os_err_address_
space_exhausted.

If heap corruption is detected during allocation, PSE Pro throws os_err_heap_
corruption. The heap corruption can be due to a memory corruption problem in
user code or a product defect.

Creating Arrays with Persistent new
Use the following overloading of ::operator new() to create arrays of objects in
database memory:

extern void* operator new (
 size_t,
 os_database* db,
 os_typespec* typespec,
 os_int32 how_many
) ;

db specifies the database in which to store the new array. If you specify a transient
database, PSE Pro allocates the new array on the transient heap.

typespec specifies the type of the elements in the new array. If the elements are
instances of a class, C, use the static member function os_ts<C>::get(). If the
elements are instances of a fundamental type, use a member of os_typespec. If db
specifies a transient database, you can supply 0 for typespec.

how_many specifies the number of elements in the array.

As with ordinary new, persistent new returns a pointer to the new array. Before the
constructor for the new array is called, PSE Pro initializes database memory
allocated by new with zeros.

Additional overloadings of persistent new are provided for creating nonarrays and
supplying a clustering hint.

Restrictions If you store a pointer to transient memory in a database object, the pointer is valid
only until you close the database.

Cross-database pointers are not allowed. A pointer in one database must not point
to data in another database.
Release 6.3 47

Clustering Objects in a Database
Example image* some_images = new(db1, os_ts<image>::get(), 10) image[10];

This call creates an array of ten image objects.

An example of calling new from a constructor appears later in this chapter.

Exceptions If db, typespec, or how_many is 0, or if the typespec size does not match the size of
the type being allocated, PSE Pro throws os_err_operator_new_args.

If how_many is not the same as the array size specified in the brackets, PSE Pro throws
os_err_alloc.

If the program allocates a class instance and the size of the instance according to the
program’s class definition is not the same as the size of instances of the class stored
in the database, PSE Pro throws os_err_alloc.

If new data does not fit into the persistent storage region, the range of virtual
memory addresses reserved for persistent data, PSE Pro throws os_err_address_
space_exhausted.

If heap corruption is detected during allocation, PSE Pro throws os_err_heap_
corruption. The heap corruption can be due to a memory corruption problem in
user code or a product defect.

Clustering Objects in a Database
Clustering refers to how persistent data is arranged on disk, particularly with regard
to what data is close to or clustered with what other data. Because PSE Pro transfers
persistent data a page at a time, controlling clustering can sometimes improve
application performance. By clustering together objects that are used together, you
can sometimes reduce the number of pages transferred between database and
program memory.

This section discusses the following topics:

• About Clustering on page 48

• Factors to Consider When Determining Clusters on page 49

• Providing a Clustering Hint on page 49

About Clustering
You should try to cluster objects to reduce the total number of pages that contain
data needed in one session (the period from database open to database close). If all
the objects in a database are needed, the clustering does not matter.

For example, consider a database that contains a mail archive and an application that
allows users to browse the archive’s subject lines and display selected message
bodies. If a typical session uses many subject lines and few message bodies, the
application might benefit from a clustering that stores the subject lines together. That
way the subject lines are spread out over fewer pages than if each subject line were
stored with its corresponding message body.
48 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
The effect of clustering on transfers to the database is similar to its effect on transfers
from the database. If updated objects are clustered together, fewer pages will be
transferred upon save or transaction commit than if updated objects are spread out
over a large number of pages. You can control clustering in the following ways:

• Controlling (temporal) allocation order: In the absence of deletions, PSE Pro uses
high-water-mark allocation.

• Providing a clustering hint to persistent new: If there are deletions, PSE Pro tries
to reuse freed database memory. With a special overloading of persistent new, you
can direct PSE Pro to try to cluster a new object with a specified object.

Factors to Consider When Determining Clusters
Different operations sometimes benefit from different clusterings. Use the clustering
that provides the greatest overall benefit, taking into account the following factors
for each operation:

• How much does the clustering benefit or hurt the operation?
• How frequently is the operation performed?
• How time critical is the operation?

Providing a Clustering Hint
Use the following overloading of ::operator new() to provide a clustering hint
when creating scalar (nonarray) objects in database memory:

extern void* operator new (
 size_t,
 void* where,
 os_typespec* typespec
) ;

Use the following overloading of ::operator new() for providing a clustering hint
when creating arrays of objects in database memory:

extern void* operator new (
 size_t,
 void* where,
 os_typespec* typespec,
 os_int32 how_many
) ;

where specifies an object with which PSE Pro tries to cluster the new object. In any
event, PSE Pro stores the new object in the same database as the specified object. If
you specify a transient object, PSE Pro allocates the new object on the transient heap.
The rest of the arguments are the same as those for the other persistent new
overloadings.

Example delete msg2->subject_line;
char *new_subj_line = "changed subject line";
msg2.subject_line = new(
 msg1->subject_line,
 os_typespec::get_char() ,
 strlen(new_subj_line)+1
) char[strlen(new_subj_line)+1];
strcpy(msg2->subject_line, new_subj_line);
Release 6.3 49

Deleting Objects
Deleting Objects
To delete persistent objects, use the persistent delete just as you would use the C++
delete operator to delete transient objects. Deleting transient objects requires a
separate function also described here.

::operator delete()
void operator delete() ;

Deletes the specified object from storage. The argument must point to the beginning
of an object’s storage.

If heap corruption is detected during deallocation, PSE Pro throws os_err_heap_
corruption. The heap corruption can be due to a memory corruption problem in
user code or a product defect.

If you define ::operator delete(), overriding the PSE Pro definition, use
objectstore::free_memory() on page 50 instead.

If you do not define ::operator delete(), but want application-specific delete
processing for transient objects only, register a function to do the special processing
with objectstore::set_transient_delete_function() on page 50.

objectstore::free_memory()
static void free_memory(void*);

Deletes the specified object from storage. This function calls the PSE Pro delete
operator.

objectstore::set_transient_delete_function()
static void set_transient_delete_function(
 void(*)(void*)
);

Registers a function that is called by the PSE Pro overloading of ::operator
delete(), when performed on transient objects. You can unregister a function by
passing 0 to set_transient_delete_function().
50 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Using Typespecs
You specify a typespec as an argument to persistent new. A typespec represents a
particular type, such as char, image, or image*. Typespecs for fundamental and
pointer types are instances of the class os_typespec. Typespecs for classes are
instances of instantiations of the class template os_ts<T>, which is derived from os_
typespec. The typespec for the class image, for example, is an instance of the class
os_ts<image>.

This section discusses the following topics:

• Typespecs for Classes on page 51

• Typespecs for Fundamental and Pointer Types on page 51

• os_typespec::get_name() on page 52

• os_typespec::get_typespec() on page 52

• os_typespec::get_size() on page 52

• os_typespec::needs_relocation() on page 52

Typespecs for Classes
For every class, C, with instances stored in a database, you can use the static function
os_ts<C>::get() to retrieve a typespec for the class. The signature is:

static os_ts<T> *get();

This function performs allocation only the first time it is called in a given process, so
you do not need to worry about freeing memory associated with typespecs.

Typespecs for Fundamental and Pointer Types
You can retrieve a typespec for a fundamental or pointer type with one of the
following members of the class os_typespec:

static os_typespec* get_char();
static os_typespec* get_short();
static os_typespec* get_int();
static os_typespec* get_long();
static os_typespec* get_float();
static os_typespec* get_double();
static os_typespec* get_long_double();
static os_typespec* get_pointer();
static os_typespec* get_signed_char();
static os_typespec* get_signed_short();
static os_typespec* get_signed_int();
static os_typespec* get_signed_long();
static os_typespec* get_unsigned_char();
static os_typespec*get_unsigned_short();
static os_typespec* get_unsigned_int();
static os_typespec* get_unsigned_long();

Example unsigned int len ;
os_database* db1 ;
...
char *s = new(db1, os_typespec::get_char(), len) char[len];
Release 6.3 51

Using Typespecs
os_typespec::get_name()
virtual const char* get_name() const = 0;

Returns the name of the type designated by the specified typespec. This function
does not perform any allocation.

os_typespec::get_typespec()
static os_typespec* get_typespec(const char* name);

Returns the typespec with the specified name. Returns 0 if the typespec is not found.

os_typespec::get_size()
virtual os_unsigned_int32 get_size() const = 0;

Returns the size in bytes of instances of the type designated by the specified
typespec.

os_typespec::needs_relocation()
virtual os_boolean needs_relocation() const = 0;

Returns nonzero if the type designated by the specified typespec requires relocation
because it contains pointers; returns 0 otherwise.
52 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Retrieving the Database Containing a
Specified Object

You can retrieve a pointer to the database that contains a specified object with os_
database::of(). The function also indicates whether a specified object is transient.
The function signature is

static os_database* of(const void* obj) ;

This function returns a pointer to the database that contains the specified object. If
the specified object is not stored in a persistent database, PSE Pro returns a pointer
to the transient database that contains the object.

See also objectstore::is_persistent().

Example class employee {
public:
 char* name;
 employee(char* n) {
 name =
 new(
 os_database::of(this),
 os_typespec::get_char(),
 strlen(n)+1
) char[strlen(n)+1];
 strcpy(name, n);
 }
} ;

This example shows how to store two objects together, either both in the same
database or both in transient memory. When an instance of employee is created, the
character array pointed to by employee::name is stored together with the new
employee.

Retrieving the Transient Database
A transient database represents nondatabase memory, that is, regular program heap
memory. When you use persistent new, if you pass a pointer to a transient database,
PSE Pro allocates the new object on the transient heap.

os_database::of() returns a pointer to a transient database when executed on a
transient object. You can also retrieve a pointer to a transient database with os_
database::get_transient_database(). The function signature is

static os_database* get_transient_database() ;

This function returns a pointer to a transient database.
Release 6.3 53

Determining Whether an Object Is Persistent
Determining Whether an Object Is Persistent
To determine whether an object is persistently stored in a database, call
objectstore::is_persistent(). The function signature is

static os_boolean is_persistent(const void*);

This function returns nonzero (true) if the specified address points to persistent
memory, and returns 0 (false) otherwise.

Establishing Roots as Database Entry Points
A database root provides a way to give an object a persistent name. This allows the
object to serve as an entry point (or starting point to access other objects in the
database) into a database. To help you use database roots, this section covers the
following:

• About Database Roots on page 54

• Creating Database Roots on page 55

• Setting the Persistent Object Pointed To by a Root on page 55

• Obtaining the Name of a Root on page 55

• Example of Establishing an Entry Point on page 56

About Database Roots
When an object has a persistent name, any process can look it up by that name to
retrieve it. After you have retrieved one object, you can retrieve any object related to
it by using navigation. That is, you can retrieve additional objects by following data
member pointers. Each database needs only one or a small number of entry points.
Looking up an entry point is significantly slower than navigating to an object.

A database root, an instance of os_database_root, associates an object with a string.
You specify the name of the object when you create a root, with os_
database::create_root(). You set and get a pointer to the entry-point object with
os_database_root::set_value() and os_database_root::get_value().

An object can be used as an entry point if you associate a string with it using a
database root, an instance of the class os_database_root. To do this, use these two
functions:

• os_database::create_root()

• os_database_root::set_value()
54 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Creating Database Roots
Call the os_database::create_root() function to create a database root. The
function signature is

os_database_root* create_root(const char* name);

Creates a root named name in this database, and returns a pointer to the new root.
The function copies the specified string into the database; therefore, name can be a
transient string. The root forms an association between the name and an as-yet-
unspecified entry-point object. You specify the entry point with os_database_
root::set_value(). An example appears later in this section.

Each root’s sole purpose is to associate an object with a name.

If name is already associated with a root in the specified database, PSE Pro throws
os_err_root_exists.

If this is a transient database, PSE Pro throws os_err_database_not_open.

Setting the Persistent Object Pointed To by a Root
Call the os_database_root::set_value() function to associate a root with an
object in the database. The function signature is

void set_value(const void* value, os_typespec* typespec = 0);

This function establishes value as the value of the specified root. value is a pointer
to an entry-point object. An example of establishing entry points appears later in this
section.

value must point to persistent memory in the database that contains the root. If
value points to transient memory or memory in another database, PSE Pro throws
os_err_invalid_root_value.

typespec is an optional argument used for type safety.

Obtaining the Name of a Root
Call the os_database_root::get_name() function to obtain the name of a
particular root. The function signature is

const char* get_name() const;

This function returns the string associated with the specified root.
Release 6.3 55

Retrieving Roots for Database Entry
Example of Establishing an Entry Point
This example shows how to associate an object with a name using a root, so the object
can be used as an entry point.

os_database* db1;
image_map *an_image_map;
...
an_image_map =
 new(db1, os_ts<image_map>::get()) image_map(111);
os_database_root *a_root = db1–>create_root("image_map_0");
a_root–>set_value(an_image_map);

In this example, a root is created with the os_database class function os_
database::create_root(). The function returns a pointer to an instance of the
class os_database_root. The this argument for the function must be the database
in which the entry point is stored.

This function requires you to specify the name to be associated with the entry point,
but the entry point itself is specified in a separate call, using the function os_
database_root::set_value().

The return value of create_root() is a pointer to the new root. The root is stored in
the specified database. create_root() copies the name you supply into this
persistent memory, so you can pass a transiently allocated string.

Retrieving Roots for Database Entry
After one process creates a root and sets its value to point to an entry point, other
processes (or the same process) can retrieve the entry point with the following
functions:

• os_database::find_root()

• os_database_root::get_value()

• os_database::get_all_roots()

An example appears at the end of this section.

Obtaining a Pointer to a Root
Call the os_database_root::find_root() function to obtain a pointer to a root.
The function signature is

os_database_root* find_root(const char* name) const;

This function returns a pointer to the root with the specified name in the this
database. This function returns 0 if no root with the specified name is found.
56 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Obtaining a Pointer to an Entry-Point Object
Call the os_database_root::get_value() function to obtain a pointer to an entry-
point object. The function signature is

void* get_value(os_typespec* typespec = 0) const;

This function returns the value of the specified root. A root’s value is a pointer to an
entry-point object. The return value is typed as void* so a cast is typically necessary
when you use this function.

typespec is an optional argument used for type safety.

Obtaining Access to All Roots in a Database
Call the os_database::get_all_roots() function to obtain access to all roots in a
database.

void get_all_roots(
 os_unsigned_int32 max_to_return,
 os_database_root ** roots,
 os_unsigned_int32& n_ret) const;
);

The value you specify for max_to_return is the maximum number of roots to be
returned. It also indicates the number of elements contained in os_database_root,
which is an array of pointers to roots. You must allocate this array before you call
get_all_roots(). The argument n_ret specifies the actual number of elements in
the array.

Use the function os_database::get_n_roots() to determine how large an array to
allocate.

os_unsigned_int32 get_n_roots() const;

This function returns the number of roots in the database.

Example of Retrieving Entry Points
os_database *db1 ;
image_map *an_image_map ;
os_database_root *a_root ;
...
a_root = db1->find_root("image_map_0") ;
if (a_root)
 an_image_map = (image_map*) (a_root–>get_value()) ;

The this argument of os_database::find_root() (db1 in this example) is a
pointer to the database that contains the root you want to look up. The other
argument ("image_map_0" in this example) is the root’s name. If a root with that
name exists in the specified database, PSE Pro returns a pointer to it. If there is no
such root, the function returns 0.

The function os_database_root::get_value() returns a void*, which is a pointer
to the entry-point object associated with the specified root. Since the returned value
is typed as void*, a cast is usually required when you retrieve it. Here, the returned
value is cast to image_map*, since the entry point is an image_map.
Release 6.3 57

Type Safety for Database Roots
Type Safety for Database Roots
You can gain some additional type safety in your use of roots by supplying an os_
typespec* as the last argument to os_database_root::set_value() and os_
database_root::get_value().

The typespec should designate the type of the entry-point object, which is the object
pointed to by the root’s value. The first function stores the typespec in the database.
The second function throws os_err_root_type_mismatch if the specified typespec
does not match the stored one.

Example of Specifying a Typespec for a Root
os_database *db1;
image_map *an_image_map;
...
an_image_map = new(db1, os_ts<image_map>::get()) image_map(111);
db1–>create_root("image_map_0")–>set_value(
 an_image_map,
 os_ts<image_map>::get()
);

In this example, the os_typespec* argument to set_value() and get_value()
points to a typespec for image_map (not image_map*). The get_value() function
checks only that the typespec supplied to it matches the stored typespec, and does
not check the type of the entry-point object itself.

Obtaining the Typespec for a Root
Call the os_database_root::get_typespec() function to obtain the typespec for
a root. The function signature is

os_typespec* get_typespec() const;

This function returns the os_typespec object last passed to os_database_
root::set_value() for the root.
58 PSE Pro for C++ API User Guide

Chapter 4: Storing and Updating Objects in a Database
Deleting Database Roots
If you want to give an entry point object a different name, or stop using it as an entry
point, you can delete its associated root. Call the os_database_root::destroy()
function to delete a root. The function signature is

static void destroy(os_database_root *r);

When you destroy a root, this function deletes the associated persistent string as
well, but the associated entry-point object is not deleted. If r is 0, the call has no
effect. Here is an example of deleting a root:

os_database_root *a_root;
...
if (a_root)
 os_database_root::destroy(*a_root);

Caution Frequently the only way to retrieve an entry-point object is through its associated
root. You must be careful to retrieve such an object before deleting its root. Then you
can delete it or establish another access path to it.
Release 6.3 59

Deleting Database Roots
60 PSE Pro for C++ API User Guide

Chapter 5
Memory and Database
Management Tasks

This chapter provides information about a variety of tasks you can perform with PSE
Pro. It presents information on the following topics:

Establishing Fault Handlers 62

Setting PSE Pro Behavior Before Throwing Exceptions 62

Using Fetch Hooks 62

Hashing Persistent Addresses 67

Reclaiming Swap Space 67

Retrieving Product Information 68

Using PSE Pro and ObjectStore for C++ in the Same Application 69

Prefaulting Persistent Data 74

Using Integer Typedefs 74

PSE Pro Environment Variables 74
Release 6.3 61

Establishing Fault Handlers
Establishing Fault Handlers
PSE Pro must handle all memory access violations, because some are actually
references to persistent memory in a database. On Windows, there is no function for
registering a signal handler for such access violations that also works when you are
debugging a PSE Pro application. (The SetUnhandledExceptionFilter() function
does not work when you use the Visual C++ debugger.)

Every PSE Pro application must put a handler for access violations at the top of every
stack in the program. This normally means putting a handler in a program’s main()
or WinMain() function and, if the program uses multiple threads, putting a handler
in the first function of each new thread.

Use the following macros to establish a handler:

• OS_PSE_ESTABLISH_FAULT_HANDLER establishes the start of the fault handler
block.

• OS_PSE_END_FAULT_HANDLER ends the fault handler block.

Example int main (int argc, char** argv) {
 OS_PSE_ESTABLISH_FAULT_HANDLER
 ...your code...
 OS_PSE_END_FAULT_HANDLER
 return value;
}

Braces and semicolons are not necessary because they are part of the macros.

Setting PSE Pro Behavior Before Throwing
Exceptions

You can set the OS_PSE_DEF_EXCEPT_ACTION environment variable to specify an
action that you want PSE Pro to perform just before it throws an exception.

On UNIX, setting this environment variable makes it easier to debug unhandled
exceptions. The value you specify determines whether PSE Pro returns control to the
debugger, dumps core, or exits with a particular return value. For details, see OS_
PSE_DEF_EXCEPT_ACTION on page 76.

Using Fetch Hooks
An object is retrieved from its database when the page containing it is first needed in
a session (a session is the period between database open and database close). So each
object is retrieved at most once per session (unless you explicitly reclaim swap
space). For any class, you can register a function that PSE Pro calls whenever it
retrieves an instance of the class from a database. Such a function is called a fetch hook
or hook function.
62 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
To help you use fetch hooks, this section discusses

• Advantages of Fetch Hooks on page 64

• Registering Hook Functions on page 64

• Unregistering Hook Functions on page 65

• Coding Hook Functions on page 65

• Example of Using a Hook Function on page 65

• Setting the Value of a Pointer from a Hook Function on page 66
Release 6.3 63

Using Fetch Hooks
Advantages of Fetch Hooks
You can use a fetch hook to

• Set pointer-valued data members of the class to the appropriate type of null value.
Do this for data members that point to transient (nonpersistent) objects, such as
graphical user interface (GUI) objects like windows and dialog boxes. That way
the members are null when the object is first retrieved, and the application can
subsequently set the members to the appropriate transient addresses. See
Example of Using a Hook Function on page 65.

• Set pointer-valued fields of union-valued data members. If a class in your
application has a union-valued data member with a pointer field, you should
register a fetch hook for that class. The hook function should determine if the
active field is a pointer field, and if it is, the function should set the field’s value
using the PSE Pro macro OS_REL_PTR(). See Setting the Value of a Pointer from a
Hook Function on page 66.

Registering Hook Functions
You register a hook function for a class, C, with os_ts<C>::set_fetch_hook(). This
function, for any instantiation of the class template os_ts<T>, is inherited from the
following member of os_typespec:

typedef void (*os_obj_fetch_hook)(
 void* object,
 os_int32 _os_o,
 void* user_data,
 void* reserved
);

static void set_fetch_hook(
 os_int32 hook_type,
 os_obj_fetch_hook hook,
 void* user_data
);

hook_type is a value from the following enumeration, defined in the scope of os_
typespec:

enum { before_hook, after_hook };

For the purposes described here, use os_typespec::after_hook. If you specify os_
typespec::before_hook, the function is called before PSE Pro adjusts any pointers
in the object being retrieved. If you specify os_typespec::after_hook, the function
is called after PSE Pro adjusts any pointers in the object.

hook is a pointer to the hook function.

Whenever PSE Pro calls the hook function, it passes user_data as an argument.

Example os_ts<Window>::set_fetch_hook(
 os_typespec::after_hook,
 Window::fetch_after,
 &count
);
64 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
Unregistering Hook Functions
You can unregister a hook function for a class, C, with os_ts<C>::unset_fetch_
hook(). This function, for any instantiation of the class template os_ts<T>, is
inherited from the following member of os_typespec:

static void unset_fetch_hook(os_int32 hook_type);

Coding Hook Functions
Hook functions have the following signature:

void function-name(
 void* object,
 os_int32 _os_o,
 void* user_data,
 void* reserved
);

object is the object being retrieved.

_os_o is the offset PSE Pro uses to adjust pointers in the database containing object.
You do not normally need to use this argument (although you must declare it with
the name _os_o if you use OS_REL_PTR()).

user_data is the pointer specified when the hook function was registered.

reserved is reserved for use by a future version of PSE Pro. At present, you do not
specify anything.

Example of Using a Hook Function
Suppose instances of the class Item are arranged in lists; each instance contains a
pointer to another item as the value of the data member Item::next. For an instance
that terminates a list, Item::next is a pointer to a special transient object, the nil_
item.

If a persistent object contains a pointer to a transient object, that pointer is rendered
invalid whenever you close the persistent object’s database. Therefore, you must use
a fetch hook to reset the pointer each time the object containing it is retrieved.

The hook function Item::fetch_after() sets all transient next pointers to the
transient null object nil_item:

static Item* nil_item = new Item();

class Item {
 Item *next; // linked list, terminated by transient nil
 static void fetch_after(void*, os_int32, void*, void*);
 ...
};

void Item::fetch_after(void* object, os_int32, void* data, void*)
{
 Item *f = (Item*)object;
 Item *n = f->next;
 if (f->next && !objectstore::is_persistent(f->next)) {
 f->next = nil_item;
 (*(int*)data)++; // increment counter
Release 6.3 65

Using Fetch Hooks
}
...
int count = 0;
os_ts<Item>::set_fetch_hook(
 os_typespec::after_hook,
 Item::fetch_after,
 &count
);

Setting the Value of a Pointer from a Hook Function
For union-valued data members, you can set the value of a pointer field from within
a hook function by calling the macro OS_REL_PTR(). The hook function’s second
argument must be named _os_o.

Enter the macro arguments without white space. This macro sets the field value by
adding an offset to the pointer. This is necessary to support multidatabase access.

Calls have the form

OS_REL_PTR(type,member_value)

type is the type pointed to.

member_value is the value in the field being set.

Example class Foo {
public:
 union {
 Foo* ptr;
 int i;
 } um;

 enum { is_ptr, is_int };
 int discriminant;

 static void fetch_after(void*, os_int32, void*, void*)
 ...
};

void Foo::fetch_after(void* object, os_int32 _os_o, void*, void*)
{
 Foo *f = (Foo*)object;
 if (f->discriminant == Foo::is_ptr)
 OS_REL_PTR(Foo,f->um.ptr); // requires "_os_o" as offset!
}

Troubleshooting Recursive Exceptions
A recursive exception is a memory fault that occurs while processing a memory fault.
The most common cause is a fetch hook that accesses unmapped, persistent data. A
fetch hook is called while fetching a page after an application has tried to access cold
data that has not been mapped from the database into memory during the fault
handler. The exception you might see is

ObjectStore unhandled exception:
os_err_recursive_fault_detected - Recursive exception detected at
address 0x303d4020.
66 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
Hashing Persistent Addresses
Use the objectstore::compute_ptr_hash() function to obtain a number for use
as a hash value. The function signature is

static os_unsigned_int32 compute_ptr_hash(const void* addr);

This function returns a number suitable for use as a hash value based on addr, the
address of a persistent object. Do not hash on the address directly, since it is not
stable from one session to the next.

Reclaiming Swap Space
When PSE Pro transfers data to program memory, it maps the data into the persistent
storage region (PSR). This is the range of virtual memory addresses reserved for the
database’s data. If a large portion of the persistent storage region is used, a large
portion of swap space is consumed.

You can free swap space with the following functions:

• objectstore::return_all_pages()

• os_database::return_all_pages()

• objectstore::return_memory()

Removing Data from the Persistent Storage Region
Call the objectstore::return_all_pages() function to remove data from the
persistent storage region. The function signature is

os_unsigned_int32 return_all_pages();

All pages are removed except the following:

• Pages containing data used only internally by PSE Pro

• Pages updated since the most recent save or commit

If a lot of pages have been updated since the most recent save or commit, consider
performing a save or commit prior to calling return_all_pages().

When a page is removed from swap space, all its data still resides in the database and
can be retrieved again when needed.

You can call the static function os_database::return_all_pages() to perform the
same job. The function signature is

static os_unsigned_int32 return_all_pages();

If your application calls this function on the transient database, PSE Pro throws os_
err_database_transient.
Release 6.3 67

Retrieving Product Information
Removing Data from Virtual Memory
Call the objectstore::return_memory() function to remove data from a specified
range of virtual memory. The function signature is

static os_unsigned_int32 return_memory(
 void* address,
 os_unsigned_int32 length,
 os_boolean evict_now
)

address specifies the beginning of a range of addresses to be removed. The value can
be decimal, hexadecimal, or octal.

length is an unsigned 32 bit integer specifying the length of the range of memory to
be freed. The value can be decimal, hexadecimal, or octal.

evict_now specifies whether or not data is removed immediately. If evict_now is
nonzero (true), the data is removed immediately. If evict_now is 0 (false), the data
is not immediately removed, but it is given the highest priority for removal.

All pages in the specified range are removed except the following:

• Pages containing data used only internally by PSE Pro

• Pages written since the most recent save or commit

This function cannot remove transient data from virtual memory.

Retrieving Product Information
There is a utility and several functions of the objectstore class that return
information about the product you are using.

ospsever.exe
Prints the product type and release number of the current installation to stdout.

objectstore::which_product()
enum os_product_type { pse_pro, ostore_cpp };
static os_product_type which_product();

Returns an enumerator indicating which product is used by the current application.

objectstore::release_major()
static os_unsigned_int32 release_major();

Returns the number preceding the first dot (.) in the number of the release of the
product in use by the current application. For example, for Release 4.0, this function
returns 4.
68 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
objectstore::release_minor()
static os_unsigned_int32 release_minor();

Returns the number following the first dot (.) in the number of the release of the
product in use by the current application. For example, for Release 6.3, this function
returns 3.

objectstore::release_maintenance()
static os_unsigned_int32 release_maintenance();

Returns the number following the second dot (.) in the number of the release of the
product in use by the current application. For example, for Release 6.2.1, this
function returns 1.

objectstore::release_name()
static const char* release_name();

Returns the release (major, minor, and maintenance) in string form, for example,
"6.3.0".

objectstore::product_name()
static const char* product_name();

Returns the product type and release name of the current application in string form,
for example, "PSE Pro for C++ 6.3".

Using PSE Pro and ObjectStore for C++ in the
Same Application

Although you cannot access a PSE Pro database from ObjectStore, you can use PSE
Pro and ObjectStore in the same application to migrate data to an ObjectStore
database. The following sections provide information about

• Including Header Files on page 69

• Establishing Fault Handlers on page 70

• Specifying Namespaces on page 70

• Setting Up Address Space on page 70

• Deleting Objects on page 71

• Registering Transient Delete Functions on page 71

See also Example of Using PSE Pro and ObjectStore on page 71.

Including Header Files
Include all ObjectStore headers before the PSE Pro header file:

#include <ostore/ostore.hh>
#include <os_pse/ostore.hh>
Release 6.3 69

Using PSE Pro and ObjectStore for C++ in the Same Application
Establishing Fault Handlers
The ObjectStore fault handler macros must be outside the PSE Pro fault handler
macros:

OS_ESTABLISH_FAULT_HANDLER;
 OS_PSE_ESTABLISH_FAULT_HANDLER;
 ...
 OS_PSE_END_FAULT_HANDLER;
OS_END_FAULT_HANDLER;

Specifying Namespaces
Prefix all PSE Pro class names with os_pse::. For example:

os_pse::os_database* db = 0;
db = os_pse::os_database::create("a.db",0640,1);

The classes of the PSE Pro API are defined within the C++ namespace os_pse. If the
ObjectStore header is not included, the prefix is unnecessary. If the ObjectStore
header is included (prior to the PSE Pro header), the prefix is required for all PSE Pro
classes.

Setting Up Address Space
Use one of the following mechanisms to set up disjoint address space ranges for
ObjectStore and PSE Pro:

• Perform full ObjectStore initialization before initializing PSE Pro. Full ObjectStore
initialization is performed during the first ObjectStore transaction. For example:

 objectstore::initialize();
 OS_BEGIN_TXN(fullinit,0,os_transaction::read_only)
 {
 ; // full initialization
 }
 OS_END_TXN(fullinit);

 os_pse::objectstore::initialize();

• Set the start of the PSE Pro persistent storage region (PSR) to a value that does not
interfere with the ObjectStore PSR. The default PSR for both ObjectStore and PSE
Pro starts at 0x3000000 and has a size of 0x08000000 (128 MB).

For example, set the start of the PSR for PSE Pro to 0x8000000:

 set OS_PSE_AS_START=134217728
70 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
Deleting Objects
If ObjectStore and PSE Pro are used in the same application, PSE Pro defines
operator::delete() with the following inline function (see os_pse/api/os_
pnew.hh):

inline void operator delete(void* p)
{
 if (objectstore::is_persistent(p))
 objectstore_delete(p);
 else
 os_pse::objectstore::free_memory(p);
}

If the object to be deleted is not in the ObjectStore PSR, the PSE Pro free_memory()
function calls the PSE Pro transient delete function if there is one, or calls free() if
there is no PSE Pro transient delete function.

Registering Transient Delete Functions
If the application uses its own transient delete function, the function should be
registered with both PSE Pro and ObjectStore:

void del_func(os_void_p p) {
 free(p);
}
objectstore::set_transient_delete_function(del_func);
os_pse::objectstore::set_transient_delete_function(del_func);

Example of Using PSE Pro and ObjectStore
This is a simple application for copying data from a PSE Pro database to an
ObjectStore database.

/*** file foo.hh ***/

class Foo {
public:
 ~Foo();
 Foo(int k) { i=k; }
 int i;
};

Foo::~Foo() {
 char *storage = "trans";
 if (objectstore::is_persistent(this))
 storage = "OStore";
 else if (os_pse::objectstore::is_persistent(this))
 storage = "PSE";
 printf("Foo %d dtor(0x%x) [%s] called.\n", i, this, storage);
}

/*** file test.cpp ***/

#include <ostore/ostore.hh>
#include <os_pse/ostore.hh>
#include <stdlib.h>
#include "foo.hh"

void del_func(os_void_p p)
{

Release 6.3 71

Using PSE Pro and ObjectStore for C++ in the Same Application
 // fprintf(stdout,"del_func(0x%x)\n", p);
 // do not call delete here because doing so causes an infinite
 //recursion
 free(p);
}

int main(int argc, char* argv[])
{
 char *str = new char[10];
 delete[] str;

 OS_ESTABLISH_FAULT_HANDLER;
 OS_PSE_ESTABLISH_FAULT_HANDLER;

 objectstore::initialize();
 objectstore::set_transient_delete_function(del_func);

 OS_BEGIN_TXN(fullinit,0,os_transaction::read_only) {
 ; // force full init, or set OS_PSE_AS_START
 } OS_END_TXN(fullinit);

 os_pse::objectstore::initialize();
 os_pse::objectstore::set_transient_delete_function(del_func);
 os_pse::os_transaction::initialize();

 os_database* os_db = 0;
 os_pse::os_database* pse_db = 0;

 os_db = os_database::create("c:\\temp\\os.db",0640,1);
 pse_db = os_pse::os_database::create(
 "c:\\temp\\pse.db",0640,1);

 os_transaction *os_txn =
 os_transaction::begin(os_transaction::update);
 os_pse::os_transaction *pse_txn =
 os_pse::os_transaction::begin(
 os_pse::os_transaction::update);
 {
 os_db->create_root("str");
 pse_db->create_root("str");

 char * os_str = new(os_db, os_typespec::get_char(), 10) char[10];
 char * pse_str = new(
 pse_db, os_pse::os_typespec::get_char(), 10) char[10];

 Foo* foo = new Foo(1);
 delete foo;

 foo = new(pse_db, os_ts<Foo>::get()) Foo(2);
 delete foo;

 foo = new(os_db, os_ts<Foo>::get()) Foo(3);
 delete foo;

 }
 os_transaction::commit();
 os_pse::os_transaction::commit();

 pse_db->save();
 pse_db->close();
 os_db->close();

 OS_PSE_END_FAULT_HANDLER;
 OS_END_FAULT_HANDLER;

 return 0;
72 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
}

/*** file schema.cpp ***/

#include <ostore/ostore.hh>
#include <ostore/coll.hh>
#include <ostore/manschem.hh>
#include "foo.hh"

void dummy ()
{
 OS_MARK_SCHEMA_TYPE(Foo);
}

Here is the application’s makefile:

INCLUDES = /Ic:\msdev\include \
/I$(OS_ROOTDIR)/include /I$(OBJ_TOP_DIR)\include
DEFS = /DREGISTER=register -DWIN32
CCC = cl
CCC_DEBUG = /Zi
CCC_FLAGS = /GX /MD $(DEFS) $(INCLUDES) \
$(CCC_DEBUG) /nologo
LINKOPTS= /nologo /debug /debugtype:cv -map:$*.map
LIBS=$(OBJ_TOP_DIR)\lib\osclt.lib $(OS_ROOTDIR)/lib/ostore.lib

SCHEMA_SRC= schema.cpp
APP_SCHEMA_SRC= osschema.cpp
APP_SCHEMA_OBJ= osschema.obj
APP_SCHEMA_DB= c:\temp\testpse.adb
LIB_SCHEMA_DBS=

PROGRAMS= test.exe

.SUFFIXES:

.SUFFIXES: .obj .cpp .ii

.cpp.obj:
 $(CCC) $(CCC_FLAGS) /c /Fo$@ /Tp$<
.cpp.ii:
 $(CCC) /E $(CCC_FLAGS) /Tp$< > $@

all: $(PROGRAMS)

test.exe: test.obj $(APP_SCHEMA_OBJ)
 $(CCC) /Fetest.exe test.obj $(APP_SCHEMA_OBJ) $(LIBS) \
/link $(LINKOPTS)

schema stuff
$(APP_SCHEMA_OBJ): $(SCHEMA_SRC)
 ossg -asof $(APP_SCHEMA_OBJ) \
-asdb $(APP_SCHEMA_DB) $(CPPFLAGS) $(SCHEMA_SRC)

clean:
 del *.obj *.exe *.pdb *.map *.db \
$(APP_SCHEMA_DB) $(APP_SCHEMA_SRC)
Release 6.3 73

Prefaulting Persistent Data
Prefaulting Persistent Data
ObjectStore and PSE Pro use a faulting mechanism to fetch persistent data from disk
and to detect write access.

Some libraries, for example NT system libraries, do not allow pointers to unmapped
or protected data to be passed to functions. In this case, an object can be manually
faulted in with the objectstore::touch() function. The function signature is

static void touch(const void* obj, os_boolean for_write);

If obj points to a persistent object that is not mapped into memory, touch() fetches
it from the database and maps it into memory. If for_write is true, the data is
mapped with read/write permissions. If the object pointed at by obj is already
mapped, touch() has no effect.

Units of transfer in PSE Pro are memory pages (4096 bytes). A single touch on a
particular object maps the entire page the object is stored in.

Using Integer Typedefs
The PSE Pro API uses the following typedefs for integer types:

typedef int os_int32;
typedef unsigned int os_unsigned_int32;
typedef int os_boolean;

PSE Pro Environment Variables
PSE Pro includes the following environment variables:

• OS_PSE_AS_SIZE on page 75

• OS_PSE_AS_START on page 75

• OS_PSE_CHK_ILLEGAL_PTR on page 75

• OS_PSE_DEF_BREAK_ACTION on page 75

• OS_PSE_DEF_EXCEPT_ACTION on page 76

• OS_PSE_PAGE_SIZE on page 76

• OS_PSE_TRACE_ALLOC on page 78

• OS_PSE_VERIFY_ALLOC on page 78
74 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
OS_PSE_AS_SIZE
This environment variable specifies the size, in bytes, of your application’s persistent
storage region. This is the range of virtual memory addresses reserved for database
data. Specify the number of bytes in decimal notation. The default is 128 MB
(0x08000000). You do not normally need to change the default.

An incorrect value for OS_PSE_AS_SIZE can cause failures. Be absolutely certain you
understand how addresses are assigned on your platform before you modify this
value.

On Windows, two gigabytes is the maximum user address space. Your program, its
data, and the persistent storage region must fit in two gigabytes. A user program on
Windows uses the bottom two gigabytes of address space. DLLs use up space at
0x10000000; stacks use up space at 0x7fxxxxxx. Consequently, there are only 1.75
gigabytes available.

If necessary, PSE Pro rounds down the number you specify to a page-size boundary,
that is, a multiple of the page size.

OS_PSE_AS_START
This environment variable specifies the starting location of an application’s
persistent storage region. Specify the location in decimal notation. The default is
0x30000000. You do not normally need to change the default.

An incorrect value for OS_PSE_AS_START can cause failures. Be absolutely certain
you understand how addresses are assigned on your platform before you modify
this value.

If necessary, PSE Pro rounds down the number you specify to a page-size boundary,
that is, a multiple of the page size.

OS_PSE_CHK_ILLEGAL_PTR
Indicates whether you want PSE Pro to check for invalid pointers in a page after
relocation. When set, PSE Pro checks all pointers in relocated pages, displays a
message that indicates invalid pointers, and then continues processing.

The default is that this variable is not set.

OS_PSE_DEF_BREAK_ACTION
Setting this environment variable enables just-in-time debugging. With this feature
enabled, an uncaught exception thrown by PSE Pro causes a dialog box to be
displayed, giving you the option of entering the debugger, with the stack intact.
Release 6.3 75

PSE Pro Environment Variables
OS_PSE_DEF_EXCEPT_ACTION
Setting this environment variable specifies an action that you want PSE Pro to
perform when it is about to throw an exception.

On UNIX, setting this environment variable makes it easier to debug unhandled
exceptions. The value you specify determines whether PSE Pro returns control to the
debugger, dumps core, or exits with a particular return value.

By default, this variable is not set. When PSE Pro encounters an exception and this
variable is not set, PSE Pro throws the exception to the program. If the program does
not catch and handle the exception, the PSE Pro fault handler macros (OS_PSE_
ESTABLISH_FAULT_HANDLER and OS_PSE_END_FAULT_HANDLER) print a message and
then terminate the program.

You can specify the following values to set this variable:

OS_PSE_PAGE_SIZE
This feature supports a variable soft page size for PSE Pro. It enables the user to set
the soft page size value. Setting a higher page size than the default 4K generally
increases performance and increases the address range that can be mapped to values
greater than normally specified by operating system limitations.

To use this feature, set the environment variable OS_PSE_PAGE_SIZE to the value
in kilobytes of the page size. To set a page size of 32K use

setenv OS_PSE_PAGE_SIZE 32

The variable page size settings are restricted by session and database. This means
that

• An application cannot use two different page size settings during a session.

• The page size under which a database is created is embedded into the database;
trying to use it with a different page size setting will cause an exception to be
thrown.

To support page sizes large than 4K, PSE’s internal data structures used to manage
objects and pages are modified in order to minimize overhead and constraint. The

Value Description

abort PSE Pro aborts the process. On UNIX, PSE Pro creates a core file
and, if you are running in a debugger, returns control to the
debugger.

integer Specify an integer greater than or equal to 1. PSE Pro exits the
program with the specified integer as the return value.

kill PSE Pro action varies by platform:

• Windows — ExitProcess (0x006600);

• UNIX — kill (getpid(), SIGKILL);

Any other value PSE Pro exits the program with a return value of 1. This is the
default value for setting this variable.
76 PSE Pro for C++ API User Guide

Chapter 5: Memory and Database Management Tasks
tables below illustrate the size variations of the object header (per object) and the
page header (per page) under different page size settings.

Object Header Size
These sizes apply to all supported platforms.

Page Header Size
Page header sizes vary by platform and page size as follows:

Page Size Object Header
Size

Number of Types
Supported Per DB

4K 8 Bytes 16K

8K 8 Bytes 4K

16K 8 Bytes 4K

32K 8 Bytes 4K

64K 16 Bytes 16K

128K 16 Bytes 16K

256K and up 16 Bytes 16K

Platform Page Header Size
(page size < 64K)

Page Header Size
(page size >= 64K)

Windows XP/2000 24 Bytes 32 Bytes

HP-UX 11.0 (32 bit) 24 Bytes 32 Bytes

HP-UX 11.00 (64 bit) 40 Bytes 40 Bytes

Linux (Redhat 6.2) 32 Bytes 32 Bytes

Solaris (Forte CC Sun WorkShop 6.1) 24 Bytes 32 Bytes
Release 6.3 77

PSE Pro Environment Variables
OS_PSE_TRACE_ALLOC
When this environment variable is set, output is generated that describes every
allocation and deallocation of persistent memory.

OS_PSE_VERIFY_ALLOC
When this environment variable is set, each time persistent memory is allocated or
deallocated, PSE Pro checks the integrity of the free list and allocated list data
structures for the page on which the allocation or deallocation occurred. If PSE Pro
detects a problem, it throws os_err_heap_corruption. The corruption can be due
to a memory corruption problem in user code or a product defect.

78 PSE Pro for C++ API User Guide

Chapter 6
Transactions

With PSE Pro, you can include transactions in your applications. To help you use
transactions, this chapter covers

Introducing Transactions 79

Initializing the Transaction Facility 80

Beginning Transactions 80

Ending Transactions 81

Obtaining Information About Transactions 82

Example of Using Transactions 83

Introducing Transactions
A transaction is a logical unit of work. It is a consistent and reliable portion of the
execution of a program. In your code, you initialize the transaction facility, and then
you place calls to the PSE Pro API to mark the beginnings and ends of transactions.
After you initialize the transaction facility, access to persistent objects must always
take place inside a transaction.

When a transaction ends, either the database is updated with all of the transaction’s
changes to persistent objects, or the database is not updated at all. If a failure occurs
in the middle of a transaction, or you decide to abort the transaction, the contents of
the database remain unchanged.

The transactions API includes the following functions:

• os_transaction::initialize() initializes the transaction facility.

• os_transaction::begin() begins a transaction.

• os_transaction::commit() commits a transaction, which saves all databases.

• os_transaction::abort() aborts a transaction, which removes any changes
made since the transaction started.

For databases that are operating system files, if a failure occurs during a transaction,
use the recovery facility to recover your data as of the transaction’s beginning.

For databases that are streams within OLE compound files, use TRANSACTED mode.

Nested transactions are not allowed.
Release 6.3 79

Initializing the Transaction Facility
Initializing the Transaction Facility
Call the os_transaction::initialize() function to initialize the transaction
facility. The function signature is

static void initialize();

You must call this function before using transactions. Call this function at most once
per run of an application, before opening any databases. If you open a database and
then call initialize(), PSE Pro throws os_err_trans.

After the call is made, all access to database data must take place within a
transaction. (Database create and close operations should take place outside
transactions.) If you attempt to access persistent data outside a transaction, PSE Pro
throws os_err_no_trans.

Beginning Transactions
Call the os_transaction::begin() function to start a transaction.

static os_transaction* begin(transaction_type_enum type = update);

static os_transaction* begin(
 const char* name,
 transaction_type_enum type = update
);

Both overloadings return a pointer to the new transaction object.

Specifying transaction_type_enum
You can specify os_transaction::transaction_type_enum() as follows:

enum transaction_type_enum { none, update, read_only };

The enumerators os_transaction::update and os_transaction::read_only can
be arguments to os_transaction::begin(). PSE Pro also uses them as return
values for os_transaction::get_type(). When there is no transaction, os_
transaction::none is the return value for os_transaction::get_type().

Specifying Other Parameters
name specifies an identifier for the new transaction, which you can retrieve with os_
transaction::get_name().

If type is os_transaction::read_only, attempts to write persistent data within the
transaction result in os_err_trans_wrong_type. See os_transaction::get_
type().

Exceptions
If you call this function inside a transaction, PSE Pro throws os_err_trans.

If the transaction facility has not been initialized, PSE Pro throws os_err_trans.
80 PSE Pro for C++ API User Guide

Chapter 6: Transactions
Setting the Name of a Transaction
Call os_transaction::set_name() to give a transaction a name. The function
signature is

void set_name(const char* new_name);

This function sets the name of the specified transaction. The function copies the
string new_name. See also os_transaction::begin() and os_transaction::get_
name().

Obtaining a Pointer to the Current Transaction
Call the os_transaction::get_current() function to obtain a pointer to the
current transaction. The function signature is

static os_transaction* get_current();

This function returns a pointer to the current transaction. If there is no transaction in
progress, this function returns 0. See also os_transaction::begin().

Ending Transactions
There are two ways to end a transaction:

• os_transaction::commit() makes any changes permanent in the database or
databases.

• os_transaction::abort() rolls back any changes made since the transaction
started.

See Example of Using Transactions on page 83.

Making Changes Permanent
To end a transaction and save your changes, call the os_transaction::commit()
function. The function signature is

static void commit();

This function commits the current transaction. All the transaction’s changes to
persistent data are made permanent in the databases.

If multiple databases are open and a failure occurs during a commit, some databases
might contain the transaction’s changes while others do not. This release does not
perform a two-phase commit. However, any given database involved in the
transaction has either all the changes or none of them.

If there is no currently active transaction, PSE Pro throws os_err_no_trans.

See also os_transaction::get_current() and os_transaction::is_
committed().
Release 6.3 81

Obtaining Information About Transactions
Rolling Back Changes
To end a transaction and discard any changes made during the transaction, call the
os_transaction::abort() function. The function signature is

static void abort();

This function terminates the current transaction and rolls back database data to its
state as of the beginning of the transaction. The abort renders a pointer invalid if it
points to persistent memory allocated during the transaction or to a database root
created during the transaction.

If there is no current transaction, PSE Pro throws os_err_no_trans.

See also os_transaction::get_current() and os_transaction::is_aborted().

Obtaining Information About Transactions
You can obtain the following information about a transaction:

• Is This Transaction Committed? on page 82

• Is This Transaction Aborted? on page 82

• What Is This Transaction’s Name? on page 82

• What Is This Transaction’s Type? on page 83

Is This Transaction Committed?
Call os_transaction::is_committed() to determine if the current transaction has
been committed:

os_boolean is_committed() const;

This function returns nonzero if the specified transaction has been committed, and 0
otherwise. See also os_transaction::commit().

Is This Transaction Aborted?
Call os_transaction::is_aborted() to determine if the current transaction has
been aborted:

os_boolean is_aborted() const;

This function returns nonzero if the specified transaction has been aborted, and 0
otherwise. See also os_transaction::abort().

What Is This Transaction’s Name?
Call os_transaction::get_name() to obtain the name of the current transaction:

char* get_name() const;

This function returns the name of the specified transaction. It is the caller’s
responsibility to deallocate the string when it is no longer needed. See also os_
transaction::begin() and os_transaction::set_name().
82 PSE Pro for C++ API User Guide

Chapter 6: Transactions
What Is This Transaction’s Type?
Call os_transaction::get_type() to determine whether you can update data
during the current transaction:

transaction_type_enum get_type() const;

This function returns either os_transaction::update or os_transaction::read_
only, depending on which is true of the current transaction. If there is no current
transaction, this function returns os_transaction::none.

Example of Using Transactions
Consider replacing an assembly’s subparts and then performing a constraint check.
Suppose that if the constraint check fails, you want to undo the replacement.

void replace_image(
 image_map *an_image_map,
 image an_image, a_new_image
)
{
 os_transaction::begin();
 an_image_map–>children.remove(an_image);
 an_image_map–>children.insert(a_new_image);
 if (!check_size(an_image_map)) {
 cout << "change aborted: size check failed\n";
 os_transaction::abort(); /* undo the image replacement */
 }
 else
 os_transaction::commit();
}

This example uses the following functions:

• os_transaction::begin()

• os_transaction::commit()

• os_transaction::abort()
Release 6.3 83

Example of Using Transactions
84 PSE Pro for C++ API User Guide

Chapter 7
The Undo/Redo Facility

PSE Pro provides an undo/redo facility that allows you to set undo points in your
application. These points mark portions of work that can be undone and
subsequently redone. To help you use this facility, this chapter discusses

Setting Undo Points 85

Undoing Database Updates 86

Redoing Undone Database Updates 87

Determing If Changes Can Be Undone or Redone 87

Determining if a Database Was Modified on page 88

Setting Undo Points
Setting an undo point copies a database, using a copy-on-write implementation. The
first time a page is updated following an undo point, PSE Pro stores a before-image
of the page in a transient log (the undo/redo log). When the database is rolled back to
the undo point, the before-images are swapped with their updated counterparts. If a
redo occurs, they are swapped back.

Creating an Undo Point
Call os_database::set_undo_marker() to create an undo point:

void set_undo_marker();

This function sets an undo point, which marks the beginning of an operation that can
be undone. The this database can subsequently be rolled back to its state as of the
time of the call to set_undo_marker().

After you call set_undo_marker(), you cannot redo any previously undone
operation.

If you specify a transient database, PSE Pro throws os_err_database_transient.

If you specify a read-only database, PSE Pro throws os_err_write_permission_
denied.
Release 6.3 85

Undoing Database Updates
Setting the Maximum Number of Undo Operations
To gain some control over the maximum size of the undo/redo log, you should set
a limit on the number of undo points for which PSE Pro can store before-images. To
do this, call objectstore::set_maximum_undo_operations().

void objectstore::set_maximum_undo_operations(
 os_unsigned_int32 m
);

This function sets the maximum number of marked operations that can be undone.
If you specify 0, or if you do not call this function during the current process, there
is no maximum.

Undoing Database Updates
Call os_database::undo() to undo changes made to the database:

void undo(os_unsigned_int32 n_markers = 1);

This function undoes the changes that were made to the specified database during
the previous n_markers marked operations (not counting operations that are
already undone).

A marked operation consists of the updates performed to a given database between
one undo point and the next or between an undo point and a call to undo(). So
undo() rolls back the specified database to its state as of the undo point marking the
beginning of the last n_markers (not currently undone) marked operations.

Calling undo() renders transient state invalid. After calling undo(), you should
reretrieve transient pointers to persistent objects.

Undo only undoes marked operations performed since the last open, save, or
commit of the database. If there are fewer than n_markers undo points following the
last open, save, or commit, the database is rolled back to the first undo point
following the last open, save, or commit. If there are no undo points following the
last open, save, or commit, undo() has no effect.

If the last call to objectstore::set_maximum_undo_operations() specified a
maximum less than n_markers, PSE Pro undoes only the maximum number of
marked operations.
86 PSE Pro for C++ API User Guide

Chapter 7: The Undo/Redo Facility
Redoing Undone Database Updates
Call os_database::redo() to redo undone database operations:

void redo(os_unsigned_int32 n = 1);

This function redoes the n most recently undone marked operations.

redo() only redoes marked operations undone since the last update to the specified
database or call to os_database::set_undo_marker() for the database. A marked
operation consists of the updates performed to a given database between one undo
point and the next or between an undo point and a call to undo().

Calling redo() renders transient state invalid. After calling redo(), you should
reretrieve transient pointers to persistent objects.

If there are fewer than n undone marked operations since the last update to the
specified database or call to os_database::set_undo_marker(), PSE Pro redoes
correspondingly fewer operations. If there are no undone marked operations since
the last update to the specified database or call to os_database::set_undo_
marker(), redo() has no effect.

Determing If Changes Can Be Undone or
Redone

To determine if there is an operation that can be undone, call os_database::is_
undoable():

os_boolean is_undoable();

This function returns nonzero (true) if, subsequent to the last open, save, or commit
for the specified database, there is at least one undo point marking the beginning of
an operation that is not currently undone; it returns 0 (false) otherwise.

To determine if there is an undone operation that can be redone, call os_
database::is_redoable():

os_boolean is_redoable();

This function returns nonzero (true) if there is at least one currently undone
operation subsequent to the last open, save, or commit for the specified database; it
returns 0 (false) otherwise.
Release 6.3 87

Determining if a Database Was Modified
Determining if a Database Was Modified
To determine if a database was modified after an undo marker was set, call os_
database::is_altered():

os_boolean os_database::is_altered();
Use this function to avoid setting unnecessary undo markers if the database has not
been modified. You can call os_database::is_altered() to check whether a
database has been modified or not. This function returns true if the database was
modified after the last call to this function or after an os_database::set_undo_
marker() is called.
88 PSE Pro for C++ API User Guide

Chapter 8
Object Iteration

PSE Pro provides an API for iterating over objects. This chapter covers

Overview of Object Iteration 89

Creating and Deleting Cursors 90

Navigating with Cursors 90

Retrieving the Object at the Cursor Position 91

Example of Using Object Iterators 91

Overview of Object Iteration
An object cursor allows retrieval of the objects stored in a specified database, one
object at a time, in an arbitrary order. If no objects are added or deleted from the
database, this order is stable across traversals of the database, as long as PSE Pro
provides operations for creating a cursor, advancing a cursor, and for testing
whether a cursor is currently positioned at an object (or has already returned all
objects). It is also possible to position a cursor at a specified object in the database.

In addition, a function is provided for retrieving the object at which a cursor is
positioned together with an os_typespec representing the type of the object and,
for an object that is an array, a number indicating how many elements it has.

The object iteration API includes the following functions:

• os_object_cursor::current() retrieves the object.

• os_object_cursor::first() positions the cursor at the first object.

• os_object_cursor::more() checks the position of a cursor.

• os_object_cursor::next() positions the cursor at the next object.

• os_object_cursor::os_object_cursor() creates an object cursor.

• os_object_cursor::~os_object_cursor() deletes an object cursor.

• os_object_cursor::set() positions the cursor.
Release 6.3 89

Creating and Deleting Cursors
Creating and Deleting Cursors
PSE Pro provides the os_object_cursor class to represent cursors. Here is the
constructor for creating a cursor:

os_object_cursor(os_database* db);

A call to the constructor creates a new os_object_cursor associated with the
specified database. If the database is empty, the cursor is positioned at no object;
otherwise, it is positioned at the first object in the cursor’s associated database. The
object is first in an arbitrary order that is stable across traversals of the database, as
long as no objects are created or deleted from the database.

To delete an object cursor, call the destructor:

~os_object_cursor();

This function performs internal maintenance associated with os_object_cursor
deallocation.

Navigating with Cursors
You can iterate through the objects in a database by

• Positioning the Cursor at the First Object on page 90

• Positioning the Cursor at the Next Object on page 90

• Positioning the Cursor at the Specified Object on page 91

• Determining if the Cursor Is Pointing to an Object on page 91

Positioning the Cursor at the First Object
To position the cursor at the first object in the cursor’s associated database, call os_
object_cursor::first():

void first();

The object is first in an arbitrary order that is stable across traversals of the database,
as long as no objects are created or deleted from the database. If there are no objects
in the cursor’s associated database, this function has no effect.

Positioning the Cursor at the Next Object
To position the cursor at the next object in the cursor’s associated database, call os_
object_cursor::next():

void next();

The object is next in an arbitrary order that is stable across traversals of the database,
as long as no objects are created or deleted from the database. If the cursor is
currently positioned at no object, os_err_cursor_at_end is signaled. Otherwise,
this function has no effect.
90 PSE Pro for C++ API User Guide

Chapter 8: Object Iteration
Positioning the Cursor at the Specified Object
To position the cursor at a specified object, call

os_object_cursor::set()

void set(const void* ptr);

Positions the cursor at the object containing the address ptr. If ptr is not an address
in the specified cursor’s associated database, os_err_cursor_not_at_object is
signaled. If ptr is in the cursor’s associated database but within unallocated space,
os_err_cursor_not_at_object is signaled.

Determining if the Cursor Is Pointing to an Object
To determine if the cursor is pointing to an object, call os_object_cursor::more():

os_boolean more() const;

This function returns nonzero (true) if the cursor is positioned at an object. It returns
0 (false) otherwise.

Retrieving the Object at the Cursor Position
If the cursor is positioned at an object, you can retrieve that object with os_object_
cursor::current():

os_boolean current(
 void* pointer,
 const os_typespec* type,
 os_int32 count) const;

If the cursor is positioned at an object, this function returns nonzero (true), sets
pointer to the address of the object, and sets type to an os_typespec representing
the object’s type. If the object is an array, count is set to the number of elements it
has. If the object is not an array, count is set to 0. If the cursor is not positioned at an
object, 0 (false) is returned, and all three arguments are set to 0.

Example of Using Object Iterators
This example returns the number of characters in a specified database:

int count_chars(os_database* db) {
void *ptr=0; os_typespec* ts=0;
os_int32 count=0;
int n_chars = 0;
os_object_cursor c(db);
for (c.first(); c.more(); c.next())
 if(c.current(ptr, ts, count) && (ts == os_ts<ltchar>gt::get()))
 n_chars += count ? count : 1;
return n_chars;
}

Release 6.3 91

Example of Using Object Iterators
92 PSE Pro for C++ API User Guide

Chapter 9
Evolving Database Schemas

PSE Pro provides an API and methodology for evolving the schemas of PSE Pro
databases. PSE Pro includes a sample schema evolution application. See the
README file in examples/sevol.

This chapter discusses the following topics:

Introduction to Schema Evolution 93

Description of the Schema Evolution Process 94

Step 1: Marking Both Class Definitions Persistent 94

Step 2: Adding a Schema Evolution Constructor to the New Class 96

Step 3: Renaming the Types of the Existing Instances 97

Steps 4 and 5: Allocating Instances of New Classes and Fixing Pointers 97

Step 6: Removing the Old Class from Your Application 98

Changing the Definition of a Base Class 99

Schema Evolution API Reference 100

Introduction to Schema Evolution
Suppose you change the definition of a class or struct that your application uses and
you want to continue to use databases that already contain instances with the old
definitions. In this situation, your application must have the ability to upgrade
existing databases. The process of changing the type definitions known to a PSE Pro
database is called schema evolution.

The schema evolution API comprises the following functions:

• os_database::rename_type()

• os_database::record_new_object_location()

• os_database::fix_pointers()

Schema evolution is required when you make a change that affects the layout of a
class. The result of such changes is that your program can no longer interpret the
class instances stored in a PSE Pro database. Incompatible changes to a class
definition include the following:

• Adding or removing a data member
Release 6.3 93

Description of the Schema Evolution Process
• Changing the type of a data member

• Introducing the first virtual function in a class

• Removing the last virtual function from a class

• Adding or removing a base class

Description of the Schema Evolution Process
The schema evolution process consists of the following steps, which are described in
detail in the sections that follow:

1 Rename the old class definition and mark both the old and new class definitions
as persistent.

2 Add a schema evolution constructor to the new class.

3 Open the database and rename the type of the existing instances in the database,
using the function os_database::rename_type().

4 Iterate through the objects in the database using an os_object_cursor, and
allocate an instance of the new class for each instance of the old class. Copy the
state as appropriate and then delete the old instance. See Chapter 8, Object
Iteration, on page 89 for information about the os_object_cursor class.

During this iteration, PSE Pro also records the location of each new instance with
the function os_database::record_new_object_location() as part of the
schema evolution constructor.

5 Invoke os_database::fix_pointers().

This function visits each object in the database and redirects pointers to the old
instances so that they now point to the new instances. This function uses the
information recorded by os_database::record_new_object_location().

6 Remove the old class and save the database.

Perform any cleanup operations that might be left over, and call os_
database::save() to apply the changes of the database permanently.

Step 1: Marking Both Class Definitions
Persistent

The first step in implementing schema evolution has two parts:

• Rename the old class definition.

• Mark both the old and the new definitions as persistent in your schema.scm file,
with the OS_MARK_SCHEMA_TYPE macro.

For the old class, only the data members and base classes are required to be
included. If the old class has virtual functions, you should create a single dummy
virtual function in the old version of the class.
94 PSE Pro for C++ API User Guide

Chapter 9: Evolving Database Schemas
For example, suppose your application includes the following class:

class SevolExample {
private:
 int x;
 SevolExample* y;
public:
 SevolExample(SevolExample* next, int z);
 Int get_x() { return x; }
 SevolExample* get_y() { return y; }
 virtual SomeVirtualFunction();
};

Now suppose you want to introduce a new data member. Here is the new class
declaration:

class SevolExample {
private:
 int x;
 SevolExample* y;
 char* new_data_member; // The new data member.
public:
 SevolExample(SevolExample* next, int z);
 Int get_x() { return x; }
 SevolExample* get_y() { return y; }
 virtual SomeVirtualFunction();
};

To upgrade the database, in the schema.scm file, mark as persistent a class that has
the same definition as the old version of SevolExample. Here is the definition of the
old_SevolExample class, which the same as the definition of the SevolExample
class:

class old_SevolExample {
public:
 int x;
 SevolExample* y;
public:
 virtual dummy() {}
};

The old_SevolExample class has the identical class layout as the SevolExample
class before the addition of new_data_member. In particular, note that it has a
dummy virtual function to maintain the virtual function table. If SevolExample had
base classes, then old_SevolExample would have to have the identical base classes.
Note also that all the data members are public. An alternative would be to make
SevolExample a friend class.
Release 6.3 95

Step 2: Adding a Schema Evolution Constructor to the New Class
Step 2: Adding a Schema Evolution
Constructor to the New Class

Add the following schema evolution constructor to the new SevolExample class:

class SevolExample {
...
public:
 SevolExample(old_SevolExample* old)
 {
 x = old->x;
 y = old->y;
 new_data_member = 0;
 os_database::of(this)->record_new_object_location(old,this);
 delete old;
 }
 ...
};

The schema evolution constructor must do the following:

• Copy the values of data members from the old class to the new class.

In particular, note that pointer values should be copied blindly. They are fixed up
later in the process by os_database::fix_pointers().

• Call os_database::record_new_object_location().

Passing an os_database* argument to the schema evolution constructor is an
alternative to calling os_database::of (this). If you know that you are going to
delete an object that is pointed to by the current object and you want to make that
pointer NULL, pass 0xFFFFFFFF as the value of the new object location to os_
database::record_new_object_location(). If os_database::fix_
pointers() sees an object address mapped to 0xFFFFFFFF, it sets any pointers to
the old address to NULL.

• Delete the old object.

A schema evolution constructor can be much more complicated than the one shown
here if the new and old classes are very different. One thing to bear in mind,
however, is that the schema evolution constructor should delete only the old object
that is passed in. This is because deleting objects while using os_object_cursor has
to be done very carefully: You can only delete an object after the os_object_cursor
has already visited it. Otherwise, the object cursor can be corrupted. If you need to
delete additional objects during schema evolution, it is best to record the objects to
be deleted in a separate data structure and then delete them after the schema
evolution process is complete.
96 PSE Pro for C++ API User Guide

Chapter 9: Evolving Database Schemas
Step 3: Renaming the Types of the Existing
Instances

Having done the preliminary work of marking both the old and new versions of the
class as persistent and of supplying a schema evolution constructor, you are now in
a position to implement the actual schema evolution process. The first step is to call
os_database::rename_type() for each type that is to be evolved.

void EvolveDatabase(os_database* db)
{
 db->rename_type("SevolExample", "old_SevolExample");
}

Steps 4 and 5: Allocating Instances of New
Classes and Fixing Pointers

Now, you must iterate through each object in the database, and, for each instance of
old_SevolExample, allocate an instance of SevolExample using the schema
evolution constructor:

void EvolveDatabase(os_database* db)
{
 db->rename_type("SevolExample", "old_SevolExample");
 os_object_cursor c(db);
 for (c.first(); c.more();) {
 void* ptr;
 os_typespec* ts;
 os_int32 cnt;
 // The example retrieves the current object, and then
 // calls c.next() before allocating the new object.
 c.current(ptr, ts, cnt);
 c.next();
 if (!strcmp(ts->get_name(), "old_SevolExample"))
 new(db, os_ts<SevolExample>::get())
 SevolExample((old_SevolExample*)ptr);
 }
 // Finally, have PSE Pro fix up all the pointers so that
 // pointers to the old objects now point to the new ones
 db->fix_pointers();
}

If you have more than one class that has changed, the only changes that you need to
make to this function are to add more calls to os_database::rename_type() and to
add else if clauses to the condition that checks the type of the current object and
allocates instances of the new class.

 if (!strcmp(ts->get_name(), "old_SevolExample"))
 new(db, os_ts<SevolExample>::get())
 SevolExample((old_SevolExample*) ptr);

 else if (!strcmp(ts->get_name(), "old_Class2"))
 new(db, os_ts<Class2>::get())
 Class2((old_Class2*) ptr);
Release 6.3 97

Step 6: Removing the Old Class from Your Application
Step 6: Removing the Old Class from Your
Application

If you decide that your application no longer needs a particular class, schema
evolution for that class consists of deleting its instances from the PSE Pro database
and setting any pointers to the deleted objects to NULL. If the destructor of the class
that is being removed does not delete any other objects, you can handle the operation
within the os_object_cursor iteration. For example, if you have a class called
NotNeeded in your database, the following code would remove it:

void EvolveDatabase(os_database* db)
{
 db->rename_type("SevolExample", "old_SevolExample");

 os_object_cursor c(db);

 for (c.first(); c.more();) {
 void* ptr;
 os_typespec* ts;
 os_int32 cnt;

 c.current(ptr, ts, cnt);
 c.next();

 if (!strcmp(ts->get_name(), "old_SevolExample"))
 new(db, os_ts<SevolExample>::get())
 SevolExample((old_SevolExample*)ptr);

 else if (!strcmp(ts->get_name(), "NotNeeded") {
 db->record_new_object_location(ptr, 0xffffffff);
 delete (NotNeeded*)ptr;
 }
 }
 db->fix_pointers();
}

The operation is a little more complicated if the destructor for the class NotNeeded
makes calls to operator delete. This is because the only object that it is safe to delete
while using an os_object_cursor is the object that you have just visited. The
example retrieves the current object (using c.current(ptr, ts, cnt)) and then
calls c.next() before invoking an operation that might delete ptr.

If the destructor of the class that is about to be removed has to delete a substructure,
the safest thing to do is to record the addresses of all the objects to be deleted during
the iteration and then delete them after the iteration is complete. Note that you
should still call

db->record_new_object_location(ptr, 0xffffff);

during the iteration so that os_database::fix_pointers() will set to NULL any
pointers that it finds to instances of NotNeeded.

After schema evolution is done, be sure to save the database.
98 PSE Pro for C++ API User Guide

Chapter 9: Evolving Database Schemas
Changing the Definition of a Base Class
If you change the definition of a class from which other classes are derived in a way
that affects class layout, you must perform schema evolution for instances of each
derived class as well as for instances of the base class. That is, changing the layout of
a base class effectively changes the layout of all its derived classes, so they, too, must
be evolved.

For example, suppose you have the following class hierarchy:

class Base {
private:
 int x;
 char* y
};

class Derived1 : public Base {
};

class Derived2 : public Base {
};

Then you decide to add a data member to Base:

class Base {
private:
 int x;
 char* y;
 float new_data_member;
};

You must do the following to evolve your PSE Pro databases:

• Add a schema evolution constructor to Base, Derived1, and Derived2. The latter
two schema evolution constructors do not need to do anything other than invoke
Base’s schema evolution constructor.

• Mark old_Base, old_Derived1, and old_Derived2 (the latter two derived from
old_Base) as persistent.

• Rename each class in the database.

Allocate new instances of each while iterating using the os_object_cursor.
Release 6.3 99

Schema Evolution API Reference
Schema Evolution API Reference
The schema evolution API comprises the following functions:

os_database::rename_type()
void database::rename_type(const char* old, const char* nw);

This function renames all instances of type old to the new type nw.

os_database::record_new_object_location()
void os_database::record_new_object_location (void* old, void* nw);

This function is called as part of the schema evolution constructor. It maps instances
of the old type to instances of the nw type. This allows all pointers in the database
that point to the old instances to be evolved (that is, relocated) to point to the new
instances.

The actual change of the pointers in the database happens during os_
database::fix_pointers().

os_database::fix_pointers()
void os_database::fix_pointers(os_unsigned_int32 n_pages=0);

This function evolves, or relocates, all pointers in the database that have been
recorded during the evolution of a database using the schema evolution constructor.

During this function, every nonempty page containing user data has to be visited to
adjust the pointers of evolved objects. For large databases, this requires a lot of swap
space. If n_pages is greater than 0, fix_pointers() saves the database every time
n_pages have been visited and calls objectstore::return_all_pages() to release
swap space.

If n_pages is 0, fix_pointerS() does not save the database.
100 PSE Pro for C++ API User Guide

Release 6.3
Index
A
aborting transactions 82
address space

reserving 27
using PSE Pro and ObjectStore 70

B
base classes, evolving 99
beginning transactions 80

C
checking for database corruption 41
closing databases 33
clustering objects

background 48
example 49
factors to consider 49
hints 49
introduction 48

committing transactions 81
copying databases 36
corruption of data 41
creating cursors 90
creating database roots 55
creating persistent objects 46
cross-database pointers 46
cursors

creating 90
deleting 90
navigating 90

D
data corruption 41
database roots

associate with an object 55
creating 55

defined 54
deleting 59
example 56
getting the value of 56
introduction 54
obtaining name of root 55
obtaining typespec for root 58
type safety 58

databases
address space 27
changes undoable? 87
checking for corruption 41
closing 33
controlling size 28
copying API 36
copying utility 37
destroying 33
determining open status 38
dumping 43
modes 27
modified? 39
open? 38
opening 30
ospsecp utility 37
ospserecov utility 40
overwrite 27
pathname? 39
pathnames 26
protection modes 27
read-only access 31
read-only? 38
recovery API 39
recovery utility 40
retrieving for a given object 53
saving 34
saving as 34
size? 38
stream names 28
transient 53
101

E

updatable? 38
delete, persistent

See persistent delete
deleting cursors 90
deleting persistent objects 50
destroying databases 33
dumping databases 43

E
ending transactions 81
entry points

and data retrieval 54
retrieving 56
See database roots

environment variables 74
OS_PSE_DEF_EXCEPT_ACTION 62, 76

establishing fault handlers 62
exceptions

unhandled 62, 76

F
fault handlers 62
fetch hooks

advantages 64
example 65
introduction 62
registering 64
setting value of pointer 66

freeing virtual memory 68

H
hashing persistent addresses 67
header files

ObjectStore 23
PSE Pro 16
requirements 23

hook functions
See fetch hooks 62

I
initializing PSE Pro 24
initializing transaction facility 80
iterating through persistent objects 89

M
memory

freeing program 67
freeing virtual 68
reserving 12

memory access violations 62

N
new() 46
new, persistent

See persistent new

O
object iteration

creating cursors 90
example 91
navigating with cursors 90
overview 89
retrieving objects 91

objects
associating with roots 54
clustering 48
creating persistent 46
deleting 50
in transactions 80
in which database? 53
is it persistent? 54
navigating with cursors 90
storing in database 46

ObjectStore
overview 10
using with PSE Pro 69

objectstore::compute_ptr_hash() 67
objectstore::disable_logging() 41
objectstore::free_memory() 50
objectstore::is_persistent() 54
objectstore::product_name() 69
objectstore::release_maintenance() 69
objectstore::release_major() 68
objectstore::release_minor() 69
objectstore::release_name() 69
objectstore::return_all_pages() 67
objectstore::return_memory() 68
objectstore::self_check() 42
objectstore::set_check_illegal_pointers() 43
objectstore::set_maximum_undo_operations() 86
102 PSE Pro for C++ API User Guide

Index
objectstore::set_transient_delete_function() 50
objectstore::touch() 74
objectstore::which_product() 68
opening databases 30
operator delete() 50
operator new() 47
os_boolean typedef 74
os_database::close() 33
os_database::copy() 36
os_database::create() 26
os_database::create_root() 55
os_database::destroy() 33
os_database::dump_contents() 43
os_database::fix_pointers()

reference 100
using 97

os_database::get_all_roots() 57
os_database::get_n_roots() 57
os_database::get_pathname() 38
os_database::get_transient_database() 53
os_database::is_modified() 39
os_database::is_open() 38
os_database::is_open_read_only() 38
os_database::is_redoable() 87
os_database::is_undoable() 87
os_database::is_writable() 38
os_database::needs_recovery() 39
os_database::of() 53
os_database::open() 30
os_database::record_new_object_location()

reference 100
using 96

os_database::redo() 87
os_database::rename_type()

reference 100
using 97

os_database::return_all_pages() 67
os_database::save() 34
os_database::save_as() 34
os_database::self_check() 42
os_database::set_undo_marker() 85
os_database::undo() 86
os_database_root::find_root() 56
os_database_root::get_name() 55
os_database_root::get_typespec() 58
os_database_root::get_value() 57
os_database_root::set_value() 55
os_err_ database_transient exception

os_database::copy() 37
os_err_address_space_exhausted exception

os_database::create() 28
persistent new 47, 48

os_err_alloc exception
persistent new, arrays 48
persistent new, nonarrays 47

os_err_cursor_at_end exception
os_object_cursor::next() 90

os_err_cursor_not_at_object exception
os_object_cursor::set() 91

os_err_database_exists exception
os_database::copy() 37
os_database::create() 26

os_err_database_in_use exception
os_database::copy() 37
os_database::open() 32

os_err_database_is_locked exception
os_database::open() 32
os_database::save() 37

os_err_database_needs_recovery exception
os_database::open() 32

os_err_database_not_found exception
os_database::is_open() 38
os_database::needs_recovery() 39
os_database::open() 30, 31
os_database::recover() 40

os_err_database_not_open exception
os_database::create_root() 55

os_err_database_recovery exception
os_database::recover() 40

os_err_database_transient exception
os_database::return_all_pages() 67
os_database::save() 34
os_database::save_as() 36
os_database::set_undo_marker() 85

os_err_heap_corruption exception
objectstore::self_check() 42
os_database::self_checkr() 42
OS_PSE_VERIFY_ALLOC environment

variable 78
persistent delete 50
persistent new, arrays 48
persistent new, nonarrays 47

os_err_invalid_pathname exception
os_database::create() 26
os_database::is_open() 38
os_database::needs_recovery() 39
Release 6.3 103

P

os_database::open() 30
os_database::recover() 40

os_err_invalid_root_value exception
os_database_root::set_valuet() 55

os_err_no_trans exception
os_transaction::abort() 82
os_transaction::commit() 81
os_transaction::initialize() 80

os_err_not_a_database exception
os_database::create() 26
os_database::is_open() 38
os_database::needs_recovery() 39
os_database::open() 30
os_database::recover() 40

os_err_operator_new_args exception
persistent new 47, 48

os_err_root_exists exception
os_database::create_root() 55

os_err_root_type_mismatch exception
os_database_root::get_value() 58

os_err_trans exception
os_database::close() 33
os_database::destroy() 33
os_database::recover() 40
os_database::save() 34
os_database::save_as() 36
os_transaction::begin() 80
os_transaction::initialize() 80

os_err_trans_wrong_type exception
os_transaction::begin() 80

os_err_write_permission_denied exception
os_database::destroy() 33
os_database::open() 31
os_database::save() 34
os_database::save_as() 36
os_database::set_undo_marker() 85

os_int32 typedef 74
os_object_cursor::~os_object_cursor() 90
os_object_cursor::current() 91
os_object_cursor::first() 90
os_object_cursor::more() 91
os_object_cursor::next() 90
os_object_cursor::os_object_cursor() 90
os_object_cursor::set() 91
os_pse namespace 70
OS_PSE_AS_SIZE environment variable 75
OS_PSE_AS_START environment variable 75
OS_PSE_CHK_ILLEGAL_PTR environment variable 43

OS_PSE_DEF_BREAK_ACTION environment
variable 75

OS_PSE_DEF_EXCEPT_ACTION environment
variable 62, 76

OS_PSE_END_FAULT_HANDLER macro 62
OS_PSE_ESTABLISH_FAULT_HANDLER

macro 62
OS_PSE_PAGE_SIZE environment variable 76
OS_PSE_TRACE_ALLOC environment variable 78
OS_PSE_VERIFY_ALLOC environment variable 78
OS_REL_PTR() macro 66
os_transaction::abort() 82
os_transaction::begin() 80
os_transaction::commit() 81
os_transaction::get_current() 81
os_transaction::get_name() 82
os_transaction::get_type() 83
os_transaction::initialize() 80
os_transaction::is_aborted() 82
os_transaction::is_committed() 82
os_transaction::set_name() 81
os_typespec class 51
os_typespec::after_hook 64
os_typespec::before_hook 64
os_typespec::get_name() 52
os_typespec::get_size() 52
os_typespec::get_typespec() 52
os_typespec::needs_relocation() 52
os_typespec::set_fetch_hook() 64
os_typespec::unset_fetch_hook() 65
os_unsigned_int32 typedef 74
ospsecp utility 37
ospserecov utility 40
ospsever.exe utility 68
ostore.hh header file 23

P
persistent allocation

database roots 54
persistent delete 19
persistent new

clustering 48
creating arrays 47
creating nonarrays 46
description 46
example 48
introduction 19
restrictions 47
104 PSE Pro for C++ API User Guide

Index
persistent objects
deleting 50
is this object persistent? 54
naming 20
prefaulting 74
retrieving 54
storing nonarrays 46

persistent storage region
reclaiming space 67

pointers
cross-database 46

product information 68
protection modes 27
PSE Pro

architecture 12
example 15
initializing 24
overview 9
using with ObjectStore 69

R
read-only database access 31
reclaiming swap space 67
recovering databases 39
recursive_fault_detected exception 66
redoing undone updates 87
retrieving entry points 56
retrieving product information 68
roots

See database roots

S
saving database changes in transactions 81
saving databases 34
schema evolution

adding constructor 96
allocating new instances 97
APIs 100
base classes 99
fixing pointers 97
introduction 93
marking classes 94
process 94
removing old classes 98
renaming types 97
required when 93

schema source files 23

search paths 22
setting undo points 85
stream names 28
swap space, reclaiming 67

T
transaction_type_enum 80
transactions

aborted? 82
aborting 82
beginning 80
committed? 82
committing 81
ending 81
example 83
information about 82
initialization 80
introduction 79
name? 82
naming 81
pointer to current 81
type? 83

transient database 53
troubleshooting

checking for database corruption 41
recursive_fault_detected 66

type safety 58
typedefs 74
typespecs

definition 51
for classes 51
for fundamental and pointer types 51
marked types 52
obtaining 52
obtaining size of type 52
obtaining the name of the type 52

U
undo points 85
undo/redo facility

redoing undone updates 87
setting undo points 85
undoing updates 86

undoing database updates 86
Release 6.3 105

U

106 PSE Pro for C++ API User Guide

	PSE Pro for C++ API User Guide
	Preface
	Introducing PSE Pro
	What Is PSE Pro?
	ObjectStore Features

	How to Use PSE Pro
	Unmapping and Unreserving Pages

	An Example Using PSE Pro
	Description of the QuickStart Example
	Source Code for QuickStart Example
	QuickStart Header File
	Source Code for the Program That Stores Objects
	Source Code for the Program That Retrieves Objects
	Schema Source File for QuickStart Example

	PSE Pro APIs in the Example
	Creating and Manipulating Databases
	Restrictions on Persistent Data Access

	Additional PSE Pro Features
	Transactions
	Undo/Redo Facility
	Object Iterators
	Schema Evolution
	Fetch Hooks
	Environment Variables
	Directories Added to Search Paths

	PSE Pro Application Requirements
	Including the PSE Pro Header File
	Creating Schema Source Files
	Establishing Fault Handlers
	Initializing PSE Pro
	Building PSE Pro Applications and Libraries

	Managing Databases
	Creating Databases
	Creating Databases with os_database::open()
	os_database::open()

	Destroying Databases
	os_database::save()
	os_database::save_as()

	Copying Databases
	os_database::copy()
	ospsecp.exe

	Obtaining Information About a Database
	Is the Database Open?
	Is the Database Open for Read-Only?
	Is the Database Open for Write Access?
	What Is the Size of the Database?
	Has the Database Been Modified?

	Recovering Databases
	Function for Determining If a Database Needs Recovery
	Recovering a Database
	Disabling Logging

	Checking for Data Corruption
	Checking Databases with the ospseverifydb Utility
	Checking Databases with the self_check() Functions

	Finding Invalvid Pointers After Relocation
	Dumping Databases

	Storing and Updating Objects in a Database
	Creating Nonarrays with Persistent new
	Creating Arrays with Persistent new
	Clustering Objects in a Database
	About Clustering
	Factors to Consider When Determining Clusters
	Providing a Clustering Hint

	Deleting Objects
	::operator delete()
	objectstore::free_memory()
	objectstore::set_transient_delete_function()
	Typespecs for Classes
	Typespecs for Fundamental and Pointer Types
	os_typespec::get_name()
	os_typespec::get_typespec()
	os_typespec::get_size()
	os_typespec::needs_relocation()

	Retrieving the Database Containing a Specified Object
	Retrieving the Transient Database
	Determining Whether an Object Is Persistent
	Establishing Roots as Database Entry Points
	About Database Roots
	Setting the Persistent Object Pointed To by a Root
	Obtaining the Name of a Root

	Retrieving Roots for Database Entry
	Obtaining a Pointer to a Root
	Obtaining Access to All Roots in a Database
	Example of Retrieving Entry Points

	Type Safety for Database Roots
	Example of Specifying a Typespec for a Root
	Obtaining the Typespec for a Root

	Memory and Database Management Tasks
	Setting PSE Pro Behavior Before Throwing Exceptions
	Using Fetch Hooks
	Registering Hook Functions
	Unregistering Hook Functions
	Coding Hook Functions
	Example of Using a Hook Function
	Setting the Value of a Pointer from a Hook Function
	Troubleshooting Recursive Exceptions

	Hashing Persistent Addresses
	Reclaiming Swap Space
	Removing Data from the Persistent Storage Region
	Removing Data from Virtual Memory

	Retrieving Product Information
	ospsever.exe
	objectstore::which_product()
	objectstore::release_major()
	objectstore::release_maintenance()
	objectstore::release_name()
	objectstore::product_name()

	Using PSE Pro and ObjectStore for C++ in the Same Application
	Including Header Files
	Establishing Fault Handlers
	Specifying Namespaces
	Setting Up Address Space
	Registering Transient Delete Functions
	Example of Using PSE Pro and ObjectStore

	Using Integer Typedefs
	PSE Pro Environment Variables
	OS_PSE_AS_START
	OS_PSE_CHK_ILLEGAL_PTR
	OS_PSE_DEF_BREAK_ACTION
	OS_PSE_DEF_EXCEPT_ACTION
	OS_PSE_PAGE_SIZE
	OS_PSE_VERIFY_ALLOC

	Transactions
	Introducing Transactions
	Initializing the Transaction Facility
	Beginning Transactions
	Specifying transaction_type_enum
	Specifying Other Parameters
	Exceptions
	Setting the Name of a Transaction
	Obtaining a Pointer to the Current Transaction

	Ending Transactions
	Making Changes Permanent
	Rolling Back Changes

	Obtaining Information About Transactions
	Is This Transaction Committed?
	Is This Transaction Aborted?
	What Is This Transaction’s Name?
	What Is This Transaction’s Type?

	Example of Using Transactions

	The Undo/Redo Facility
	Setting Undo Points
	Creating an Undo Point
	Setting the Maximum Number of Undo Operations

	Undoing Database Updates
	Determing If Changes Can Be Undone or Redone

	Object Iteration
	Overview of Object Iteration
	Creating and Deleting Cursors
	Navigating with Cursors
	Positioning the Cursor at the First Object
	Positioning the Cursor at the Next Object
	Positioning the Cursor at the Specified Object
	Determining if the Cursor Is Pointing to an Object

	Retrieving the Object at the Cursor Position
	Example of Using Object Iterators

	Evolving Database Schemas
	Introduction to Schema Evolution
	Description of the Schema Evolution Process
	Step 1: Marking Both Class Definitions Persistent
	Steps 4 and 5: Allocating Instances of New Classes and Fixing Pointers
	Step 6: Removing the Old Class from Your Application
	Changing the Definition of a Base Class
	os_database::rename_type()
	os_database::record_new_object_location()
	os_database::fix_pointers()

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	M
	N
	O
	P
	R
	S
	T
	U

