
ACTIVE TOOLKIT
REFERENCE

RELEASE 6.0

May 1999

ObjectStore Active Toolkit Reference

ObjectStore Active Toolkit Release 6.0, May 1999

ObjectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

ISG Navigator is a trademark of ISG International Software Group.

Seagate Crystal Reports is a trademark of Seagate Technology, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1999 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Contents

Preface . ix

Chapter 1 ATK and the Inspector . 1

ATK Metaknowledge and Inspector . 2

Accessing Data Views and Instance Formats from ATK 3

Accessing Data Views from ATK . 5

Accessing Instance Formats from the ATK ActiveX Server 6

Chapter 2 ATK ActiveX Server . 7

What Is the ATK ActiveX Server?. 8

Accessing the ActiveX Server Using DCOM 9

Integrating ATK and OSAX . 10

Retrieving Error Information . 12

Chapter 3 Active Toolkit OLE DB Provider. 15

What Is OLE DB? . 16

Navigation in ObjectStore ATK OLE DB 17

Multimedia Object Managers in ATK OLE DB. 22

Accessing the ATK OLE DB Provider . 24

Accessing the ATK OLE DB Source Through ODBC. 27

SQL Support in ATK OLE DB. 28

CRUD Operations in ATK OLE DB . 32

Ways to Implement CRUD Operations . 32

Editing Objects and Relationships . 33

Creating Objects. 35
Release 6.0 iii

Contents
Reading Objects . 36

Updating Objects . 36

Deleting Objects . 37

Retrieving Error Information . 39

Chapter 4 Configuring ATK . 41

The ATK Configuration Utility . 42

Running the ATK Configuration Utility . 42

Synchronizing with Inspector . 43

Setting the Application Schema Path 44

Application Schema Sheet . 44

ObjectStore Server . 45

Synchronizing with Inspector . 46

Modifying the ATK General Settings . 47

Metaknowledge . 47

Default X-to-Many Joins . 47

Synchronizing with Inspector . 48

Modifying the String Format Settings . 49

Interpreting Strings. 49

Japanese Expressions . 49

Show Strings . 49

BLOBs . 50

Show Single Characters . 50

Chapter 5 ATK Object Model . 51

ATKClass . 53

ATKClass::GetClassExtent . 53

ATKClass::GetClassName . 54

ATKClass::GetFatherClasses . 54

ATKClass::GetMethods . 54

ATKClass::GetSonClasses . 54

ATKClass::GetSlots . 54

ATKClass::IsTopLevelClass. 55

ATKClasses . 56

ATKClasses::Count . 56
iv ObjectStore Active Toolkit Reference

Contents
ATKClasses::Item . 56

ATKClassSlot . 57

ATKClassSlot::GetAccess . 57

ATKClassSlot::GetClass . 57

ATKClassSlot::GetName . 58

ATKClassSlot::GetRelationCardinality 58

ATKClassSlot::GetRelatedClass . 58

ATKClassSlot::GetType . 59

ATKClassSlot::IsRelation . 59

ATKClassSlots . 60

ATKClassSlots::Count. 60

ATKClassSlots::Item . 60

ATKDatabase . 61

ATKDatabase::CreateObject . 62

ATKDatabase::CreateObjectInSegment. 62

ATKDatabase::GetAllClasses . 62

ATKDatabase::GetClass . 63

ATKDatabase::GetDataView. 63

ATKDatabase::GetDataViews. 63

ATKDatabase::GetInstanceFormat . 64

ATKDatabase::GetRoot. 64

ATKDatabase::GetRoots . 64

ATKDatabase::SetJoinType . 65

ATKDataView . 66

ATKDataView::GetAllParameters. 67

ATKDataView::GetATKClass . 67

ATKDataView::GetATKTable . 68

ATKDataView::GetDataInstanceFormat 68

ATKDataView::GetDataInstanceFormatName 68

ATKDataView::GetName . 69

ATKDataView::GetParameterPrompt 69

ATKDataView::GetParameterType . 69

ATKDataView::GetParameterValues 70

ATKDataView::IsFiltered . 70

ATKDataView::IsFilterParameterized. 71

ATKDataView::IsParameterList . 71
Release 6.0 v

Contents
ATKDataView::IsParameterMultipleSelection 72

ATKDataView::IsParameterSorted . 72

ATKDataView::PerformFiltering. 73

ATKDataView::SetParameter . 73

ATKDataViews . 75

ATKDataViews::Count . 75

ATKDataViews::Item . 75

ATKInstanceFormat . 76

ATKInstanceFormat::GetFormatName. 76

ATKInstanceFormat::GetHeaders . 76

ATKKernel . 77

ATKKernel::OpenDatabase . 77

ATKKernel::ReloadMetaKnowledge 78

ATKKernel::ResolveReference . 78

ATKMethod . 79

ATKMethod::GetArguments() . 79

ATKMethod::GetCategory() . 80

ATKMethod::GetClass() . 80

ATKMethod::GetName() . 80

ATKMethod::GetReturnType(). 80

ATKMethod::IsStatic() . 81

ATKMethod::IsVirtual() . 81

ATKMethods . 82

ATKMethods::Count. 82

ATKMethods::Item . 82

ATKMethodArguments . 83

ATKMethodArguments::Add() . 83

ATKMethodArguments::Count() . 83

ATKMethodArguments::Item() . 83

ATKMethodArguments::Remove() . 84

ATKObjectManager . 85

ATKObjectManager::GetDataArray 85

ATKObjectManager::GetDataSize . 85

ATKObjectManager::GetOMMimeType 86

ATKObjectManager::GetOMTypeName. 86

ATKObjectManager::GetStream . 86
vi ObjectStore Active Toolkit Reference

Contents
ATKReference. 87

ATKReference::DeleteObject . 88

ATKReference::GetATKDatabase . 88

ATKReference::GetATKObjectManager 88

ATKReference::GetCardinality . 89

ATKReference::GetCollectionItems 89

ATKReference::GetClass . 89

ATKReference::GetReference . 90

ATKReference::GetRepresentation . 90

ATKReference::GetSlotValue . 90

ATKReference::GetTabularRepresentation 91

ATKReference::IsCollection. 92

ATKReference::IsObjectManager . 93

ATKReference::ReadObject . 93

ATKReference::UpdateObject . 93

ATKReferences . 95

ATKReferences::Add . 95

ATKReferences::Count . 96

ATKReferences::GetATKDataView. 96

ATKReferences::GetATKTable . 96

ATKReferences::Item . 97

ATKReferences::Remove . 97

ATKRoot . 98

ATKRoot::GetATKReference. 98

ATKRoot::GetATKTable . 98

ATKRoot::GetName . 99

ATKRoot::GetReference . 99

ATKRoots . 100

ATKRoots::Count . 100

ATKRoots::Item . 100

ATKStrings . 101

ATKStrings::Count . 101

ATKStrings::Item . 101

ATKStringsList. 102

ATKStringsList::Count . 102

ATKStringsList::Item . 102
Release 6.0 vii

Contents
ATKTable . 103

ATKTable::GetCardinality . 104

ATKTable::GetHeaders . 104

ATKTable::GetObject . 105

ATKTable::GetReference . 105

ATKTable::GetRepresentation . 105

ATKTable::GetTabularRepresentation 105

ATKTable::GetWholeHTML . 106

ATKTable::GetWholeXML . 106

ATKTable::IsBOT . 107

ATKTable::IsEOT. 107

ATKTable::MoveFirst. 107

ATKTable::MoveLast . 107

ATKTable::MoveNext. 108

ATKTable::MovePrevious . 108

ATKTable::MoveTo . 108

Index. 109
viii ObjectStore Active Toolkit Reference

Preface

Purpose The ObjectStore Active Toolkit Reference provides a reference on the
Active Toolkit ActiveX and OLE DB programming interfaces to
ObjectStore.

Audience This book is for experienced Visual Basic, Visual Basic Script, Java,
Java Script, or C++ developers who are developing applications
that run under Windows NT or Windows 95/98 and want to
access objects stored in an ObjectStore database through an
ActiveX interface.

Scope This book supports Release 6.0 of the ATK interface to ObjectStore
Release 6.0. Information in this book assumes that ATK is installed
and configured.

How This Book Is Organized

ATK and Inspector When you define data views and instance formats using
Inspector, ObjectStore saves them in the metaknowledge. ATK
uses the metaknowledge when accessing data views and instance
formats. See Chapter 1, ATK and the Inspector, on page 1.

ActiveX Server ATK is an ActiveX server that provides access to any ObjectStore
database. See Chapter 2, ATK ActiveX Server, on page 7.

ATK OLE DB ATK is also an OLE DB provider. OLE DB is a standard interface
for accessing data, and ATK provides access to any ObjectStore
database through OLE DB. See Chapter 3, Active Toolkit OLE DB
Provider, on page 15.

Configuration The ATK installation program configures ATK to use the same
metaknowledge as Inspector, and assigns several other default
settings. If you reconfigure Inspector, you should update the
corresponding ATK settings. You can also reconfigure ATK to
Release 6.0 ix

Preface
meet the specific needs of an application. See Chapter 4,
Configuring ATK, on page 41.

ATK object model The ATK object model consists of 17 COM classes. This chapter
lists each class alphabetically by class name. Within the entry for
each class, the class’s properties and methods appear
alphabetically. See Chapter 5, ATK Object Model, on page 51.

Sample Data

This document refers to sample applications and demonstration
databases. If you installed ATK using the installation program
defaults, you can find them in these directories:

Notation Conventions

This document uses the following conventions:

Component Location

ATK C:\odi\ATK6.0

Sample Applications C:\odi\ATK6.0\Samples

Demonstration Databases C:\odi\ATK6.0\DemoDBs

Convention Meaning

Bold Bold typeface indicates user input or code.
Sans serif Sans serif typeface indicates system

output.
Italic sans serif Italic sans serif typeface indicates a

variable for which you must supply a
value. This most often appears in a syntax
line or table.

Italic serif In text, italic serif typeface indicates the
first use of an important term.

[] Brackets enclose optional parameters.
{ a | b | c } Braces enclose two or more items. You can

specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

... An ellipsis indicates missing code that is
not pertinent to the current example. In
syntax lines, it indicates that the previous
item can be repeated.
x ObjectStore Active Toolkit Reference

Preface
Internet Sources of More Information

Object Design Object Design’s site on the World Wide Web is the source for
company news, white papers, and information about product
offerings and services. Point your browser to
http://www.objectdesign.com/ for more information.

Other ObjectStore
products

In addition to ObjectStore, the industry’s leading object database,
Object Design offers a comprehensive set of rapid development
and enterprise integration tools. For information about these and
other Object Design products, point your browser to
http://www.objectdesign.com/products/products.html.

Product support Object Design’s support organization provides a number of
information resources and services. Their home page is at
http://support.objectdesign.com/. From the support home page,
click Tech Support Information to learn about support policies,
product discussion groups, and the different ways Object Design
can keep you informed about the latest release information —
including the web, ftp, and email services.

Training

If you are in North America, for information about Object
Design’s educational offerings, call 781.674.5320, Monday
through Friday from 8:30 AM to 5:30 PM Eastern Time. Outside
these hours, call 800.706.2507.

If you are outside North America, call your Object Design sales
representative.

Your Comments

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to
support@objectdesign.com. To expedite your message, begin the
subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.
Release 6.0 xi

Preface
xii ObjectStore Active Toolkit Reference

Chapter 1
ATK and the Inspector

Introduction ATK uses the data views and instance formats that you define in
Inspector and store in the metaknowledge.

In this chapter This chapter presents the following topics:

ATK Metaknowledge and Inspector 2

Accessing Data Views and Instance Formats from ATK 3
Release 6.0 1

ATK Metaknowledge and Inspector
ATK Metaknowledge and Inspector

What is
metaknowledge?

Inspector metaknowledge contains data view definitions, including
the query and ordering information set by the query’s author, and
other information about the database schema and the defined
instance formats.

ATK provides read and write access, by means of the ATK
ActiveX server or the ATK OLE DB provider, to data views you
define in the Inspector. To do this, ATK must process the
ObjectStore database’s metaknowledge, which Inspector stores.

ATK’s use of
metaknowledge

Inspector uses the metaknowledge to display persistent instances,
and ATK uses the Inspector metaknowledge to retrieve
information about the available data views, instance formats, and
schema structure. Thus, the Inspector metaknowledge logically
becomes the ATK metaknowledge. Although ATK never modifies
this metaknowledge, by using ATK you can customize the data
view and instance format definitions and reuse Inspector-defined
data views in different contexts.

Metaknowledge
location

Inspector metaknowledge can reside in the file system, in the
same inspected database, or in another ObjectStore database that
contains only Inspector metaknowledge. The metaknowledge
location is specified in the Inspector configuration.

ATK must be able to access the Inspector metaknowledge. When
you install ATK, the installation program verifies that the
Inspector is installed, examines the Inspector configuration to
determine where the metaknowledge resides, and configures
ATK with that location. Thus, ATK can access the data views and
instance formats you define using Inspector.

To modify the ATK configuration, refer to Chapter 4, Configuring
ATK, on page 41.
2 ObjectStore Active Toolkit Reference

Chapter 1: ATK and the Inspector
Accessing Data Views and Instance Formats from
ATK

What is a data view? A data view is a tabular representation of a persistent ObjectStore
collection that uses a specified instance format to display
persistent instances. You can define a data view based on any of
the following:

• Filtering options

• Ordering options

• Arrays

• User-defined extent methods

For example, suppose the class Customer has two data members,
name and address. You can use Inspector to build a data view
based on a collection of customers. A data view’s instance format
specifies the set of data members that must be displayed for an
instance of the class in the data view. If you are displaying a table
of instances, the instance format specifies what columns have to
be displayed. This simple data view has an instance format of two
columns that represent the name and address of each Customer
object contained in the persistent collection.
Release 6.0 3

Accessing Data Views and Instance Formats from ATK
4 ObjectStore Active Toolkit Reference

Chapter 1: ATK and the Inspector
Defining a filter to list only those customers whose names start
with the letter J, or defining an order that lists the customers
alphabetically, makes this data view more complex.

You can name and save the view, and reload it later. If the
collection changes, the data view changes accordingly.

Accessing Data Views from ATK

To access a data view defined in Inspector, use the ATK ActiveX
server or ATK OLE DB provider and specify the name of the data
view.

For example, to access a data view named my_first_dataview
through the ATK ActiveX server, create an IATKDataView object to
represent the view:

atkDataView = atkDatabase.GetDataView("my_first_dataview")
Release 6.0 5

Accessing Data Views and Instance Formats from ATK
Using the ATK OLE DB provider, open a record set representing
the same data view:

adoRecordSet.Open("my_first_dataview", adoConnection)

You can also use SQL statements with OLE DB:

adoRecordSet.Open("SELECT * FROM my_first_dataview",
adoConnection)

Note that if you use SQL statements, the data view name must
follow SQL syntax rules.

Accessing Instance Formats from the ATK ActiveX Server

Using the ATK ActiveX server, you can directly access the
instance formats defined for the classes contained in the database
schema. An instance format can include navigation pointers and
collections of other classes, which provide a powerful means of
navigating among objects transparently and displaying the
equivalent of relational SQL joins faster and more efficiently than
SQL syntax.

When you create a data view in Inspector, you can save the data
view template with a symbolic name. When you modify an
instance format in Inspector, you usually modify the default
instance formats associated with each class. However, the
Inspector will save any modification to the template instance
format using the symbolic name. The ATK ActiveX server
accesses this name and displays data according to the specified
instance format.

Refer to Chapter 2, Accessing ATK ActiveX Server from ASP
Applications, in the ObjectStore Active Toolkit Tutorial, for an
example of defining multiple instance formats for a specific class
and accessing them from the ATK ActiveX server, and
customizing a data view using the ATK ActiveX server or ATK
OLE DB provider.
6 ObjectStore Active Toolkit Reference

Chapter 2
ATK ActiveX Server

Introduction ATK is an OLE Automation Server. You can create ActiveX objects
to open and inspect databases on local and remote hosts. You can
also integrate ATK with OSAX to modify a database, and gather
information from ATK ActiveX error codes.

In this chapter This chapter presents the following topics:

What Is the ATK ActiveX Server? 8

Accessing the ActiveX Server Using DCOM 9

Integrating ATK and OSAX 10

Retrieving Error Information 12
Release 6.0 7

What Is the ATK ActiveX Server?
What Is the ATK ActiveX Server?

The ATK ActiveX server is ATK OLE Automation component that
exposes the ATK object model to any ActiveX client programming
environment. (These include Active Server Pages, Visual Basic,
VBscript, Visual C++, Java, Visual J++, and JavaScript.)

Using the ATK Active X
server

You can use the ATK ActiveX server to access and customize the
tabular data views you define in Inspector. For a detailed
description of the ATK object model, refer to Chapter 5, ATK
Object Model, on page 51.

You can also navigate among persistent objects in an ObjectStore
database or retrieve information about the database schema. The
ATK ActiveX server supports the OLE Multithreaded Apartment
(MTA) model architecture. For more information about threading
models, refer to the Microsoft Knowledge Base
(http://support.microsoft.com/support/).

The ATK ActiveX server is distributed as a DLL (for in-proc use),
and as an executable (for simplified out-of-proc use).

Examples For examples of applications that use the ATK ActiveX server,
refer to Chapter 2, Accessing ATK ActiveX Server from ASP
Applications, in the ObjectStore Active Toolkit Tutorial.
8 ObjectStore Active Toolkit Reference

Chapter 2: ATK ActiveX Server
Accessing the ActiveX Server Using DCOM

The Distributed Component Object Model (DCOM) underlying
ATK allows instances of ActiveX objects to be located and
accessed remotely from the ActiveX server. Thus, an application
can access the ATK ActiveX server running on a remote machine
to open and inspect a remote database.

The DCOM protocol is essential for developing ActiveX controls
that run on remote workstations and that access one or more ATK
ActiveX servers. The grid control that is distributed with ATK can
connect to remote ATK servers using DCOM.

To create an object that will run on a remote ATK ActiveX server,
use CoCreateInstanceEx instead of CoCreateInstance and specify
the host on which the ATK ActiveX server is running.

For more information For detailed information about DCOM, refer to the Microsoft
documentation. For an example of an application that uses
DCOM, refer to Chapter 6, Using ATK ActiveX Server from
DCOM, in the ObjectStore Active Toolkit Tutorial.
Release 6.0 9

Integrating ATK and OSAX
Integrating ATK and OSAX

What is OSAX? The ObjectStore ActiveX Interface (OSAX) is an interface that
complements ATK’s access to ObjectStore databases. Using
OSAX, you can encapsulate persistent C++ objects inside COM
objects and create, read, update, or modify them.

The ATK and OSAX services can function independently of each
other, or you can integrate them. When ATK and OSAX are
integrated in one application, you can build object representations
in OSAX based on ATK objects, and in ATK based on OSAX
objects.

From ATK to OSAX Use the OSAXObjectStore interface to build an OSAX object from
an ATKReference object. OSAXObjectstore retrieves the
information it needs from the ATK object and builds an IX object
representing the persistent instance, in which X is the name of the
class.

For example, suppose you have a database whose schema
contains the Customer class, and an ATKReference object
represents a Customer instance. You have built an OSAX interface
on top of your classes, and OSAX provides the CustomerClass and
Customer interfaces. Using Visual Basic, you could create a
persistent osaxCustomer object:

Dim atkCustomer as IATKReference
Dim ObjectStore as IOSAXObjectStore
...
Dim osaxCustomer as ICustomer
osaxCustomer = ObjectStore.LoadATKReference(CCustomer,
atkCustomer)

After you created an osaxCustomer object, you could use the
methods you exposed in the Customer interface to modify
osaxCustomer as necessary.

From OSAX to ATK Suppose you have a Customer object called osaxCustomer. You
could build an ATKReference object representing the
osaxCustomer instance by using this Visual Basic code:

Dim atkKernel as IATKKernel
...
Dim atkCustomer as IATKReference
atkCustomer = atkKernel.LoadOSAXObject(osaxCustomer)
10 ObjectStore Active Toolkit Reference

Chapter 2: ATK ActiveX Server
Once you create the atkCustomer object, you can use it to access all
of the features that ATK offers. For example, you can retrieve the
data members in the instance, navigate a relation, build a table
based on a collection that the object contains, retrieve information
about classes associated with the object, and so on.
Release 6.0 11

Retrieving Error Information
Retrieving Error Information

When ATK ActiveX server calls an ATK method and an error
occurs, ATK returns an error code. The file \include\atkkernel.h
lists all ATK error codes.

You can retrieve extended information about any error. These
code samples in Visual Basic, VBScript, and Visual C++ show how
to retrieve information about an error that occurs when ATK
ActiveX server tries to open a database.

Visual Basic On Error GoTo handle_error
Dim ObjectStore As New ATKKernel
Dim OSDatabase As ATKDatabase
Set OSDatabase = ObjectStore.OpenDatabase("mydb.db")
Exit Sub

handle_error:
TmpStr = "ATK Error# " & Hex(Err.Number)
TmpStr = TmpStr & vbCrLf & "Generated by: " & Err.Source
TmpStr = TmpStr & vbCrLf & "Description: " & Err.Description
MsgBox TmpStr

VBScript in Active
Server Pages

On Error Resume Next
set ATKKernel=Server.CreateObject("ATKKernel.Document")
set ATKDatabase=ATKKernel.OpenDatabase("mydb.db")
if Err.Number <> 0 then

Response.Write("ATK Error# " & Hex(Err.Number) & "
")
Response.Write("Generated by: " & Err.Source & "
")
Response.Write("Description: " & Err.Description & "
")
Exit Sub

End If
12 ObjectStore Active Toolkit Reference

Chapter 2: ATK ActiveX Server
Visual C++
IID_IATKKernel* pATK;

IID_IATKDatabase* pATKdb;
HRESULT hr=pATK->OpenDatabase("mydb.db", &pATKdb);
if(FAILED(hr)) {

ISupportErrorInfo* pSEI;
if(SUCCEEDED(

pDisp->QueryInterface(IID_ISupportErrorInfo,(LPVOID*)&pSEI) &&
pSEI->InterfaceSupportsErrorInfo(IID_IATKKernel)==S_OK)){

IErrorInfo* pEI;
GetErrorInfo(0,&pEI);
char szBuffer[512];
BSTR source,description;
pEI->GetSource(&source);
pEI->GetDescription(&description);
wsprintf(szBuffer,"ATK Error# %X\nSource: %S\nDescription: %S",

hr,source,description);
MessageBox(NULL,szBuffer,"Error",MB_OK);
SysFreeString(source);
SysFreeString(description);
pEI->Release();

}
}

Release 6.0 13

Retrieving Error Information
14 ObjectStore Active Toolkit Reference

Chapter 3
Active Toolkit OLE DB
Provider

Introduction ATK can retrieve ActiveX objects from an ObjectStore database by
means of the ObjectStore Active Toolkit OLE DB provider. You
can access OLE DB providers directly, or through active data
objects (ADO). ObjectStore Active Toolkit OLE DB also lets you
use an ODBC data source, query with SQL syntax, and perform
create, read, update, and delete operations using user-defined
methods.

In this chapter This chapter presents the following topics:

What Is OLE DB? 16

Navigation in ObjectStore ATK OLE DB 17

Multimedia Object Managers in ATK OLE DB 22

Accessing the ATK OLE DB Provider 24

Accessing the ATK OLE DB Source Through ODBC 27

SQL Support in ATK OLE DB 28

CRUD Operations in ATK OLE DB 32

Retrieving Error Information 39
Release 6.0 15

What Is OLE DB?
What Is OLE DB?

OLE DB is Microsoft Corporation’s component database
architecture — the fundamental component object model (COM)
building block for storing and retrieving records. This set of
interfaces for accessing and manipulating data provides data
integration regardless of the data type. Microsoft's Open Database
Connectivity (ODBC) data access interface is included in the OLE
DB architecture, and continues to provide access to relational
data.

You can access OLE DB providers through ActiveX Data Objects
(ADO). ADO is a high-level object model that provides access to
any OLE DB source. The ADO interface is similar to the Data
Access Objects (DAO) interface and the Remote Data Objects
(RDO) interface.

ObjectStore Active
Toolkit OLE DB

The ObjectStore Active Toolkit OLE DB provider Release 6.0 is
built on top of OLE DB version 2.0. When you install ObjectStore
Active Toolkit, the installation program automatically registers
ObjectStore Active Toolkit as an OLE DB provider, labeled
ObjectStore Active Toolkit OLE DB Provider. This registration lets
you access the ObjectStore Active Toolkit services through the
standard interface provided by OLE DB or ADO.

Additional information
about OLE DB and
ADO

For details about the OLE DB object model, refer to the Microsoft
OLE DB SDK.

To obtain a complete description of the ADO object model,
consult the on-line documentation for Microsoft Visual Basic,
Active Server Pages, or Visual C++.

For more information about OLE DB and ADO, browse the
Microsoft web site at http://www.microsoft.com/data.
16 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Navigation in ObjectStore ATK OLE DB

Navigating between objects is a common technique for exposing
a tabular representation of a class hierarchy. For example,
suppose an ObjectStore database contains the two classes
Customer and Vehicle. The Customer class has a relationship that
lists each Vehicle owned by a Customer and each Vehicle is linked
to its Customer. (The sample database carsdemo.db contains this
kind of schema.)

Implicit navigation Using this collection of Customers, you can build a data view in
the Inspector that displays the name of each Customer, and the
make and model of each Vehicle he or she owns.

When you access the Vehicle class by means of the Customer class,
rather than accessing the Vehicle class directly, you are implicitly
navigating the relationship between the Customer and the Vehicle
classes.
Release 6.0 17

Navigation in ObjectStore ATK OLE DB
Using ObjectStore Active Toolkit OLE DB, you can publish this
data view in an HTML table.

This ASP code generated the HTML table. RS is the ADO
RecordSet representing the collection of Customers:

Response.Write("<TABLE BORDER=1>")
For Each colHeader in RS.fields

Response.Write("<TH><PRE>" & colHeader.Name & "</PRE></TH>")
Next
Do While Not RS.EOF

Response.Write("<TR>")
For Each aField in RS.fields

Response.Write("<TD>" & aField.Value & "</TD>")
Next
Response.Write("</TR>")
RS.MoveNext

Loop
Response.Write("</TABLE>")
18 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Explicit navigation
with ADO

You might want to build a table that does not implicitly navigate
relationships among classes, but provides a way to navigate such
relations explicitly.

ADO 1.5 and later supports chaptered row sets, which provide a
standard way to nest record sets. In this case the Field.Value item
is a RecordSet object and you can use it to display the navigated
elements.

The resulting HTML table looks like this:
Release 6.0 19

Navigation in ObjectStore ATK OLE DB
Clicking on an item in the cars column explicitly navigates the
Customer to Vehicle relation:

To navigate explicitly in ObjectStore Active Toolkit OLE DB, you
have to write additional code to handle Field.Value. If you are
using ADO 1.5 or later, ATK handles explicit navigation using the
chaptered row set functionality. From the user standpoint, this
means that the Field.Value is registered as type (Field.Type) 136
and that it is an ADO RecordSet object that can be used to display
the navigated rows.

(To learn about specifying explicit navigation, see SQL Support in
ATK OLE DB on page 28.)

Sample code ADO 2.0 This sample code provides explicit navigation:

For Each aField in RS.fields
If aField.Type=136 Then ’Is it a Chaptered Rowset?

set navigatedRS=aField.Value
20 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
‘navigatedRS is an ADO RecordSet object
else

Response.Write(aField.Value)
end if

Next

An OLE DB consumer (that is, a consumer that directly accesses
OLE DB, without using ADO) can detect explicit navigation by
checking the type of the column.

If the column is registered as DBTYPE_IDISPATCH, the column
contains a pointer to an IDispatch interface that exposes the
GetCardinality, GetRecordSet and GetIRowset methods. The OLE
DB consumer can then access these methods to retrieve the
navigated table.

If the column is registered as DBTYPE_HCHAPTER, the column
contains a handle to the chapter (HCHAPTER). Refer to the
Microsoft OLE DB documentation for information on how to
handle chaptered row sets.
Release 6.0 21

Multimedia Object Managers in ATK OLE DB
Multimedia Object Managers in ATK OLE DB

ATK supports ObjectStore multimedia Object Managers. ATK can
also access multimedia data ATK through OLE DB and ADO.

Using ADO Using ADO to access a field that contains a multimedia Object
Manager is straightforward. Suppose RS is a RecordSet, and the
first column contains a multimedia Object Manager.

osmmData=RS(0).GetChunk(RS(0).ActualSize)

Then use osmmData to access an IStream or a SAFEARRAY OLE
interface. For example, in ASP, use osmmData in conjunction with
the BinaryWrite Response object method:

Response.BinaryWrite(osmmData)

The example WebADODemo shows how to display a collection of
multimedia Object Managers using the ObjectStore Active Toolkit
OLE DB provider. This HTML page displays a collection of
images stored in the ObjectStore database as osmmImage objects
22 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
and retrieved using the ObjectStore Active Toolkit OLE DB
provider:

Using OLE DB When you access multimedia Object Managers directly from an
OLE DB consumer, rather than through the ADO object model,
note that the columns containing multimedia values are
registered as DBTYPE_BYTES and DBCOLUMNFLAGS_ISLONG.
Follow the OLE DB specifications to retrieve the binary large
object (BLOB) content. The OLE DB consumer can provide a
memory buffer to be filled by ObjectStore Active Toolkit OLE DB,
or to require an OLE interface such as ISequentialStream, IStream,
or ILockBytes.
Release 6.0 23

Accessing the ATK OLE DB Provider
Accessing the ATK OLE DB Provider

Any OLE DB or ADO client can access an ObjectStore Active
Toolkit OLE DB provider. The examples included with ATK show
how to access ObjectStore Active Toolkit OLE DB through ADO
from a Visual Basic or ASP/VBScript application. For additional
information, see Chapter 1, A Visual Basic Application with ATK
ActiveX Server and Chapter 2, Accessing ATK ActiveX Server
from ASP Applications, in the ObjectStore Active Toolkit Tutorial.

Opening a
connection

In general, to open an ObjectStore Active Toolkit OLE DB
connection, provide a string in this format:

provider=ObjectStore Active Toolkit OLE DB Provider;
data source=<full-db-path>;
[Join=[SQL|Inspector];]
[Import=<import-database>;]

where

• provider is the registered OLE DB source you want to open.

• ObjectStore Active Toolkit OLE DB Provider is the name used by
ObjectStore Active Toolkit OLE DB.

• data source is the name of the ObjectStore database you want to
open. It can specify any ObjectStore DB path, such as
c:\odi\mydb.db (a file database) or myHost:/dbs/my.db (a remote
database) or myHost::/dbs/my.db (an ObjectStore rawfs
database).

• Join specifies whether you want to obtain SQL-like or
Inspector-like navigations/joins from this connection. Use this
field to override the default behavior of the ObjectStore Active
Toolkit OLE DB provider.
24 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Inspector relationships If you specify Inspector, ATK expands one-to-many relationships
in a tree-like way. For example, suppose you have two classes
named Customer and Vehicle; a Customer might have several
Vehicles. ATK provides output in this form:

SQL relationships If you specify Join=SQL, ATK expands one-to-many relationships
to show all the possible values that meet the conditions of the
query (as an SQL join would). The output takes this form:

Choosing between
the two

Usually a tree-like view is more readable, but an SQL-oriented
tool such as a report generator cannot easily use it. However, the
SQL-like view is less readable and, if you navigate multiple one-
to-many relationships in a row, the number of generated rows is
much greater than in the tree-like view.

For example, using ASP and ADO you can create and open an
ObjectStore Active Toolkit OLE DB connection:

Set adoConnection = Server.CreateObject("ADODB.Connection")
Call adoConnection.Open("

provider=ObjectStore Active Toolkit OLE DB Provider;
data source=c:\odi\ATK6.0\Examples\demodbs\carsdemo.db")

Name Make Model

John, Smith Ford Escort

Cadillac DeVille

Bob, Dylan Ford Ranger

Mazda 626

Dodge Spirit

Name Make Model

John, Smith Cadillac Deville

Bob, Dylan Ford Ranger

Bob, Dylan Mazda 626

Bob, Dylan Mazda 626

Bob, Dylan Dodge Spirit
Release 6.0 25

Accessing the ATK OLE DB Provider
Then you can open a RecordSet:

Set RS = Server.CreateObject("ADODB.RecordSet")
Call RS.Open("myDataView", adoConnection)

where myDataView is the name of a data view in the ATK
metaknowledge of the current database, or a SQL query following
the syntax accepted by ObjectStore Active Toolkit OLE DB. (For
more information, see SQL Support in ATK OLE DB on page 28.)

Providing user and
password values

ObjectStore Active Toolkit OLE DB can also obtain information
about the user and password values to open the ObjectStore
database. You can provide this kind of information in two ways:

• Specifying the user and password when you open the OLE DB
connection:

Call adoConnection.Open("
provider=ObjectStore Active Toolkit OLE DB Provider;
data source=c:\odi\ATK6.0\Examples\demodbs\carsdemo.db",
"userName",
"password")

• Allowing ObjectStore Active Toolkit OLE DB to prompt the
user each time it requires a user name and password.

Through the ADO interface, set the ADO connection Prompt
variable adoConnection.Properties("Prompt") to a value
different from adPromptNever.

Through the OLE DB interface, set the DBPROP_INIT_PROMPT
property in OLE DB to a value different from DBPROMPT_
NOPROMPT.

If ATK cannot get the user name and password information it
requires (because it is not specified when the connection is opened
and ATK is not enabled to prompt the user), an error condition is
generated.
26 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Accessing the ATK OLE DB Source Through ODBC

OLE DB providers and ODBC drivers provide similar services,
making it possible to build a bridge between any OLE DB
provider and ODBC.

Use ISG
Navigator/Bridge

ISG Navigator/Bridge includes an ODBC driver for OLE DB data
sources. It consumes OLE DB providers and allows ODBC
applications to access any OLE DB data source. ISG
Navigator/Bridge is distributed by ISG International Software
Group at http://www.isgsoft.com, and by Microsoft Corporation at
http://www.microsoft.com.

Download and install ISG Navigator/Bridge. Then you can
configure it to access ObjectStore Active Toolkit OLE DB through
any ODBC client. Refer to Chapter 5, Using Crystal Reports with
ATK, in the ObjectStore Active Toolkit Tutorial for an example of
configuring ISG Navigator/Bridge.
Release 6.0 27

SQL Support in ATK OLE DB
SQL Support in ATK OLE DB

ATK supports a subset of the SQL syntax. This SQL support lets
you dynamically modify data views defined in Inspector by
customizing the instance format and the filter, and by ordering
definitions. ATK supports these statements:

• SELECT

• FROM

• WHERE

• INSERT INTO

• UPDATE

• DELETE FROM

• ORDER BY … DESC/ASC

• ALIAS

Examples of
supported syntax

Suppose you are using a data view called my_data_view , based on
a collection of Customer instances:

• Customer is a class containing name and address data
members, as well as a relationship to the Vehicle class,
implemented by the cars data member.

• Vehicle is a class containing make and model data members and
a reverse relationship to the class Customer called owner.

ATK accepts SQL statements such as these:

SQL Statement Description

SELECT * FROM my_data_view This statement maintains the default
settings of my_data_view.

SELECT name, address FROM my_data_view This statement modifies the instance format
used in my_data_view to include only the
name and address of each customer.
28 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
SELECT name, address FROM my_data_view
WHERE name like ‘john*’

This statement modifies the instance format
and filter defined in my_data_view . The
resulting table contains only those
customers whose names begin with john
and also displays the customers’ names and
addresses.

ATK translates the filter defined in the SQL
statement into an ObjectStore query. This
allows you to perform efficient ObjectStore
queries through an SQL statement.

SELECT name, address FROM my_data_view
ORDER BY name DESC

This SQL statement modifies the instance
format and order defined in my_data_view.
The resulting table shows the customers’
names and addresses displayed
alphabetically in descending name order.

SELECT name, cars#make FROM my_data_view ATK maps the SQL column names to data
member names. To navigate implicitly from
one class to another, you can specify a
column name containing the concatenation
of the navigated data members separated by
the # character.

This statement lets you build a table based
on the persistent collection used to define
my_data_view. The table adopts the same
filtering and ordering settings as the data
view, but it contains a column that shows
the customer’s name and the makes of the
cars the customer owns.

In general, you can concatenate any number
of relationships. For example,
cars#owner#cars#model is a valid column
name. This column identifies the models of
the cars by navigating from car to owner and
to customer.

SQL Statement Description
Release 6.0 29

SQL Support in ATK OLE DB
SELECT name, cars#make, cars#model FROM
my_data_view WHERE cars#make=’Ford’

This SQL statement uses the navigated data
members to build a new filter in my_data_
view . As the filter is translated into a native
ObjectStore query expression, the
ObjectStore query executed by the above
SQL statement

iscars[: !strcmp(make,"Ford") :]

This query is satisfied by any customer who
owns at least one Ford car. This result is
different from what you could expect
reading the SQL expression.

SELECT name, {SELECT make, model FROM
cars} FROM my_data_view

To build a table containing explicitly
navigated relationships in the OLE DB
provider, ObjectStore Active Toolkit OLE
DB accepts nested SQL commands. (The
ATK ActiveX server does not accept this
syntax.)

This query creates a table that contains the
customer name column and the car column.
For each name , the car column contains an
OLE DB table, which contains the cars that
the customer owns. That table contains two
columns, the make and model of the cars.

SELECT Employee::salary FROM person_data_
view

This SQL statement builds a table
containing columns that are associated with
data members which are defined in classes
derived from the one associated with the
dataview. Here, the person_data_view
contains instances of the Person class, and
the SQL command displays a column filled
with the field salary defined in the Employee
class which derives from Person .

INSERT INTO person_data_view (name, surname)
VALUES ("Owen", "Foster")

This SQL statement inserts a row in the
person_data_view table, creating the
corresponding persistent object(s) in the
process. In order to run this command, a
create user-defined method (Person::oledb_
create) must have been registered in
Inspector, and the name and surname
columns must be part of the arguments
handled by the registered method.

SQL Statement Description
30 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
UPDATE person_data_view SET name="Charles"

WHERE name="Carlo"

This SQL statement updates all the rows
(and hence, the corresponding persistent
objects) whose name column contains the
value "Carlo". In order to run this command,
an update user-defined method
(Person::oledb_update) must have been
registered in Inspector, and the name
column must be part of the arguments
handled by the registered method.

DELETE FROM person_data_view WHERE

name="Carlo"

To delete all the rows (and hence, the
corresponding persistent objects) whose
"name" column contains the value "Carlo".
In order to run this command, a
Person::oledb_delete "delete" user-defined
method must have been registered from
Inspector.

SQL Statement Description
Release 6.0 31

CRUD Operations in ATK OLE DB
CRUD Operations in ATK OLE DB

You can use the Active Toolkit OLE DB interface to perform
CRUD operations (create, read, update, and delete) on objects in an
ObjectStore database. This section describes the ways you can
implement CRUD operations using ATK.

Prerequisite You should understand how to work with user-defined methods
before trying to implement CRUD operations in ATK.
Information about creating, registering, and using user-defined
methods is described in Chapter 7, User-Defined Methods, of the
ObjectStore Inspector User Guide.

Ways to Implement CRUD Operations

You can perform CRUD operations in ADO clients using either

• ADO RecordSet methods

• SQL commands

The specific create, update, and delete operations are peformed by
user-defined methods registered in Inspector, regardless of
whether you use ADO RecordSet methods or SQL. Each type of
user-defined method has a required signature — the OLE DB
interface is a standard protocol that is unaware of the underlying
user-defined methods mechanism. Note there are no such
requirements to implement a user-defined read method.

Write access is
required

If you are using ADO RecordSet methods, ADO requires that the
recordset itself be opened in a writable mode. The
adLockOptimistic mode is a suitable way of addressing this
requirement.

Use original C++ data
member names

The Inspector instance format allows you to use user-defined
names in place of C++ data member names. (The instance format
affects the display in Inspector only, not the database itself.) If you
are performing create or update operations, remember to use the
original C++ data member name. This is true regardless of
whether you are using ADO RecordSet methods or SQL
commands to perform the operation.

Note: Data member names can also be modified using the SQL
ALIAS command.
32 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Editing Objects and Relationships

Editing objects ADO clients are written against OLE DB tables; an OLE DB table
corresponds to a collection of objects in an ObjectStore database.
Consider the following classes, CAuthor and CBook:

To create, update, or delete persistent instances of CAuthor from
an ADO client, you would first retrieve a table of authors by
execute a statement like this one:

adoRS.OPEN(
"SELECT m_FirstName, m_Books#m_ISBN FROM CAuthor")

The resulting table would look like this:

Next, the client would edit the table, for example, adding a new
author:

adoRS.AddNew "m_FirstName" , "Ugo"

The AddNew command calls a C++ user-defined method
registered in Inspector, CAuthor::oledb_create, to create a new
instance of CAuthor. You can learn more about the details of this
method in Creating Objects on page 35.

CAuthor

m_FirstName
m_LastName
m_Books

m_ISBN
m_Title
m_Author

CBook

FirstName ISBN

Owen
Owen
Henry
Minollo

1-879239-02-3
1-879239-10-4
1-879239-07-1
1-879239-09-5
Release 6.0 33

CRUD Operations in ATK OLE DB
Editing relationships You can also edit relationships themselves. Note that the CAuthor
and CBook classes are related, in ObjectStore, by the m_Books and
m_Authors data members.

To edit the relationship between two objects — and not the objects
themselves, as seen earlier — you would first execute a statement
like the following in the ADO client:

adoRS.OPEN(
"SELECT m_FirstName, {SELECT m_ISBN FROM m_Books}
FROM CAuthor")

Here is the resulting table:

Notice that the SELECT statement creates chaptered rowsets, that is,
tables within tables. It is against these chaptered rowsets that you
executing statements in order to edit a relationship.

Next, you locate the chaptered rowset for a given instance, in this
case the first instance, for the author Owen.

adoRS.MoveFirst

Next, you retrieve the chaptered rowset for the author:

SET owenBooks=adoRS("m_Books")

Finally, you execute the desired CRUD statement, such as adding
a new book for that author:

owenBooks.AddNew "m_ISBN", "1-879239-06-06"

The result here is that a new book (identified by its ISBN) is added
to the relationship identified by the selected author, in this case,
Owen. As before, the AddNew command calls a C++ user-defined

FirstName Books

Owen
Henry
Minollo

book table
book table
book table

m_ISBN
1-879239-02-3
1-879239-10-4

m_ISBN

1-879239-09-5

m_ISBN

1-879239-07-1
34 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
method registered in Inspector. This method requires a different
signature because it is used to edit a relationship, not an object:
CAuthor::oledb_create_relationship

Navigating
relationships

If you are using ADO RecordSet methods to implicitly navigate
relationships in order to perform create or update operations, you
must specify the complete C++ path using # as the separation
character. For example consider a relationship between Customer,
Order, and Warehouse classes. You would represent the
navigation between the Customer and Warehouse classes as
Customer#Order#Warehouse.

Creating Objects

Method signature You need to define and register in Inspector a create user-defined
method for each class you want to persistently instantiate. The
create method must have the following signature:

static PersistentClass* PersistentClass::oledb_create(
os_database* aDB,
const os_Dictionary<char*, void*>& args)

Using ADO To create a row in an OLE DB table using ADO, use the
RecordSet::AddNew method. Open a RecordSet based on the class
for which you want to create a new instance.

The fields you specify in the AddNew method must be the same as
(or a subset of) the data members exposed through the instance
format of the data view corresponding to the RecordSet and the
arguments specified in the registered oledb_create user-defined
method.

Using SQL To create a row in an OLE DB table using SQL, use the INSERT
INTO command. Using SQL enables you to create a new object
without explicitly opening a RecordSet. For example, to create a
new instance of CCustomer, you could specify the following SQL
command:

INSERT INTO CCustomer (m_FirstName, m_LastName)
VALUES (’Hank’, ’Foster’)

Interpreting class
names

Active Toolkit is able to interpret class names as Inspector data
views — even if no data view has been formally defined for that
class in Inspector. It does this by implicitly creating a data view
based on the class, using the default instance format
representation for that class.
Release 6.0 35

CRUD Operations in ATK OLE DB
Reading Objects

Reading information about objects using a user-defined method
does not require any special code regardless of whether you use
ADO or SQL. The only requirements are that the user-defined
method is registered in Inspector and that it is part of the instance
format for the data view corresponding to the RecordSet.

Updating Objects

Method signature You need to define and register in Inspector an update user-
defined method for each class of any persistent instance you want
to modify. The update method must have the following signature:

int PersistentClass::oledb_update(
const os_Dictionary<char*, void*>& args)

Using ADO To update a row in an OLE DB table using ADO, position on the
row you want to modify and then use the RecordSet::Update
method. The RecordSet you open must be based on a data view
that contains the objects of a persistent class for which an
oledb_update user-defined method has been registered.

The fields you modify must be the same as (or a subset of) the data
members exposed through the instance format of the data view
corresponding to the RecordSet and the arguments specified in
the registered oledb_update user-defined method.

Using SQL To update a row in an OLE DB table using SQL, use the UPDATE
command. Using SQL enables you to update an object without
explicitly opening a RecordSet. For example, to update an
instance of CCustomer, you could specify the following SQL
command:

UPDATE CCustomer SET m_FirstName=’Henry’
WHERE m_FirstName=’Hank’ AND m_LastName=’Foster’

Updating relationships In order to update a relationship, you need to define and register
an update user-defined method with the following signature:

int PersistentClass::oledb_create_relationship(
const os_Dictionary<char*, void*>& args)

This method must be able to update a relationship of the
PersistentClass on which it is defined. This method always
receives an argument, oledb_relationship_name , which identifies
the relationship that is to be updated. The other arguments
36 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
received by oledb_create_relationship are the parameters
specified by the user in the ADO command that invoked the
method. These parameters must be sufficient to uniquely identify
the other object participating in the relationship.

From ADO you use chaptered rowsets to represent relationships
in OLE DB tables. You can invoke the oledb_create_relationship by
calling the RecordSet::AddNew method on a RecordSet obtained
by an OLE DB chaptered rowset.

For example, if you open a RecordSet with the SQL command

SELECT m_FirstName, {SELECT m_OrderID, m_OrderDescription
FROM m_Orders}

FROM CCustomer

the second column identifies a chaptered rowset. This means that
the fields of the RecordSet corresponding to the second column
are RecordSet objects themselves; each contains a description of
all the orders made by a customer.

If you call RecordSet::AddNew on the navigated RecordSet that
contains the order information, ATK OLE DB tries to invoke
CCustomer::oledb_create_relationship, specifying m_Orders in the
oledb_relationship_name argument and passing the other
arguments specified in the RecordSet::AddNew method.

Deleting Objects

Method signature You need to define and register in Inspector a delete user-defined
method for each class from which you want to delete a persistent
instance. The delete method must have the following signature:

static int PersistentClass::oledb_delete(
void* anObject)

Using ADO To delete a row in an OLE DB table using ADO, position on the
row you want to delete and then use the RecordSet::Delete
method. The RecordSet you open must be based on a data view
that contains the objects of a persistent class for which an
oledb_delete user-defined method has been registered.
Release 6.0 37

CRUD Operations in ATK OLE DB
Using SQL To delete a row in an OLE DB table using SQL, use the DELETE
command. Using SQL enables you to delete an object without
explicitly opening a RecordSet. For example, to delete an instance
of CCustomer, you could specify the following SQL command:

DELETE FROM CCustomer WHERE m_FirstName=’Henry’
AND m_LastName=’Foster’

Deleting relationships In order to delete a relationship, you need to define and register a
delete user-defined method with the following signature:

int PersistentClass::oledb_delete_relationship(
const os_Dictionary<char*, void*>& args)

This method must be able to delete a relationship of the
PersistentClass on which it is defined. This method always
receives an argument, oledb_relationship_name , which identifies
the relationship that is to be deleted. The other arguments
received by oledb_delete_relationship are provided by ATK —
they are the intersection of all the chaptered rowset columns and
the arguments registered in the oledb_delete_relationship method.

From ADO you use chaptered rowsets to represent relationships
in OLE DB tables. You can invoke the oledb_delete_relationship by
calling the RecordSet::Delete method on a RecordSet obtained by
an OLE DB chaptered rowset.

For example, if you open a RecordSet with the SQL command

SELECT m_FirstName, {SELECT m_OrderID, m_OrderDescription
FROM m_Orders}

FROM CCustomer

the second column identifies the chaptered rowset. This means
that the fields of the RecordSet corresponding to the second
column are RecordSet objects themselves; each contains a
description of all the orders made by a customer.

If you position on order number 23, the myOrderedBook row of
the navigated RecordSet, and then call RecordSet::Delete, ATK
OLE DB tries to invoke CCustomer::oledb_delete_relationship,
specifying m_Orders in the oledb_relationship_name argument, 23
in the m_OrderID argument, and myOrderedBook in the m_
OrderDescription argument.
38 ObjectStore Active Toolkit Reference

Chapter 3: Active Toolkit OLE DB Provider
Retrieving Error Information

Using ADO When an ADO method that accesses the ObjectStore Active
Toolkit OLE DB provider causes an error, ADO returns a standard
ADO error code or generates the error code #80041000.
ObjectStore Active Toolkit OLE DB uses the error code to identify
its internal error conditions. In either case, you can retrieve
extended information about the generated error.

For example, this code attempts to open a database in an Active
Server Page:

On Error Resume Next
Set adoConnection = Server.CreateObject("ADODB.Connection")
Call adoConnection.Open("provider=ObjectStore OLE DB Provider;data source=mydb.db","","")
if Err.Number <> 0 then

Response.Write("Error# " & Hex(Err.Number) & "
")
Response.Write("Generated by: " & Err.Source & "
")
Response.Write("Description: " & Err.Description & "
")
Exit Sub

End If

If the database is not available, the Active Server Page generates
this output:

Error# 80041000
Generated by: ObjectStore OLE DB Provider
Description: Could not open in MVCC mode the database ’mydb.db’!

You might find it useful to scan the Connection::Errors collection
to retrieve multiple descriptions for the error. (Refer to Microsoft’s
ADO documentation for further information about the
Connection::Errors collection.)

Using OLE DB If you are accessing OLE DB directly (that is, without using the
ADO layer), you can retrieve information about the errors
generated by the ObjectStore Active Toolkit OLE DB provider.
Refer to Microsoft’s OLE DB documentation for details.
Release 6.0 39

Retrieving Error Information
40 ObjectStore Active Toolkit Reference

Chapter 4
Configuring ATK

Introduction The ATK installation configures ATK to use the same ObjectStore
application schema, metaknowledge, and string formats as
Inspector. Using the ATK configuration utility, you can change
these settings and the default settings for the types of joins ATK
uses in queries. You can also check the status of the ObjectStore
Server on the application host.

In this chapter This chapter presents the following topics:

The ATK Configuration Utility 42

Setting the Application Schema Path 44

Modifying the ATK General Settings 47

Modifying the String Format Settings 49
Release 6.0 41

The ATK Configuration Utility
The ATK Configuration Utility

The ATK configuration utility is an application that you can use to
change the ATK ActiveX server and OLE DB provider default
settings. The ATK installation program establishes these defaults
based on the locations of ATK and Inspector. You can synchronize
all ATK settings with the corresponding Inspector settings, or you
can reconfigure individual ATK settings.

Running the ATK Configuration Utility

Before configuring The database schema is stored in the ATK library, and all other
settings are stored in the Windows NT registry. Before
configuring ATK, unlock the ATK libraries by closing all
applications that created ATK ActiveX server objects or access the
ATK OLE DB provider, including Active Server Pages. If the ATK
libraries are locked when you run the ATK configuration utility, it
cannot modify the application schema path. Furthermore, any
changes applied to the ATK settings are not visible to the already
running ATK instances. Even after a reboot, the application
schema path is not updated under such circumstances.

Starting the
configuration utility

To start the ATK configuration utility, choose Start | Programs |
ObjectStore ATK 6.0 | Configuration Utility.
42 ObjectStore Active Toolkit Reference

Chapter 4: Configuring ATK
The ATK configuration utility has three sheets:

• Application Schema

• General Settings

• String Formats

Procedures for configuring the information on these sheets are
described in the following sections.

Synchronizing with Inspector

ATK and Inspector share metaknowledge, data views, instance
formats, and the ObjectStore application schema. To synchronize
these ATK settings, the ATK string display format, and all other
ATK settings with the corresponding Inspector settings, click
Synchronize with Inspector from any sheet. (For more information
about how ATK works with the Inspector, refer to Chapter 1, ATK
and the Inspector, on page 1.)
Release 6.0 43

Setting the Application Schema Path
Setting the Application Schema Path

What is the
application schema?

The application schema is an ObjectStore database in the file
vomsch30.adb. In order for the application to access the
application schema, the schema must be under the control of an
ObjectStore Server. If you manually move the application schema,
you must reconfigure ATK with the schema’s new location.

For example, suppose an application running on a Windows NT
workstation that has no ObjectStore Server queries a Solaris
ObjectStore Server. To successfully query the Solaris Server
database, you must copy the application schema to the Solaris
machine and reconfigure ATK on the Windows NT machine with
the remote location of the Solaris workstation.

Default location By default, the vomsch60.adb is placed in C:\odi\ATK6.0\lib. Use
the Application Schema sheet to check or modify the ATK
application schema path, and to configure ATK to use a particular
ObjectStore Server located on your network.

Application Schema Sheet

The Application Schema sheet displays the ATK application
schema configuration:
44 ObjectStore Active Toolkit Reference

Chapter 4: Configuring ATK
• The configuration status, signified by a green, yellow, or red
traffic signal icon

• The location of the application schema database

• Whether the application schema database is accessible to an
ObjectStore Server

Traffic signal icon The color of the traffic signal summarizes the application schema
configuration:

• Green — ATK is properly configured to use an application
schema database on a workstation where an ObjectStore Server
is running.

• Yellow — Although ATK is configured to use an application
schema database on a workstation where an ObjectStore Server
is running, the application schema database has not been
copied to the specified directory.

• Red — ATK is configured to use an application schema
database on a host where no ObjectStore Server is running.

An ATK application that runs when the traffic signal is yellow or
red encounters an error when it attempts to open a database.

Changing the
application schema
database path

To establish a new location:

1 Click Change App Schema Path.

2 Enter another directory location. You can specify a directory on
the local machine, an ObjectStore rawfs, or a network file server
directory.

3 Copy vomsch60.adb to the directory location you specified.

ObjectStore Server

The Application Schema sheet also indicates whether an
ObjectStore Server is running on the host designated by the
application schema path:

•

An ObjectStore Server is running on the host.
Release 6.0 45

Setting the Application Schema Path
•

No ObjectStore Server is running on the host. The traffic signal
is red.

•

An ObjectStore Server is running on the host. Because ATK is
properly configured and ready to be run, the traffic signal is
green.

•

The ATK application schema database is not accessible,
because an ObjectStore Server is not running on the host
designated by the application schema path, or because the
database file vomsch60.adb is not present in that directory. The
traffic signal is yellow if the Server is running, or red if no
Server is running.

Synchronizing with Inspector

To use the application schema database path that Inspector uses,
click Synchronize with Inspector. Note that this synchronizes all
ATK configuration settings in all tabs with the equivalent
Inspector settings.
46 ObjectStore Active Toolkit Reference

Chapter 4: Configuring ATK
Modifying the ATK General Settings

Use the General Settings sheet to specify the location of the ATK
metaknowledge, and to choose the default type of join ATK uses
when displaying relationships in a single table.

Metaknowledge

Because ATK and Inspector use the same metaknowledge, the
ATK installation checks the location of the Inspector knowledge
and uses that setting for ATK. (For details of how ATK and the
Inspector share metaknowledge, refer to Chapter 1, ATK and the
Inspector, on page 1.)

By default, the ATK installation designates the file system as the
metaknowledge location. To manually modify this setting, specify
the location from which ATK should load the metaknowledge.

Default X-to-Many Joins

By default, the ATK ActiveX server displays one-to-many and
many-to-many relationships in a table using Inspector-like joins,
and the ATK OLE DB provider returns one-to-many and many-to-
many relationships using SQL-like joins. You can choose the join
format you prefer. For more information about these types of
Release 6.0 47

Modifying the ATK General Settings
joins, refer to Chapter 3, Active Toolkit OLE DB Provider, on
page 15.

Synchronizing with Inspector

If you have modified the location of the Inspector metaknowledge
and want to update all ATK settings to match the corresponding
Inspector setting, click Synchronize with Inspector.
48 ObjectStore Active Toolkit Reference

Chapter 4: Configuring ATK
Modifying the String Format Settings

Use the String Formats sheet to specify the default string display
format for the current database. For additional information about
string formats and string interpretation, refer to Viewing Blob in
the ObjectStore Inspector User Guide.

Interpreting Strings

By default, ATK interprets strings as plain ASCII text. You can
interpret strings using any format that the Inspector supports.
This is especially helpful if the database contains strings that are
encoded using SJIS, EUC, or Unicode.

Japanese Expressions

If the application retrieves objects encoded in Japanese characters,
you can ensure that ATK uses a Japanese-enabled parser that
supports DBCS and Unicode. This parser is included in the ATK
kernel.

Show Strings

By default, ATK displays strings up to the first null character it
encounters. Instead, ATK can skip displaying invalid characters
or display an alternate character for each invalid one.
Release 6.0 49

Modifying the String Format Settings
BLOBs

By default, ATK displays ASCII strings that are longer than 768
characters as binary large objects (BLOBs). You can increase or
decrease this limit.

Show Single Characters

You can display single characters as either a character or an ASCII
value. For example, the letter D can be shown as D or 68. This also
affects the type of the column in which the value is displayed; it is
either char[n] or integer.
50 ObjectStore Active Toolkit Reference

Chapter 5
ATK Object Model

Introduction This chapter describes the ActiveX object model exposed by ATK,
whose members provide a programmatic interface to ActiveX
objects in an ObjectStore database.

Overview The ATK ActiveX object model is divided into five categories:

• Top-level objects

ATKKernel and ATKDatabase are the entry points into the ATK
object model. These provide global utility functions and access
to the database.

• Persistent object handling classes

ATKReference, ATKReferences, ATKObjectManager, and
ATKRoot let you navigate objects in your database, retrieve
information about the kind of object you are accessing, retrieve
the tabular representation for this object, and handle
multimedia objects (ObjectStore Object Managers).

• Tabular view classes

ATKDataView, ATKTable, and ATKInstanceFormat let you access
ObjectStore collections as tables.

• Database schema classes

ATKClass and ATKClassSlot provide high-level information
about the database schema.

• User-defined method handling classes

ATKMethod, ATKMethods, and ATKMethodArguments help you
work with user-defined methods registered in Inspector.
Release 6.0 51

In this chapter This chapter documents the following ATK classes:

ATKClass 53

ATKClasses 56

ATKClassSlot 57

ATKClassSlots 60

ATKDatabase 61

ATKDataView 66

ATKDataViews 75

ATKInstanceFormat 76

ATKKernel 77

ATKMethod 79

ATKMethods 82

ATKMethodArguments 83

ATKObjectManager 85

ATKReference 87

ATKReferences 95

ATKRoot 98

ATKRoots 100

ATKStrings 101

ATKStringsList 102

ATKTable 103
52 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKClass

ATKClass provides a high-level interface to the ATK
metaknowledge. ATKClass retrieves information about the
declaration of a class in the database schema, and can retrieve a
class extent if the user defines that behavior in Inspector.

Methods ATKClass contains these methods:

ATKClass::GetClassExtent

ATKClass::GetClassExtent returns an ATKReferences object that
contains the extent of the current class, as defined in Inspector.

ATKReferences GetClassExtent

Return value ATKReferences

Comments GetClassExtent checks the metaknowledge to determine which
roots and collections are defined as part of the extent of the class.

Method Description

GetClassExtent Returns an ATKReferences object that
contains the extent of the current class.

GetClassName Returns the name of the class.
GetFatherClasses Returns an ATKClasses object containing

classes that are first-level ancestors of the
current class.

GetMethods Returns all the available user-defined
methods registered for the current class.

GetSonClasses Returns an ATKClasses object containing
classes that are first-level derivations of
the current class.

GetSlots Returns an ATKClassSlots object that
represents the attributes declared for the
current class or its ancestors.

IsTopLevelClass Checks if the class has ancestors.
Release 6.0 53

ATKClass::GetClassName

ATKClass::GetClassName returns the name of the class as it is
declared in the database schema.

BSTR GetClassName

Return value A string containing the name of the represented class.

ATKClass::GetFatherClasses

ATKClass::GetFatherClasses returns an ATKClasses object. This
collection contains first-level ancestor classes of the current class
(that is, the classes from which this class directly inherits).

ATKClasses GetFatherClasses

Return value ATKClasses

ATKClass::GetMethods

ATKClass::GetMethods () returns all the available user-defined
methods registered for the current class.

Return value ATKMethods

ATKClass::GetSonClasses

ATKClass::GetSonClasses returns an ATKClasses object. The
classes in the ATKClasses collection are first-level derivations of
the current class; that is, they inherit directly from the current
class.

ATKClasses GetSonClasses

Return value ATKClasses

ATKClass::GetSlots

ATKClass::GetSlots returns an ATKClassSlots object, which is a
collection of data members declared for the current class or its
ancestors.

ATKClassSlots GetSlots

Return value ATKClassSlots
54 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKClass::IsTopLevelClass

ATKClass::IsTopLevelClass checks if the class has ancestors.

Boo IsTopLevelClass

Return values

Return Value Description

TRUE The class has no ancestors and is therefore a
top-level class.

FALSE The class has ancestors and is therefore not a
top-level class.
Release 6.0 55

ATKClasses

ATKClasses is a collection of ATKClass objects.

Property ATKClasses contains this property:

Methods ATKClasses contains these methods:

ATKClasses::Count

ATKClasses::Count returns the number of ATKClass objects in the
ATKClasses collection.

long Count

Return value A long representing the number of objects.

ATKClasses::Item

ATKClasses::Item retrieves a specific ATKClass object from the
collection.

ATKClass Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKClass

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Identifies an object in the collection.

A Long value specifies the position of the
required object in the collection.

A BSTR value specifies the name of the
object.
56 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKClassSlot

ATKClassSlot represents a data member of a class. Use
ATKClassSlot to retrieve information about the data members of
the classes declared in the database schema.

Methods ATKClassSlot contains these methods:

ATKClassSlot::GetAccess

ATKClassSlot::GetAccess returns the attribute access type for this
data member, as it is declared in the database schema.

BSTR GetAccess

Return values GetAccess can return any of the following values:

• private

• protected

• public

ATKClassSlot::GetClass

ATKClassSlot::GetClass returns the name of the class to which this
data member belongs.

BSTR GetClass

Return value A string containing the name of the class.

Method Description

GetAccess Returns the attribute access type.
GetClass Returns the name of the class in which

the slot is declared.
GetName Returns the attribute name.
GetRelationCardinality Returns the cardinality of the

relationship.
GetRelatedClass Returns the ATKClass object of the

related class.
GetType Returns the attribute type.
IsRelation Checks if an attribute is a relationship

between two classes.
Release 6.0 57

ATKClassSlot::GetName

ATKClassSlot::GetName returns the name of the data member as it
is declared in the database schema.

BSTR GetName

Return value A string containing the name of the data member.

ATKClassSlot::GetRelationCardinality

ATKClassSlot::GetRelationCardinality returns the cardinality of
the relationship.

short GetRelationCardinality

Return values GetRelationalCardinality can return any of the following values:

Comments If this data member is a relationship between two classes, you can
use GetRelationCardinality to retrieve its cardinality. To determine
if the attribute is a relationship, GetRelationCardinality checks if
the value of IsRelation is TRUE.

ATKClassSlot::GetRelatedClass

ATKClassSlot::GetRelatedClass returns the ATKClass object
representing the class reached by navigating the relationship.

ATKClass GetRelatedClass

Return value ATKClass

Comments If this data member is a relationship between two classes, you can
use GetRelatedClass to retrieve the class that is reached by
navigating the relationship. GetRelatedClass first checks if the
value of IsRelation is TRUE to determine if the attribute is a
relationship.

Return Value Description

0 The data member is not a relationship.
1 The cardinality of the relationship is 1.
2 The cardinality of the relationship is many.
58 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKClassSlot::GetType

ATKClassSlot::GetType returns the data member type, as it is
declared in the database schema.

BSTR GetType

Return value A string containing the name of the data member type.

ATKClassSlot::IsRelation

ATKClassSlot::IsRelation checks the metaknowledge to determine
whether the attribute is classified as a relationship between two
classes.

Bool IsRelation

Return values IsRelational can return the following values:

Return Value Description

TRUE The data member is a relationship between two
classes.

FALSE The data member is not a relationship between
two classes.
Release 6.0 59

ATKClassSlots

ATKClassSlots is a collection of ATKClassSlot objects.

Property ATKClassSlots contains this property:

Methods ATKClassSlots contains these method:

ATKClassSlots::Count

ATKClassSlots::Count returns the number of ATKClassSlot objects
in the collection.

long Count

Return value A long representing the number of objects.

ATKClassSlots::Item

ATKClassSlots::Item retrieves a specific ATKClassSlot object from
the collection.

ATKClassSlot Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKClassSlot

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Identifies an object in the collection.

A Long value specifies the position of the
required object in the collection.

A BSTR value specifies the name of the
object.
60 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDatabase

ATKDatabase represents an ObjectStore database, and provides
access to all the operations you can perform on an ObjectStore
database through ATK. To create an ATKDatabase object, you
need an ATKKernel object. Using ATKDatabase, you can retrieve
all available data views and roots and all the classes declared in
the database schema, and set or retrieve default settings about
ATK ActiveX behaviors.

Methods ATKDatabase contains these methods:

Method Description

CreateObject Invokes a registered user-defined
method to create an instance of the
specified class.

CreateObjectInSegment Invokes a registered user-defined
method to create an instance of the
specified class.

GetAllClasses Returns an ATKClasses object that lists
the classes declared in the database
schema.

GetClass Returns the ATKClass represented by a
specific class name.

GetInstanceFormat Returns the instance format associated
with a specific instance format name.

GetDataView Returns the data view saved in
Inspector using the specified name.

GetDataViews Returns a list of all the data views
defined in the database
metaknowledge.

GetRoot Returns the ATKRoot corresponding to
a specific root name.

GetRoots Returns a list of all the roots stored in
the database.

SetJoinType Specifies whether tables are returned
in SQL-like or Inspector-like tabular
format.
Release 6.0 61

ATKDatabase::CreateObject

ATKDatabase::CreateObject invokes a registered user-defined
method to create an instance of the specified class. ClassName
contains the name of the class on which the create method
MethodName has been defined and registered. Arguments is the
map you use to specify the arguments needed to run MethodName.

ATKDatabase::CreateObject(
BSTR ClassName,
BSTR MethodName,
ATKMethodArguments* Arguments)

Return value ATKReference

ATKDatabase::CreateObjectInSegment

ATKDatabase::CreateObjectInSegment invokes a registered user-
defined method to create an instance of the specified class.
ClassName contains the name of the class on which the create
method MethodName has been defined and registered. Arguments is
the map you use to specify the arguments needed to run
MethodName. SegmentNumber specifies the number of the
ObjectStore database segment in which the object should be
persistently allocated.

ATKDatabase::CreateObjectInSegment(
BSTR ClassName,
BSTR MethodName,
long SegmentName
ATKMethodArguments* Arguments)

Return value ATKReference

ATKDatabase::GetAllClasses

ATKDatabase::GetAllClasses returns an ATKClasses object that
lists the classes declared in the database schema. These are the
same classes that Inspector displays in the schema representation.

ATKClasses GetAllClasses

Return value ATKClasses

Comments GetAllClasses retrieves the list of declared classes from the
metaknowledge, and the other information about classes from the
database schema. You can use the returned ATKClasses object to
iterate on all available classes.
62 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDatabase::GetClass

ATKDatabase::GetClass returns the ATKClass object with the
name aClassName.

ATKClass GetClass(
BSTR aClassName)

Parameter GetClass accepts this parameter:

Return value ATKClass

Comments The parameter aClassName is case sensitive.

ATKDatabase::GetDataView

ATKDatabase::GetDataView returns an ATKDataView object that
contains the data view saved as dataViewExpression in Inspector.

ATKDataView GetDataView(
BSTR dataViewExpression)

Parameter GetDataView accepts this parameter:

Return value ATKDataView

ATKDatabase::GetDataViews

ATKDatabase::GetDataViews returns an ATKDataViews
object,which lists all the data views defined in the
metaknowledge.

ATKDataViews GetDataViews

Return value ATKDataViews

Comments You can use the returned ATKDataViews object to iterate on all the
available data views.

Parameter Description

aClassName The name of the class you want to retrieve.

Parameter Description

dataViewExpression Specifies the data view, as defined in the
ATK metaknowledge. dataViewExpression
can also contain an SQL command
(following the syntax described in Chapter
3, Active Toolkit OLE DB Provider) that
allows you to customize a data view.
Release 6.0 63

ATKDatabase::GetInstanceFormat

ATKDatabase::GetInstanceFormat returns the instance format
associated in the metaknowledge with a specific instance format
name.

ATKInstanceFormat GetInstanceFormat(
BSTR instanceFormat)

Parameter GetInstanceFormat accepts this parameter:

Return value ATKInstanceFormat

ATKDatabase::GetRoot

ATKDatabase::GetRoot returns the ATKRoot corresponding to
aRootname.

ATKRoot GetRoot(
BSTR aRootName)

Parameter GetRoot accepts this parameter:

Return value ATKRoot

ATKDatabase::GetRoots

ATKDatabase::GetRoots returns an ATKRoots object that contains
a collection of the roots stored in the database.

ATKRoot GetRoots

Return value ATKRoots

Comments Use GetRoots to iterate on all the roots defined in the ObjectStore
database.

Parameter Description

instanceFormat The name of the instance format that you
want to access.

Parameter Description

aRootname The name of the root as stored in the
ObjectStore database.
64 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDatabase::SetJoinType

ATKDatabase::SetJoinType instructs ATK to use an SQL-like or
Inspector-like tabular representation when displaying tables that
allow navigation of one-to-many relationships.

void SetJoinType(
enumerator joinType)

Parameter SetJoinType accepts this parameter:

Comments Use this field to override the default behavior of the ATK ActiveX
server. For example, suppose you have two classes named
Customer and Vehicle; a Customer might have several Vehicles.

If you specify InspectorLike, ATK expands one-to-many
relationships in a tree-like way:

If you specify SQLLike, ATK expands one-to-many relationships
to show all the possible values that meet the conditions of the
query (as an SQL join would). The output takes this form:

Parameter Description

joinType InspectorLike to use an Inspector-like join.

SQLLike to use an SQL-like join.

Name Make Model

John, Smith Ford Escort

Cadillac DeVille

Bob, Dylan Ford Ranger

Mazda 626

Dodge Spirit

Name Make Model

John, Smith Ford Escort

Johh, Smith Cadillac DeVille

Bob, Dylan Ford Ranger

Bob, Dylan Mazda 626

Bob, Dylan Dodge Spirit
Release 6.0 65

ATKDataView

ATKDataView is the ATK ActiveX representation of a data view
that has been defined in Inspector. Use ATKDataView to set the
parameter values required by the filter, which is defined in the
data view, and to execute the ObjectStore query on the underlying
collection object.

ATKDataView works with three types of queries:

• Nonfiltered, with no constraint specified on the collection

• Filtered with no parameters (a simple ObjectStore query)

• Filtered with constraints that must be specified at execution
time

You can use ATKDataView to set the query parameters, if any, and
then to jump to the ATKReferences or ATKTable query result.

Methods ATKDataView contains these methods:

Method Description

GetAllParameters Returns an ATKStrings object of
strings that list the parameters
in a query.

GetATKClass Returns the class on which the
data view is defined.

GetATKTable Returns an ATKTable object
that contains objects satisfying
a query.

GetDataInstanceFormat Returns the ATKInstanceFormat
object associated with this data
view.

GetDataInstanceFormatName Returns an ATKInstanceFormat
object associated with the data
view.

GetName Returns the name of the data
view as defined in Inspector.

GetParameterPrompt Returns the prompt to return to
the client when specified
values are retrieved.

GetParameterType Returns the type of the
parameter.
66 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDataView::GetAllParameters

ATKDataView::GetAllParameters returns an ATKStrings object that
contains the names of all parameters used in the query, as defined
in the data view.

ATKStrings GetAllParameters

Return value ATKStrings

ATKDataView::GetATKClass

ATKDataView::GetATKClass returns the class on which the data
view is defined.

ATKClass* ATKDataView::GetATKClass()

GetParameterValues Retrieves specific values and
returns them as strings.

IsFiltered Checks if a query contains
constraints.

IsFilterParameterized Checks if a query contains
constraints that must be
fulfilled before the query is
performed.

IsParameterList Checks if a parameter value
must be chosen from a list of
values predefined by the query
author.

IsParameterMultipleSelection Checks if a parameter value
must be chosen from a list of
values that the query author
has defined.

IsParameterSorted Checks if the list of supplied
values must be sorted.

PerformFiltering Returns an ATKReferences
object that lists the object
satisfying the query constraints
and parameters.

SetParameter Sets the value of a parameter.

Method Description
Release 6.0 67

ATKDataView::GetATKTable

ATKDataView::GetATKTable returns an ATKTable object
containing a tabular representation of the data view.

ATKTable GetATKTable[(
BSTR instanceFormatName)]

Parameter GetATKTable accepts this parameter:

Return value ATKTable

Comments If instanceFormatName is an empty string ("") or is not supplied,
ATK uses the default instance format for the class to which the
elements of the referenced collection belong.

If the data view requires any filtering, GetATKTable executes the
corresponding ObjectStore query. This is the most efficient means
of accessing the tabular format of a data view through an
ATKDataView object, and of filling in a table or list with
representations of objects that satisfy a query.

ATKDataView::GetDataInstanceFormat

ATKDataView::GetDataInstanceFormat returns an
ATKInstanceFormat object that contains the instance format
associated with the data view in Inspector.

ATKInstanceFormat GetDataInstanceFormat

Return value ATKInstanceFormat

ATKDataView::GetDataInstanceFormatName

ATKDataView::GetDataInstanceFormatName returns a string that
contains the name of the instance format associated with the data
view in Inspector.

BSTR GetDataInstanceFormatName

Return value A string containing the name of the instance format.

Parameter Description

instanceFormatName Optional. The name of the instance format,
as defined in the metaknowledge, that
ATK uses to format the table referenced by
ATKDataView.
68 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDataView::GetName

ATKDataView::GetName returns the name of the data view as
defined in Inspector.

BSTR GetName

Return value A string containing the name of the data view.

ATKDataView::GetParameterPrompt

ATKDataView::GetParameterPrompt returns the prompt that
should be sent to the client when one or more of the parameter
values is retrieved. The data view author defines the parameter
values in Inspector.

BSTR GetParameterPrompt(
BSTR parameterName)

Parameter GetParameterPrompt accepts this parameter:

Return value A string containing the prompt.

ATKDataView::GetParameterType

ATKDataView::GetParameterType returns the type of the
parameter (such as string or number) of the attribute associated
with the parameter.

BSTR GetParameterType(
BSTR parameterName)

Parameter GetParameterType accepts this parameter:

Return values GetParameterType can return the following values:

number

string

Parameter Description

parameterName The name of the parameter for which you
want to retrieve a prompt.

Parameter Description

parameterName The name of the parameter whose type
you want to retrieve.
Release 6.0 69

ATKDataView::GetParameterValues

ATKDataView::GetParameterValues returns an ATKStrings object
that contains a collection of all acceptable values for the specified
parameter.

ATKStrings GetParameterValues(
BSTR parameterName)

Parameter ATKDataView::GetParameterValues accepts this parameter:

Return value ATKStrings

Comments Call this function and specify a parameter for which
IsParameterList(parameterName) returns TRUE. If
ATKDataView::IsParameterList is TRUE, GetParameterValues
returns an ATKStrings object that contains all possible values of
the parameter. GetParameterValues queries the ObjectStore
database to retrieve all unique values of the data member
associated with the specified parameter.

ATKDataView::IsFiltered

ATKDataView::IsFiltered checks if the ATKDataView object contains
filter definitions on the ObjectStore collection it represents.

Bool IsFiltered

Return values IsFiltered can return the following values:

Parameter Description

parameterName The name of the parameter whose possible
values you want to retrieve.

Return Value Description

TRUE The data view contains constraints; that is, at
least one filter is defined on the data view.

FALSE The data view does not contain constraints; that
is, there is no filter defined on the data view.
70 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDataView::IsFilterParameterized

ATKDataView::IsFilterParameterized checks if the data view that
ATKDataView represents contains a filter that must be fully
specified at execution time before the query is performed.

Bool IsFilterParameterized

Return values IsFilterParameterized can return the following values:

ATKDataView::IsParameterList

ATKDataView::IsParameterList checks if the parameter can be
assigned only to a value that the data view author has specified in
Inspector.

Bool IsParameterList(
BSTR parameterName)

Parameter IsParameterList accepts this parameter:

Return values IsParameterList can return the following values:

Comments IsParameterList retrieves this information from the data view
definition in the ATK metaknowledge.

Return Value Description

TRUE The data view contains at least one constraint
that must be fully specified before the query is
performed.

FALSE The data view does not contain any constraints
that must be fully specified before the query is
performed.

Parameter Description

parameterName The name of the parameter you want to
check.

Return Value Description

TRUE The parameterName can be assigned only to a
value that the data view author has specified in
Inspector.

FALSE The parameterName can be assigned to any
value.
Release 6.0 71

ATKDataView::IsParameterMultipleSelection

ATKDataView::IsParameterMultipleSelection checks if the client can
perform a multiple selection on the list of possible parameter
values.

Bool IsParameterMultipleSelection(
BSTR parameterName)

Parameter IsParameterMultipleSelection accepts this parameter:

Return values IsParameterMultipleSelection can return the following values:

Comments When defining the query in Inspector, the data view author
determines if a multiple selection or single selection is possible.
IsParameterMultipleSelection retrieves this information from the
data view definition in the metaknowledge.

ATKDataView::IsParameterSorted

ATKDataView::IsParameterSorted checks if the list of acceptable
parameter values must be sorted.

Bool IsParameterSorted(
BSTR parameterName)

Parameter IsParameterSorted accepts this parameter:

Return values IsParameterSorted can return the following values:

Parameter Description

parameterName The name of the parameter that you want
to check.

Return Value Description

TRUE The client can specify multiple choices for the
specified parameterName.

FALSE The client can perform a single selection on the
list of possible parameterName values.

Parameter Description

parameterName The name of the parameter that you want
to check.

Return Value Description

TRUE The list of acceptable parameterName values
must be sorted.
72 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
Comments When defining the data view in Inspector, the author determines
if a sort will be required. IsParameterSorted retrieves this
information from the data view definition in the metaknowledge.

ATKDataView::PerformFiltering

ATKDataView::PerformFiltering returns an ATKReferences object
that contains a list of objects that satisfy the query and any
constraints and/or parameters.

ATKReferences PerformFiltering

Return value ATKReferences

Comments If there is no filter defined for the data view, PerformFiltering
returns the entire ObjectStore collection from the data view.

This is the simplest means of traversing a collection.

To retrieve the object representations rather than the objects
themselves (for example, when filling a table), using
ATKDataView::GetATKTable to return an ATKTable object is more
efficient.

ATKDataView::SetParameter

ATKDataView::SetParameter sets the parameterName to the
specified value before executing the query.

void SetParameter(
BSTR parameterName, VARIANT value)

Parameters SetParameter accepts these parameters:

FALSE The list of acceptable parameterName values
does not require sorting.

Return Value Description

Parameter Description

parameterName The name of the parameter whose value
you want to set.

value The value to which the parameter must be
set.
Release 6.0 73

Comments SetParameter accepts different VARIANT types and translates each
to the required parameter type. If parameterName accepts multiple
selection, SetParameter accepts an array of values and binds the
list of values to the parameterName.
74 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKDataViews

ATKDataViews is a collection of ATKDataView objects.

Property ATKDataViews contains this property:

Methods ATKDataViews contains these methods:

ATKDataViews::Count

ATKDataViews::Count returns the number of ATKDataView objects
in the collection.

long Count

Return value A long representing the number of objects.

ATKDataViews::Item

ATKDataViews::Item retrieves a specific ATKDataView object from
the collection.

ATKDataView Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKDataView

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Identifies an object in the collection.

A Long value specifies the position of the
required object in the collection.

A BSTR value specifies the name of the
object.
Release 6.0 75

ATKInstanceFormat

ATKInstanceFormat stores information about a given instance
format, as it was created in Inspector. Use ATKInstanceFormat to
access the definition of an instance format that was defined in
Inspector and is contained in the ATK metaknowledge. You can
also retrieve the name of the instance format and the names of the
column headers defined in the instance format.

Methods ATKInstanceFormat contains these methods:

ATKInstanceFormat::GetFormatName

ATKInstanceFormat::GetFormatName returns the name of the
instance format, as it is stored in the ATK metaknowledge.

BSTR GetFormatName

Return value A string containing the name of the instance format.

ATKInstanceFormat::GetHeaders

ATKInstanceFormat::GetHeaders returns an ATKStrings object that
contains the headers of the columns in the instance format.

ATKStrings GetHeaders

Return value ATKStrings

Method Description

GetFormatName Returns the name of the instance format,
as it was defined in Inspector.

GetHeaders Returns a list of strings that represent the
names of the column headers in a given
instance format.
76 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKKernel

ATKKernel is the main entry point to the ATK ActiveX object
model. Use ATKKernel to open an ObjectStore database, to refresh
the ATK metaknowledge (that is, to make ATK aware of any
change you have made through Inspector), and to obtain an
ATKReference object from a string representation of a persistent
object. When you create an ATKKernel.Document ActiveX object,
you actually obtain an ATKKernel object.

Methods ATKKernel contains these methods:

ATKKernel::OpenDatabase

ATKKernel::OpenDatabase opens the database specified by
databaseName and returns an ATKDatabase object.

ATKDatabase OpenDatabase(
BSTR databaseName [, BSTR userName] [, BSTR passWord]
[, BSTR import])

Parameter OpenDatabase accepts these parameters:

Return value ATKDatabase

Method Description

OpenDatabase Opens a database.
ReloadMetaKnowledge Causes the ActiveX server to refresh the

metaknowledge for all cached
databases.

ResolveReference Returns an ATKReference object for a
specific reference.

Parameter Description

databaseName The full pathname of the database.
userName Optional. The user name that ATK uses to

access the ObjectStore client and connect
to the ObjectStore database.

passWord Optional. The password that ATK uses to
access the ObjectStore client and connect
to the ObjectStore database.

import Optional. The name of the database from
which ATK should import the
metaknowledge.
Release 6.0 77

Comments The databaseName can contain any ObjectStore DB path:

• A file database, such as c:\odi\mydb.db

• A remote database, such as myHost:/dbs/my.db

• An ObjectStore rawfs database, such as myHost::/dbs/my.db

ATKKernel::ReloadMetaKnowledge

ATKKernel::ReloadMetaKnowledge forces the ActiveX server to
refresh the metaknowledge stored for all currently cached
databases.

void ReloadMetaKnowledge

ATKKernel::ResolveReference

ATKKernel::ResolveReference returns an ATKReference object
specified by reference.

ATKReference ResolveReference(
BSTR reference)

Parameter ResolveReference accepts this parameter:

Return value ATKReference

Comments An os_reference and its dumped representation identify a
persistent object inside a database. Refer to the ObjectStore
documentation for further details.

The reference must be in the same format as the object returned by
os_reference::dump().

ResolveReference requires that the reference meet these
conditions:

• The format is correct.

• ATK can reach and open the database.

• The coordinates provided correspond to a persistent object.

Parameter Description

reference An ObjectStore dumped os_reference.
78 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKMethod

ATKMethod is used to retrieve information about a user-defined
method.

Methods ATKMethod exposes these methods:

ATKMethod::GetArguments()

ATKMethod::GetArguments returns a map of argument-
name/argument-value that you can populate and pass to the
function used to invoke the method. The map is returned with the
proper keys filled, but with no associated values.

ATKMethodArguments GetArguments()

Return value ATKMethodArguments

Method Description

GetArguments Returns a map of argument-
name/argument-value that you can
populate.

GetCategory() Returns the category to which the user-
defined method belongs.

GetClass() Returns the name of the persistent class
that defines the method.

GetName() Returns the unmangled name of the
registered user-defined method.

GetReturnType() Returns the method type.
IsStatic() Returns TRUE or FALSE based on

whether or not the user-defined
method is defined as static.

IsVirtual() Returns TRUE or FALSE based on
whether or not the user-defined
method is defined as virtual.
Release 6.0 79

ATKMethod::GetCategory()

ATKMethod::GetCategory returns the category name of the
method.

BSTR GetCategory()

Return values GetCategory can return the following values:

• Create

- create_in_database

- create_in_segment

• Read

• Update

• Delete

ATKMethod::GetClass()

ATKMethod::GetClass returns the name of the persistent class
which defines the method.

BSTR GetClass()

Return value GetCategory returns a string representing the class name.

ATKMethod::GetName()

ATKMethod::GetName returns the unmangled name of the
registered user-defined method.

BSTR GetName()

Return value GetCategory returns a string representing the user-defined
method.

ATKMethod::GetReturnType()

ATKMethod::GetReturnType returns the method return type.

BSTR GetReturnType()

Return value GetReturnType can return the following values:

• PersistentClassName*

• os_boolean

• os_Collection<PersistentClassName*>

• C++ native types (int, unsigned long, and so on)
80 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKMethod::IsStatic()

ATKMethod::IsStatic returns TRUE or FALSE based on whether or
not the user-defined method is defined as static.

Bool IsStatic

Return value IsStatic can return the following values:

ATKMethod::IsVirtual()

ATKMethods::IsVirtual returns TRUE or FALSE based on whether
or not the user-defined method is defined as virtual.

Bool IsVirtual

Return value IsVirtual can return the following values:

Return Value Description

TRUE The user-defined method is defined as static.
FALSE The user-defined method is not defined as

static.

Return Value Description

TRUE The user-defined method is defined as virtual.
FALSE The user-defined method is not defined as

virtual.
Release 6.0 81

ATKMethods

ATKMethods is a collection of ATKMethod objects.

Property ATKMethods contains this property:

Methods ATKMethods contains these methods:

ATKMethods::Count

ATKMethods::Count returns the number of ATKMethod objects in
the collection.

long Count

Return value A long representing the number of objects.

ATKMethods::Item

ATKMethods::Item retrieves a specific ATKMethod object from the
collection.

ATKMethod Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKMethod

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Identifies an object in the collection.

A Long value specifies the position of the
required object in the collection.

A BSTR value specifies the name of the
object.
82 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKMethodArguments

ATKMethodArguments is a type of map used to pass arguments to
user-defined methods. This class must be transiently created,
which you can do

• Using Visual Basic (Dim params as New ATKMethodArguments,
for example)

• Using the object returned by ATKMethod::GetArguments().

Methods ATKMethodArguments contains these methods:

ATKMethodArguments::Add()

ATKMethodArguments::Add adds a key/value pair to the map.

void Add(BSTR key, VARIANT value)

ATKMethodArguments::Count()

ATKMethodArguments::Count returns the number of key/value
pairs contained in the map.

long Count()

Return value A long representing the number of objects.

ATKMethodArguments::Item()

ATKMethodArguments::Item returns the value associated with the
specified key.

VARIANT Item(BSTR key)

Return value A VARIANTrepresenting the key value.

Method Description

Add Adds a key/value pair to the map.
Count Returns the number of key/value pairs

contained in the map.
Item Returns the value associated with the

specified key.
Remove Removes the key/value pair associated

with the specified key.
Release 6.0 83

ATKMethodArguments::Remove()

ATKMethodArguments::Remove removes the key/value pair
associated with the specified key.

Bool Remove (BSTR key)

Return values Remove can return the following values:

Return Value Description

TRUE The operation was completed successfully.
FALSE The operation was not completed successfully.
84 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKObjectManager

ATKObjectManager is the ATK-ActiveX interface built on top of
ObjectStore multimedia Object Managers. Use ATKObjectManager
to retrieve information specific to an Object Manager and to access
its data directly.

Call QueryInterface to obtain an IStream, and handle it as a
standard COM stream.

Methods ATKObjectManager contains these methods:

ATKObjectManager::GetDataArray

ATKObjectManager::GetDataArray returns a safe array that
contains the data associated with the Object Manager.

VARIANT GetDataArray

Return value VT_ARRAY|VT_UI1

GetDataArray returns an array of bytes that contains a copy of the
multimedia Object Manager data.

ATKObjectManager::GetDataSize

ATKObjectManager::GetDataSize returns the length of the
multimedia data field associated with the Object Manager.

long GetDataSize

Return value The numeric length of the multimedia field.

Method Description

GetDataArray Returns a safe array containing the data
associated with the Object Manager.

GetDataSize Returns the length of the data field
associated with the Object Manager.

GetOMMimeType Returns the MIME type defined for this
Object Manager.

GetOMTypeName Returns the name of the ObjectManager
that this object represents.

GetStream Returns the IStream containing the data
associated with the Object Manager.
Release 6.0 85

ATKObjectManager::GetOMMimeType

ATKObjectManager::GetOMMimeType returns the MIME type
defined for this Object Manager.

BSTR GetOMMimeType

Return value A string containing the MIME type.

ATKObjectManager::GetOMTypeName

ATKObjectManager::GetOMTypeName returns the name of the
multimedia ObjectManager type that this object represents.

BSTR GetOMTypeName

Return values GetOMMimeType can return the following values:

• Text

• HTML

• Java

• Audio

• Video

• Image - <Type> <width>x<height>; for example: "Image - GIF
120x200"

ATKObjectManager::GetStream

ATKObjectManager::GetStream returns the IStream containing the
data associated with the Object Manager.

IStream GetStream

Return value A stream interface.

Comments Use GetStream to access the multimedia Object Manager data
through an IStream interface.
86 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKReference

An ATKReference object is the ATK ActiveX representation of a
generic persistent ObjectStore object. Although ATKReference can
refer to any persistent object, it determines if a specific object is an
ObjectStore collection or an Object Manager. Using ATKReference,
you can also retrieve an object’s tabular representation and
persistent data member values, including multimedia content.

Methods ATKReference contains these methods:

Method Description

DeleteObject Invokes a delete user-defined
method on a persistent object.

GetATKDatabase Returns an ATKDatabase object
for the referenced object.

GetATKObjectManager Returns an ATKObjectManager
for the referenced object.

GetCardinality Returns the cardinality of a
collection; returns 1 otherwise.

GetCollectionItems Traverses a collection and
returns an ATKReferences
object.

GetClass Returns the ATKClass to which
an object belongs.

GetReference Returns the dumped os_
reference representation of the
referenced object.

GetRepresentation Returns a string containing a
flat representation of an object.

GetSlotValue Returns the value of a specific
attribute, or a generic
ATKReference object.

GetTabularRepresentation Returns lists of strings that
represent the rows in a table.

IsCollection Checks whether an object is a
collection.

IsObjectManager Checks whether an object is an
Object Manager.
Release 6.0 87

ATKReference::DeleteObject

ATKReference::DeleteObject () invokes a delete user-defined
method on the persistent object represented by ATKReference.
DeleteMethodName is the name of the delete method registered for
the class to which the current ATKReference belongs.

Bool ATKReference::DeleteObject(
BSTR DeleteMethodName)

Return values

ATKReference::GetATKDatabase

ATKReference::GetATKDatabase returns an ATKDatabase object
for the referenced object.

ATKDatabase GetATKDatabase

Return value ATKDatabase

Comments GetATKDatabase is particularly useful if you use
ATKKernel::ResolveReference to get an ATKReference object.

ATKReference::GetATKObjectManager

ATKReference::GetATKObjectManager returns an
ATKObjectManager object for the referenced object.

ATKObjectManager GetATKObjectManager

Return value ATKObjectManager

Comments GetATKObjectManager works only if the persistent object
referenced by ATKReference is an ObjectStore Object Manager
object.

ReadObject Invokes a read user-defined
method on a persistent object.

UpdateObject Invokes an update user-defined
method on a persistent object.

Method Description

Return Value Description

TRUE The user-defined method returned a non-zero
value.

FALSE The user-defined method returned a zero value.
88 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKReference::GetCardinality

ATKReference::GetCardinality returns the cardinality of a
collection.

long GetCardinality

Return values GetCardinality can return the following values:

ATKReference::GetCollectionItems

ATKReference::GetCollectionItems traverses a collection and
returns an ATKReferences object that contains a collection of
ATKReference objects.

ATKReferences GetCollectionItems

Return value ATKReferences

Comments GetCollectionItems works only if the persistent object referenced
by ATKReference is an ObjectStore collection.

ATKReference::GetClass

ATKReference::GetClass returns the ATKClass to which an object
belongs.

ATKClass GetClass

Return value ATKClass

Comments GetClass joins the persistent objects and schema knowledge of the
ATK object model. If the current ATKReference object refers to an
instance of a class in the database schema, you can retrieve
information about the declaration of that class by calling GetClass.

Return Value Description

The collection
cardinality

If the object that ATKReference refers to is an
ObjectStore collection

1 The object is not an ObjectStore collection
Release 6.0 89

ATKReference::GetReference

ATKReference::GetReference returns the dumped os_reference
representation of the referenced object.

BSTR GetReference

Return value The os_reference representation of the referenced object.

Comments The return value is in os_reference::dump() format.

You can use the returned value when calling
ATKKernel::ResolveReference.

ATKReference::GetRepresentation

ATKReference::GetRepresentation returns a string containing a
flat representation of an object.

BSTR GetRepresentation[(
BSTR instanceFormatName)]

Parameter GetRepresentation accepts this parameter:

Return value A string representation of the object.

Comments If instanceFormat is "" (an empty string) or is not supplied,
GetRepresentation uses the default instance format of the class to
which the object belongs.

ATKReference::GetSlotValue

ATKReference::GetSlotValue returns the value of the data member
attributeName from the persistent object.

VARIANT GetSlotValue(
BSTR attributeName)

Parameter GetSlotValue accepts this parameter:

Parameter Description

instanceFormatName Optional. The name of the instance format
from which you want to retrieve the
object.

Parameter Description

attributeName The name of the data member whose
value you want to retrieve.
90 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
Return values VARIANT

If attributeName is a data member of the class to which the object
referenced by ATKReference belongs, GetSlotValue returns a
VARIANT.

Comments The attributeName must be an attribute of the referenced object’s
class. GetSlotValue processes only the values of integer data
member types (string and number) and of relationships.

ATKReference::GetTabularRepresentation

ATKReference::GetTabularRepresentation returns an
ATKStringsList object, which contains a collection of strings that
represent the rows in a table containing the referenced object.

ATKStringsList GetTabularRepresentation[(
BSTR instanceFormatName)]

Return Value Description

Long If the data member specified by
attributeName is a numeric
integer data member, the
VARIANT is a Long containing
the value of the field.

Double If the data member is a numeric
floating-point data member,
the VARIANT is a Double
containing the value of the
field.

BSTR If the data member is a string,
the VARIANT is a BSTR
containing a copy of the value
of the field.

ATKReference If the data member is a
relationship, the VARIANT is an
ATKReference object
representing the related
objects.
Release 6.0 91

Parameter GetTabularRepresentation accepts this parameter:

Return value ATKStringsList

For example, suppose ATKReference references a Customer
instance, and the specified instance format instructs ATK to show
the Customer name and the make and model of the cars the
customer owns. The ATKStringsList object contains this output in
tabular format:

Comments The data in the strings is presented according to the specified
instanceFormatName, which indicates the navigation pattern of the
data in the object. If instanceFormatName is "" (an empty string) or
is not supplied, GetRepresentation uses the default instance
format of the class to which the object belongs.

ATKReference::IsCollection

ATKReference::IsCollection checks if an object has been classified
as a collection.

Bool IsCollection

Return values IsCollection can return the following values:

Parameter Description

instanceFormatName Optional. The name of the instance format,
defined in the ATK metaknowledge, that
ATK uses to format the object referenced
by ATKReference.

Name Make Model

John, Smith Ford Escort

Cadillac DeVille

Return Value Description

TRUE The object is an ObjectStore collection.
FALSE The object is not an ObjectStore collection.
92 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKReference::IsObjectManager

ATKReference::IsObjectManager checks if the object has been
classified as an Object Manager (for example, image, video, audio,
HTML).

Bool IsObjectManager

Return values IsObjectManager can return the following values:

ATKReference::ReadObject

ATKReference::ReadObject () invokes a read user-defined method
on the persitent object represented by ATKReference.
ReadMethodName is the name of the read method registered for the
class to which the current ATKReference belongs.

VARIANT ATKReference::ReadObject(
BSTR ReadMethodName)

Return value The function returns the value returned by the invoked user-
defined method. The type of the returned value varies according
to the user-defined method that is called.

ATKReference::UpdateObject

ATKReference::UpdateObject () invokes an update user-defined
method on the persitent object represented by ATKReference.
UpdateMethodName is the name of the update method registered
for the class to which the current ATKReference belongs.
Arguments is a map of argument-name/argument-value pairs
used to pass arguments to the method.

Bool ATKReference::UpdateObject(
BSTR UpdateMethodName,
IATKMethodArguments* Arguments)

Return Value Description

TRUE The object is an ObjectStore Object Manager.
FALSE The object is not an ObjectStore Object

Manager.
Release 6.0 93

Return values UpdateObject can return the following values:

Return Value Description

TRUE The user-defined method returned a non-zero
value.

FALSE The user-defined method returned a zero value.
94 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKReferences

ATKReferences is a collection of ATKReference objects. Because
this class is the ATK equivalent of an ObjectStore collection, you
can use an ATKReferences object to retrieve all the items contained
in the underlying ObjectStore collection, and to create
ATKDataView and ATKTable objects based on the same collection.

Property ATKReferences contains this property:

Methods ATKReferences exposes these methods:

ATKReferences::Add

ATKReferences::Add adds a single persistent object represented
by ATKReference, or a collection of persistent objects contained in
the ItemCollection set, to the current ATKReferences object.

ATKReferences::Add(ATKReference* Item)

ATKReferences::Add(ATKReferences* ItemCollection)

Comments The ATKReferences instance on which these methods are invoked
must be transiently allocated. Such instances can be built using the
Visual Basic new operator or with CreateObject. An error is
thrown if the ATKReferences is not transiently allocated.

Property Description

Count Returns the number of objects in the
collection.

Method Description

Add Adds a single persistent object, or a
collection of persistent objects to the
current ATKReferences object.

GetATKDataView Returns an ATKDataView associated with
the dataViewExpression.

GetATKTable Returns an ATKTable associated with the
instanceFormatName.

Item Returns the specified item in the
collection.

Remove Removes a single persistent object, or a
collection of persistent objects from the
current ATKReferences object.
Release 6.0 95

ATKReferences::Count

ATKReferences::Count returns the number of ATKReference
objects contained in the collection.

long Count

Return value A long representing the number of objects.

ATKReferences::GetATKDataView

ATKReferences::GetATKDataView returns an ATKDataView object
that contains the data view definition specified by
dataViewExpression.

ATKDataView GetATKDataView(
BSTR dataViewExpression)

Parameter GetATKDataView accepts this parameter:

Return value ATKDataView

Comments The dataViewExpression parameter can also contain an SQL
command that follows the syntax described in Chapter 3, Active
Toolkit OLE DB Provider.

ATKReferences::GetATKTable

ATKReferences::GetATKTable returns an ATKTable object in the
specified instanceFormatName.

ATKTable GetATKTable[(
BSTR instanceFormatName)]

Parameter GetATKTable accepts this parameter:

Return value ATKTable

Parameter Description

dataViewExpression The data view, as defined in the ATK
metaknowledge, that ATK opens on top of
the collection referenced by
ATKReferences.

Parameter Description

instanceFormatName Optional. The name of the instance format,
as defined in the ATK metaknowledge,
that ATK uses to format the table
referenced by ATKReferences.
96 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
Comments If instanceFormatName is "" (an empty string) or is not supplied,
ATKReferences::GetATKTable uses the default instance format for
the class.

This is the most efficient means of accessing the tabular format of
a collection through an ATKReferences object.

ATKReferences::Item

ATKReferences::Item retrieves a specific ATKReference object
from the collection.

ATKReference Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKReference

ATKReferences::Remove

ATKReferences::Remove () removes a single persistent object
represented by ATKReference, or a collection of persistent objects
contained in the ItemCollection set, to the current ATKReferences
object.

ATKReferences::Remove(ATKReference* Item)

ATKReferences::Remove(ATKReferences* ItemCollection)

Return value Remove can return the following values:

Comments The ATKReferences instance on which these methods are invoked
must be transiently allocated. Such instances can be built using the
Visual Basic new operator or with CreateObject. An error is
thrown if the ATKReferences is not transiently allocated.

Parameter Description

item Specifies the position of the object in the
collection.

Return Value Description

TRUE The function is successfully completed.
FALSE The function does not complete successfully.
Release 6.0 97

ATKRoot

ATKRoot provides access to the ObjectStore roots defined in a
database. By using an ATKRoot object, you can directly access the
persistent objects.

Methods ATKRoot contains these methods:

ATKRoot::GetATKReference

ATKRoot::GetATKReference returns the ATKReference object that
represents the persistent object associated with the root.

ATKReference GetATKReference

Return value ATKReference

ATKRoot::GetATKTable

ATKRoot::GetATKTable returns the ATKTable object that
represents the ObjectStore collection associated with the
referenced root, in the specified instance format.

ATKTable GetATKTable[(
BSTR instanceFormatName)]

Parameter GetATKTable accepts this parameter:

Return value ATKTable

Method Description

GetATKReference Returns the ATKReference object
associated with the root.

GetATKTable Returns the ATKTable representing a
collection.

GetName Returns the name of the root.
GetReference Returns a string that contains the value

associated with the root.

Parameter Description

instanceFormatName Optional. The name of the instance format,
as defined in the metaknowledge, that
ATK uses to format the table.
98 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
Comments If you know that the persistent object associated with the root is
an ObjectStore collection, use this function to create an ATKTable
object containing the tabular representation of the collection.

If instanceFormatName is "" (an empty string) or is not supplied,
GetATKTable uses the default instance format for the class to
which the items in the collection belong.

ATKRoot::GetName

ATKRoot::GetName returns the symbolic name of the root, as it is
stored in the ObjectStore database.

BSTR GetName

Return value A string that contains the name of the root.

ATKRoot::GetReference

ATKRoot::GetReference returns a string representation of the
persistent object associated with the root.

BSTR GetReference

Return value A string in os_reference::dump() format that contains the value of
the persistent object.
Release 6.0 99

ATKRoots

ATKRoots is a collection of ATKRoot objects.

Property ATKRoots contains this property:

Methods ATKRoots contains these methods:

ATKRoots::Count

ATKRoots::Count returns the number of ATKRoot objects in the
collection.

long Count

Return value A long representing the number of objects.

ATKRoots::Item

ATKRoots::Item retrieves a specific ATKRoot object from the
collection.

ATKRoot Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKRoot

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Identifies an object in the collection.

A Long value specifies the position of the
required object in the collection.

A BSTR value specifies the name of the
object.
100 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKStrings

ATKStrings is a collection of BSTR object types.

Property ATKStrings contains this property:

Methods ATKStrings contains these methods:

ATKStrings::Count

ATKStrings::Count returns the number of BSTR values in the
collection.

long Count

Return value A long representing the number of string objects.

ATKStrings::Item

ATKStrings::Item retrieves a specific BSTR value from the
collection.

BSTR Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value A string value.

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Specifies the position of the required string
in the collection.
Release 6.0 101

ATKStringsList

ATKStringsList is a collection of ATKStrings objects.

Property ATKStringsList contains this property:

Methods ATKStringsList exposes these methods:

ATKStringsList::Count

ATKStringsList::Count returns the number of ATKStrings objects
in the collection.

long Count

Return value A long representing the number of string objects.

ATKStringsList::Item

ATKStringsList::Item retrieves a specific ATKStrings object from
the collection.

ATKStrings Item(
VARIANT item)

Parameter Item accepts this parameter:

Return value ATKStrings

Property Description

Count Returns the number of objects in the
collection.

Method Description

Count Returns the number of objects in the
collection.

Item Returns the specified item in the collection.

Parameter Description

item Specifies the position of the required list of
strings in the collection.
102 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKTable

ATKTable is a collection of objects that corresponds to the
underlying ObjectStore collection. An ATKTable object is strictly
related to the instance format used to create it.

ATKTable provides two kinds of string representations for an
object:

• A flat representation that is contained in a single line

• A grid-like representation, which can be expressed in multiple
lines

You can use an ATKTable object to retrieve the content of the
ObjectStore collection. For each object in the collection, you can
retrieve the rows corresponding to its tabular representation in
the instance format you specify. ATKTable also provides an easy,
efficient means of adding data to a table using representations of
the objects contained in a collection.

Methods ATKTable contains these methods:

Method Description

GetCardinality Returns the cardinality of a collection.
GetHeaders Returns a list of the column headers

in the instance format.
GetObject Returns the ATKReference object that

the ATKTable cursor points to.
GetReference Returns the reference string

representation of the object that the
ATKTable cursor points to.

GetRepresentation Returns the flat representation of the
object that the ATKTable cursor points
to.

GetTabularRepresentation Returns lists of strings that represent
the rows in a table associated with the
object that the ATKTable cursor points
to.

GetWholeHTML Returns a string containing the
default HTML representation of the
entire table.
Release 6.0 103

ATKTable::GetCardinality

ATKTable::GetCardinality returns the cardinality of the collection.

long GetCardinality

Return value The number of objects in the collection.

Comments Because GetTabularRepresentation can return more than one row
per object, GetCardinality might return a value that is smaller than
the actual number of rows in the table.

ATKTable::GetHeaders

ATKTable::GetHeaders returns an ATKStrings object that contains
a list of strings that are the column headers in the instance format.

ATKStrings GetHeaders

Return value ATKStrings

GetWholeXML Returns a buffer containing the
complete XML representation of the
table.

IsBOT Checks if the ATKTable cursor has
reached the beginning of the
collection.

IsEOT Checks if the ATKTable cursor has
reached the end of the collection.

MoveFirst Moves the ATKTable cursor to the
first item in the collection.

MoveLast Moves the ATKTable cursor to the last
item in the collection.

MoveNext Moves the ATKTable cursor to the
next item in the collection.

MovePrevious Moves the ATKTable cursor to the
previous item in the collection.

MoveTo Moves the ATKTable cursor to a
specific position in the collection.

Method Description
104 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKTable::GetObject

ATKTable::GetObject returns the ATKReference object
representing the persistent object that the ATKTable cursor points
to.

ATKReference GetObject

Return value ATKReference

ATKTable::GetReference

ATKTable::GetReference returns the reference string
representation of the object that the ATKTable cursor points to.

BSTR GetReference

Return value A string in os_reference::dump() format that contains the value of
the persistent object.

ATKTable::GetRepresentation

ATKTable::GetRepresentation returns the flat representation of the
object that the ATKTable cursor points to.

BSTR GetRepresentation

Return value A string representation of the table.

Comments ATKTable::GetRepresentation uses the instance format associated
with the ATKTable object to compute this representation.

ATKTable::GetTabularRepresentation

ATKTable::GetTabularRepresentation returns a list of strings that
represent the object that the ATKTable cursor points to.
GetTabularRepresentation presents the data in the strings
according to the specified instanceFormat, which indicates the
navigation pattern of the data in the object.

ATKStringsList GetTabularRepresentation
Release 6.0 105

Return value ATKStringsList

The collection of collections of strings contains the tabular
representation of the current table object. For example, the return
value could be a matrix:

ATKTable::GetWholeHTML

ATKTable::GetWholeHTML returns a string containing the default
representation of the entire HTML table. You can display the table
in a web browser.

BSTR GetWholeHTML

Return value A string representation of the entire table in HTML.

Comments Use GetWholeHTML to retrieve an HTML version of the table.
Because GetWholeHTML returns a BLOB containing the entire
table, Object Design recommends that you use this method as a
prototype tool, and on tables that contain only a small sample of
data.

ATKTable::GetWholeXML

ATKTable::GetWholeXML returns a buffer containing the complete
XML representation of the table.

BSTR ATKTable::GetWholeXML

Return value A string representation of the entire table in HTML.

Comments Use GetWholeXML to retrieve an HTML version of the table.
Because GetWholeXML returns a BLOB containing the entire table,
Object Design recommends that you use this method as a
prototype tool, and on tables that contain only a small sample of
data.

Name Make Model

John, Smith Ford Escort

Cadillac DeVille
106 ObjectStore Active Toolkit Reference

Chapter 5: ATK Object Model
ATKTable::IsBOT

ATKTable::IsBOT checks if the ATKTable cursor is at the first object
in the collection.

Bool IsBOT

Return values IsBot can return the following values:

ATKTable::IsEOT

ATKTable::IsEOT checks if the ATKTable cursor is at the last object
in the collection.

Bool IsEOT

Return values IsEot can return the following values:

ATKTable::MoveFirst

ATKTable::MoveFirst moves the ATKTable cursor to the first object
in the collection.

void MoveFirst

Comments By default, the ATKTable cursor starts in this position.

ATKTable::MoveLast

ATKTable::MoveLast moves the ATKTable cursor to the last object
in the collection.

void MoveLast

Return Value Description

TRUE The ATKTable cursor is at the first object in the
collection.

FALSE The ATKTable cursor is located in the collection
but not at the first object.

Return Value Description

TRUE The ATKTable cursor is at the last object in the
collection.

FALSE The ATKTable cursor is located in the collection
but not at the last object.
Release 6.0 107

ATKTable::MoveNext

ATKTable::MoveNext moves the ATKTable cursor to the next object
in the collection.

void MoveNext

ATKTable::MovePrevious

ATKTable::MovePrevious moves the ATKTable cursor to the
previous object in the collection.

void MovePrevious

ATKTable::MoveTo

ATKTable::MoveTo moves the ATKTable cursor to a specific object
in the collection.

void MoveTo(
long position)

Parameter MoveTo accepts this parameter:

Parameter Description

position The object number to which you want to
move the table cursor. The first object in a
collection is numbered 0.
108 ObjectStore Active Toolkit Reference

Release 6.0
Index
A
active data objects (ADO)

accessing OLE DB provider 24
ActiveX objects

retrieving with OLE DB provider 15
application schema

configuring 43
modifying path 44

application schema database
synchronizing path with Inspector 46

Application Schema tab 44
ATK

integrating with OSAX 7
ATK ActiveX server

changing the default 42
on a remote machine 9

ATK configuration
ATK libraries 42
starting 42

ATK OLE DB
configuring 42

ATKClass, the class 53
GetClassExtent 53
GetClassName 54
GetFatherClasses 54
GetSlots 54
GetSonClasses 54
in ATKClasses collection 56

IsTopLevelClass 55
returned by ATKClasses::Item 56
returned by

ATKClassSlot::GetRelatedClass 58
returned by ATKDatabase::GetClass 63
returned by ATKReference::GetClass 89

ATKClasses, the class 56
Count 56
Item 56
returned by

ATKClass::GetFatherClasses 54
returned by

ATKClass::GetSonClasses 54
returned by

ATKDatabase::GetAllClasses 62
ATKClassSlot, the class 57

GetAccess 57
GetClass 57
GetName 58
GetRelatedClass 58
GetRelationCardinality 58
GetType 59
in ATKClassSlots collection 60
IsRelation 59
returned by ATKClassSlots::Item 60, 79

ATKClassSlots, the class 60
Count 60
Item 60
returned by ATKClass::GetSlots 54
109

A

ATKDatabase, the class 61
GetAllClasses 62
GetClass 63
GetDataView 63
GetDataViews 63
GetInstanceFormat 64
GetRoot 64
GetRoots 64
returned by

ATKKernel::OpenDatabase 77
returned by

ATKReference::GetATKDatabase 8
8

SetJoinType 65
ATKDataView, the class 66

GetAllParameters 67
GetATKTable 68
GetDataInstanceFormat 68
GetDataInstanceFormatName 68
GetName 69
GetParameterPrompt 69
GetParameterType 69
GetParameterValues 70
in ATKDataViews collection 75, 82
IsFiltered 70
IsFilterParameterized 71
IsParameterList 71
IsParameterMultipleSelection 72
IsParameterSorted 72
PerformFiltering 73
returned by

ATKDatabase::GetDataView 63
returned by ATKDataViews::Item 75, 82
returned by

ATKReferences::GetATKDataView
96

SetParameter 73
ATKDataViews, the class 75

Count 75, 82
Item 75, 82
returned by

ATKDatabase::GetDataViews 63
ATKGetCardinality

ATKTable, defined by 104
ATKGetHeaders

ATKTable, defined by 104
ATKInstanceFormat, the class 76

GetFormatName 76
GetHeaders 76
returned by

ATKDatabase::GetInstanceForm 64
returned by

ATKDataView::GetDataInstanceFor
mat 68

ATKKernel, the class 77
OpenDatabase 77
ReloadMetaKnowledge 78
ResolveReference 78

ATKMethod, the class 79
ATKMethodArguments, the class 83
ATKMethods, the class 82
ATKObjectManager, the class 85

GetDataArray 85
GetDataSize 85
GetOMMimeType 86
GetOMTypeName 86
GetStream 86
returned by

ATKReference::GetATKObjectMana
ger 88

ATKReference, the class 87
GetATKDatabase 88
GetATKObjectManager 88
GetCardinality 89
GetClass 89
GetCollectionItems 89
GetReference 90
GetRepresentation 90
GetSlotValue 90
GetTabularRepresentation 91
in ATKReference collection 96
IsObjectManager 93
110 ObjectStore Active Toolkit Reference

Index
returned by
ATKKernel::ResolveReference 78

returned by
ATKReference::GetSlotValue 91

returned by ATKReferences::Item 97
returned by

ATKRoot::GetATKReference 98
returned by ATKTable::GetObject 105

ATKReferences, the class 95
Count 96
GetATKDataView 96
GetATKTable 96
Item 97
returned by

ATKClass::GetClassExtent 53
returned by

ATKDataView::PerformFiltering 73
returned by

ATKReference::GetCollectionItems
89

ATKRoot, the class 98
GetATKReference 98
GetATKTable 98
GetName 99
GetReference 99
in ATKRoots collection 100
returned by ATKDatabase::GetRoot 64
returned by ATKRoots::Item 100

ATKRoots, the class 100
Count 100
Item 100
returned by ATKDatabase::GetRoots 64

ATKStrings, the class 101
Count 101
in ATKStringsList collection 102
Item 101
returned by

ATKDataView::GetAllParameters 67
returned by

ATKDataView::GetParameterValues
70

returned by
ATKInstanceFormat::GetHeaders 7
6

returned by ATKStringsList::Item 102
returned by ATKTable::GetHeaders 104

ATKStringsList, the class 102
Count 102
Item 102
returned by

ATKReference::GetTabularReprese
ntation 92

returned by
ATKTable::GetTabularRepresentatio
n 106

ATKTable cursor
used by ATKTable::IsBOT 107
used by ATKTable::IsEOT 107
used by ATKTable::MoveFirst 107
used by ATKTable::MoveLast 107
used by ATKTable::MoveNext 108
used by ATKTable::MovePrevious 108
used by ATKTable::MoveTo 108

ATKTable, the class 103
GetCardinality 104
GetHeaders 104
GetObject 105
GetReference 105
GetRepresentation 105
GetTabularRepresentation 105
GetWholeHTML 106
IsBOT 107
IsEOT 107
MoveFirst 107
MoveLast 107
MoveNext 108
MovePrevious 108
MoveTo 108
returned by

ATKDataView::GetATKTable 68
returned by

ATKReferences::GetATKTable 96
Release 6.0 111

B

returned by ATKRoot::GetATKTable 98

B
binary large objects (BLOBs)

displaying long strings 50
BLOBs

See binary large objects

C
changing the ATK ActiveX server

default 42
changing the OLE DB default 42
component object model (COM) 16
configuration utility

See ATK configuration
configuring ATK OLE DB 42
Count

ATKClasses, defined by 56
ATKClassSlots, defined by 60
ATKDataViews, defined by 75, 82
ATKReferences, defined by 96
ATKRoots, defined by 100
ATKStrings, defined by 101
ATKStringsList, defined by 102

D
data views

configuring 43
displaying invalid characters

skipping 49
displaying long strings 50
displaying single character 50
distributed component object model

(DCOM) 9

E
error code

identifying internal error conditions 39
error information

retrieving 39
VBScript example 12
Visual Basic example 12
Visual C++ example 12

G
General Settings tab 47
GetAccess

ATKClassSlot, defined by 57
GetAllClasses

ATKDatabase, defined by 62
GetAllParameters

ATKDataView, defined by 67
GetATKDatabase

ATKReference, defined by 88
GetATKDataView

ATKReferences, defined by 96
GetATKObjectManager

ATKReference, defined by 88
GetATKReference

ATKRoot, defined by 98
GetATKTable

ATKDataView, defined by 68
ATKReferences, defined by 96
ATKRoot, defined by 98

GetCardinality
ATKReference, defined by 89

GetClass
ATKClassSlot, defined by 57
ATKDatabase, defined by 63
ATKReference, defined by 89

GetClassExtent
ATKClass, defined by 53

GetClassName
ATKClass, defined by 54

GetCollectionItems
ATKReference, defined by 89

GetDataArray
ATKObjectManager, defined by 85

GetDataInstanceFormat
ATKDataView, defined by 68
112 ObjectStore Active Toolkit Reference

Index
GetDataInstanceFormatName
ATKDataView, defined by 68

GetDataSize
ATKObjectManager, defined by 85

GetDataView
ATKDatabase, defined by 63

GetDataViews
ATKDatabase, defined by 63

GetFatherClasses
ATKClass, defined by 54

GetFormatName
ATKInstanceFormat, defined by 76

GetHeaders
ATKInstanceFormat, defined by 76

GetInstanceFormat
ATKDatabase, defined by 64

GetName
ATKClassSlot, defined by 58
ATKDataView, defined by 69
ATKRoot, defined by 99

GetObject
ATKTable, defined by 105

GetOMMimeType
ATKObjectManager, defined by 86

GetOMTypeName
ATKObjectManager, defined by 86

GetParameterPrompt
ATKDataView, defined by 69

GetParameterType
ATKDataView, defined by 69

GetParameterValues
ATKDataView, defined by 70

GetReference
ATKReference, defined by 90
ATKRoot, defined by 99
ATKTable, defined by 105

GetRelatedClass
ATKClassSlot, defined by 58

GetRelationCardinality
ATKClassSlot, defined by 58

GetRepresentation

ATKReference, defined by 90
ATKTable, defined by 105

GetRoot
ATKDatabase, defined by 64

GetRoots
ATKDatabase, defined by 64

GetSlots
ATKClass, defined by 54

GetSlotValue
ATKReference, defined by 90

GetSonClasses
ATKClass, defined by 54

GetStream
ATKObjectManager, defined by 86

GetTabularRepresentation
ATKReference, defined by 91
ATKTable, defined by 105

GetType
ATKClassSlot, defined by 59

GetWholeHTML
ATKTable, defined by 106

I
\includeatkkernel.h error code file 12
instance formats

configuring 43
IsBOT

ATKTable, defined by 107
IsEOT

ATKTable, defined by 107
IsFiltered

ATKDataView, defined by 70
IsFilterParameterized

ATKDataView, defined by 71
ISG Navigator/Bridge

ODBC driver 27
IsObjectManager

ATKReference, defined by 93
IsParameterList

ATKDataView, defined by 71
IsParameterMultipleSelection
Release 6.0 113

J

ATKDataView, defined by 72
IsParameterSorted

ATKDataView, defined by 72
IsRelation

ATKClassSlot, defined by 59
IsTopLevelClass

ATKClass, defined by 55
IStream interface

returned by
ATKObjectManager::GetStream 86

Item
ATKClasses, defined by 56
ATKClassSlots, defined by 60
ATKDataViews, defined by 75, 82
ATKReferences, defined by 97
ATKRoots, defined by 100
ATKStrings, defined by 101
ATKStringsList, defined by 102

J
joins

obtaining Inspector-like 24
obtaining SQL-like 24
specifying default type 47

M
metaknowledge

configuring 43
specifying location 47

MoveFirst
ATKTable, defined by 107

MoveLast
ATKTable, defined by 107

MoveNext
ATKTable, defined by 108

MovePrevious
ATKTable, defined by 108

MoveTo
ATKTable, defined by 108

O
ObjectStore ActiveX Interface (OSAX) 10
obtaining Inspector-like joins 24
obtaining SQL-like joins 24
OLE DB provider

accessing through ODBC 27
changing the default 42

OLE Multithreaded Apartment (MTA) 8
OpenDatabase

ATKKernel, defined by 77
opening an ATK OLE DB connection 24
os_reference type

returned by
ATKReference::GetReference 90

returned by ATKTable::GetReference 105

P
PerformFiltering

ATKDataView, defined by 73
prompting for user name and password 26

R
reconfiguring ATK

when to 44
ReloadMetaKnowledge

ATKKernel, defined by 78
remote machine

ATK ActiveX server on 9
ResolveReference

ATKKernel, defined by 78

S
SetJoinType

ATKDatabase, defined by 65
SetParameter

ATKDataView, defined by 73
specifying user and password 26
SQL syntax support 28
starting the ATK configuration 42
114 ObjectStore Active Toolkit Reference

Index
String Formats tab 49
synchronizing ATK with the Inspector 43

V
vomsch60.adb

moving 45
Release 6.0 115

V

116 ObjectStore Active Toolkit Reference

	Active Toolkit Reference
	ObjectStore Active Toolkit Reference
	Preface
	How This Book Is Organized
	Sample Data
	Notation Conventions
	Internet Sources of More Information
	Training
	Your Comments

	ATK and the Inspector
	ATK Metaknowledge and Inspector
	Accessing Data Views and Instance Formats from ATK
	Accessing Data Views from ATK
	Accessing Instance Formats from the ATK ActiveX Server

	ATK ActiveX Server
	What Is the ATK ActiveX Server?
	Accessing the ActiveX Server Using DCOM
	Integrating ATK and OSAX
	Retrieving Error Information

	Active Toolkit OLE DB Provider
	What Is OLE DB?
	Navigation in ObjectStore ATK OLE DB
	Multimedia Object Managers in ATK OLE DB
	Accessing the ATK OLE DB Provider
	Accessing the ATK OLE DB Source Through ODBC
	SQL Support in ATK OLE DB
	CRUD Operations in ATK OLE DB
	Ways to Implement CRUD Operations
	Editing Objects and Relationships
	Creating Objects
	Reading Objects
	Updating Objects
	Deleting Objects

	Retrieving Error Information

	Configuring ATK
	The ATK Configuration Utility
	Running the ATK Configuration Utility
	Synchronizing with Inspector

	Setting the Application Schema Path
	Application Schema Sheet
	ObjectStore Server
	Synchronizing with Inspector

	Modifying the ATK General Settings
	Metaknowledge
	Default X-to-Many Joins
	Synchronizing with Inspector

	Modifying the String Format Settings
	Interpreting Strings
	Japanese Expressions
	Show Strings
	BLOBs
	Show Single Characters

	ATK Object Model
	ATKClass
	ATKClasses
	ATKClassSlot
	ATKClassSlots
	ATKDatabase
	ATKDataView
	ATKDataViews
	ATKInstanceFormat
	ATKKernel
	ATKMethod
	ATKMethods
	ATKMethodArguments
	ATKObjectManager
	ATKReference
	ATKReferences
	ATKRoot
	ATKRoots
	ATKStrings
	ATKStringsList
	ATKTable

	Index

